

A319

AIRCRAFT CHARACTERISTICS AIRPORT AND MAINTENANCE PLANNING

AC

The content of this document is the property of Airbus.

It is supplied in confidence and commercial security on its contents must be maintained.

It must not be used for any purpose other than that for which it is supplied, nor may information contained in it be disclosed to unauthorized persons.

It must not be reproduced in whole or in part without permission in writing from the owners of the copyright. Requests for reproduction of any data in this document and the media authorized for it must be addressed to Airbus.

© AIRBUS S.A.S. 2005. All rights reserved.

AIRBUS S.A.S. Customer Services Technical Data Support and Services 31707 Blagnac Cedex FRANCE

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

<u>HIGHLIGHTS</u>

Revision No. 27 - Dec 01/23

LOCATIONS	CHG CODE	DESCRIPTIONS OF CHANGE
CHAPTER 1		
Section 1-2		
Subject 1-2-0		
Glossary	R	
CHAPTER 5		
Section 5-8		
Subject 5-8-0		
Ground Towing Requirements	R	
FIGURE Ground Towing Requirements	Ν	ILLUSTRATION ADDED

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

LIST OF EFFECTIVE CONTENT

Revision No. 27 - Dec 01/23

CHAPTER 1Mar 01/22Subject 1-1-0Mar 01/22PurposeRSubject 1-2-0RGlossaryRCHAPTER 2Subject 2-1-1General Aircraft Characteristics DataMar 01/22Subject 2-2-0May 01/14General Aircraft DimensionsFeb 01/18FIGURE General Aircraft Dimensions - Wing Tip FenceMay 01/15Subject 2-3-0May 01/15Ground ClearancesMay 01/15FIGURE Ground Clearances - Wing Tip FenceMay 01/23FIGURE Ground Clearances - SharkletMay 01/23FIGURE Ground ClearancesMay 01/15FIGURE Ground Clearances - Trailing Edge Flaps - ExtendedMay 01/15FIGURE Ground Clearances - Flap Tracks - ExtendedMay 01/15	CONTENT	CHG CODE	LAST REVISION DATE
PurposeMar 01/22Subject 1-2-0RDec 01/23GlossaryRDec 01/23CHAPTER 2Subject 2-1-1Mar 01/22General Aircraft Characteristics DataMar 01/22Subject 2-2-0May 01/14General Aircraft DimensionsFeb 01/18FIGURE General Aircraft Dimensions - Wing Tip FenceMay 01/15Subject 2-3-0May 01/15Ground ClearancesMay 01/15FIGURE Ground Clearances - Wing Tip FenceMay 01/23FIGURE Ground Clearances - SharkletMay 01/23FIGURE Ground Clearances - Trailing Edge Flaps - ExtendedMay 01/15			
PurposeRDec 01/23Subject 1-2-0RDec 01/23GlossaryCHAPTER 2Mar 01/22Subject 2-1-1Mar 01/22General Aircraft Characteristics DataMar 01/22Subject 2-2-0May 01/14General Aircraft DimensionsFeb 01/18FIGURE General Aircraft Dimensions - Wing Tip FenceMay 01/15Subject 2-3-0May 01/15Ground ClearancesMay 01/15FIGURE Ground Clearances - Wing Tip FenceMay 01/23FIGURE Ground Clearances - SharkletDec 01/18FIGURE Ground Clearances - Trailing Edge Flaps - ExtendedMay 01/15	Subject 1-1-0		Mar 01/22
GlossaryRDec 01/23GlossaryCHAPTER 2Subject 2-1-1Mar 01/22General Aircraft Characteristics DataMar 01/22Subject 2-2-0May 01/14General Aircraft DimensionsFeb 01/18FIGURE General Aircraft Dimensions - Wing Tip FenceMay 01/15FIGURE General Aircraft DimensionsMay 01/15Subject 2-3-0May 01/15Ground ClearancesMay 01/23FIGURE Ground Clearances - Wing Tip FenceMay 01/23FIGURE Ground Clearances - SharkletDec 01/18FIGURE Ground ClearancesMay 01/15FIGURE Ground Clearances - Trailing Edge Flaps - ExtendedMay 01/15	Purpose		Mar 01/22
Glossary CHAPTER 2 Subject 2-1-1 Mar 01/22 General Aircraft Characteristics Data Mar 01/22 Subject 2-2-0 May 01/14 General Aircraft Dimensions Feb 01/18 FIGURE General Aircraft Dimensions - Wing Tip Fence May 01/15 FIGURE General Aircraft Dimensions May 01/15 Subject 2-3-0 May 01/15 Ground Clearances May 01/15 FIGURE Ground Clearances - Wing Tip Fence May 01/23 FIGURE Ground Clearances - Sharklet May 01/23 FIGURE Ground Clearances May 01/23 FIGURE Ground Clearances - Trailing Edge Flaps - Extended May 01/15	Subject 1-2-0		
Subject 2-1-1Mar 01/22General Aircraft Characteristics DataMay 01/22Subject 2-2-0May 01/14General Aircraft DimensionsFeb 01/18FIGURE General Aircraft Dimensions - Wing Tip FenceMay 01/15FIGURE General Aircraft DimensionsMay 01/15Subject 2-3-0May 01/15Ground ClearancesMay 01/23FIGURE Ground Clearances - Wing Tip FenceMay 01/23FIGURE Ground Clearances - SharkletDec 01/18FIGURE Ground Clearances - Trailing Edge Flaps - ExtendedMay 01/15	Glossary	R	Dec 01/23
General Aircraft Characteristics DataMar 01/22Subject 2-2-0May 01/14General Aircraft DimensionsFeb 01/18FIGURE General Aircraft Dimensions - Wing Tip FenceMay 01/15FIGURE General Aircraft DimensionsMay 01/15Subject 2-3-0May 01/15Ground ClearancesMay 01/15FIGURE Ground Clearances - Wing Tip FenceMay 01/23FIGURE Ground Clearances - SharkletDec 01/18FIGURE Ground ClearancesDec 01/18FIGURE Ground Clearances - Trailing Edge Flaps - ExtendedMay 01/15	CHAPTER 2		
General Aircraft Characteristics DataMay 01/14Subject 2-2-0May 01/14General Aircraft DimensionsFeb 01/18FIGURE General Aircraft Dimensions - Wing Tip FenceMay 01/15Subject 2-3-0May 01/15Ground ClearancesMay 01/15FIGURE Ground Clearances - Wing Tip FenceMay 01/23FIGURE Ground Clearances - SharkletMay 01/23FIGURE Ground ClearancesDec 01/18FIGURE Ground Clearances - Trailing Edge Flaps - ExtendedMay 01/15May 01/15May 01/15	Subject 2-1-1		
General Aircraft DimensionsMay 01/14FIGURE General Aircraft Dimensions - Wing Tip FenceFeb 01/18FIGURE General Aircraft DimensionsMay 01/15Subject 2-3-0May 01/15Ground ClearancesMay 01/15FIGURE Ground Clearances - Wing Tip FenceMay 01/23FIGURE Ground Clearances - SharkletMay 01/23FIGURE Ground ClearancesDec 01/18FIGURE Ground ClearancesMay 01/15FIGURE Ground Clearances - SharkletMay 01/15FIGURE Ground Clearances - Trailing Edge Flaps - ExtendedMay 01/15	General Aircraft Characteristics Data		Mar 01/22
General Aircraft Dimensions Feb 01/18 FIGURE General Aircraft Dimensions May 01/15 Subject 2-3-0 May 01/15 Ground Clearances May 01/15 FIGURE Ground Clearances - Wing Tip Fence May 01/23 FIGURE Ground Clearances - Sharklet May 01/23 FIGURE Ground Clearances Dec 01/18 FIGURE Ground Clearances May 01/23 FIGURE Ground Clearances - Sharklet May 01/23 FIGURE Ground Clearances May 01/23 FIGURE Ground Clearances - Sharklet May 01/23 FIGURE Ground Clearances May 01/15 FIGURE Ground Clearances - Trailing Edge Flaps - Extended May 01/15	Subject 2-2-0		
FIGURE General Aircraft Dimensions - Wing Tip Fence May 01/15 FIGURE General Aircraft Dimensions May 01/15 Subject 2-3-0 May 01/15 Ground Clearances May 01/15 FIGURE Ground Clearances - Wing Tip Fence May 01/23 FIGURE Ground Clearances - Sharklet May 01/23 FIGURE Ground Clearances Dec 01/18 FIGURE Ground Clearances - Trailing Edge Flaps - Extended May 01/15	General Aircraft Dimensions		May 01/14
FIGURE General Aircraft Dimensions - Wing Tip Fence May 01/15 FIGURE General Aircraft Dimensions May 01/15 Subject 2-3-0 May 01/15 Ground Clearances May 01/15 FIGURE Ground Clearances - Wing Tip Fence May 01/23 FIGURE Ground Clearances - Sharklet May 01/23 FIGURE Ground Clearances Dec 01/18 FIGURE Ground Clearances - Trailing Edge Flaps - Extended May 01/15			Eeb 01/18
FIGURE General Aircraft Dimensions Subject 2-3-0 Ground Clearances FIGURE Ground Clearances - Wing Tip Fence FIGURE Ground Clearances - Sharklet FIGURE Ground Clearances - Sharklet FIGURE Ground Clearances FIGURE Ground Clearances FIGURE Ground Clearances FIGURE Ground Clearances May 01/23 Dec 01/18 May 01/15 May 01/15	FIGURE General Aircraft Dimensions - Wing Tip Fence		1 60 01/10
FIGURE General Aircraft Dimensions Subject 2-3-0 Ground Clearances FIGURE Ground Clearances - Wing Tip Fence FIGURE Ground Clearances - Sharklet FIGURE Ground Clearances - Sharklet FIGURE Ground Clearances FIGURE Ground Clearances FIGURE Ground Clearances FIGURE Ground Clearances May 01/23 Dec 01/18 May 01/15 May 01/15			May 01/15
Ground ClearancesMay 01/15FIGURE Ground Clearances - Wing Tip FenceMay 01/23FIGURE Ground Clearances - SharkletMay 01/23FIGURE Ground ClearancesDec 01/18FIGURE Ground Clearances - Trailing Edge Flaps - ExtendedMay 01/15May 01/15May 01/15	FIGURE General Aircraft Dimensions		
Ground Clearances May 01/23 FIGURE Ground Clearances - Wing Tip Fence May 01/23 FIGURE Ground Clearances - Sharklet Dec 01/18 FIGURE Ground Clearances May 01/23 FIGURE Ground Clearances May 01/23 FIGURE Ground Clearances May 01/15 May 01/15 May 01/15	Subject 2-3-0		
FIGURE Ground Clearances - Wing Tip Fence May 01/23 FIGURE Ground Clearances - Sharklet Dec 01/18 FIGURE Ground Clearances May 01/25 FIGURE Ground Clearances May 01/15 FIGURE Ground Clearances - Trailing Edge Flaps - Extended May 01/15	Ground Clearances		May 01/15
FIGURE Ground Clearances - Wing Tip Fence May 01/23 FIGURE Ground Clearances - Sharklet Dec 01/18 FIGURE Ground Clearances May 01/25 FIGURE Ground Clearances May 01/15 FIGURE Ground Clearances - Trailing Edge Flaps - Extended May 01/15			May 01/23
FIGURE Ground Clearances - Sharklet FIGURE Ground Clearances FIGURE Ground Clearances - Trailing Edge Flaps - Extended May 01/15 May 01/15	FIGURE Ground Clearances - Wing Tip Fence		Way 01/25
FIGURE Ground Clearances - Sharklet FIGURE Ground Clearances FIGURE Ground Clearances - Trailing Edge Flaps - Extended May 01/15 May 01/15			May 01/23
FIGURE Ground Clearances FIGURE Ground Clearances - Trailing Edge Flaps - Extended May 01/15 May 01/15	FIGURE Ground Clearances - Sharklet		-
FIGURE Ground Clearances - Trailing Edge Flaps - Extended May 01/15 May 01/15	FIGURE Ground Clearances		Dec 01/18
FIGURE Ground Clearances - Trailing Edge Flaps - Extended May 01/15	ribuite Ground Clearances		
May 01/15	FIGURE Ground Clearances - Trailing Edge Flaps - Extended		May 01/15
FIGURE Ground Clearances - Flap Tracks - Extended			May 01/15
	FIGURE Ground Clearances - Flap Tracks - Extended		

L.E.C. Page 1 Dec 01/23

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

CONTENT	CHG CODE	LAST REVISION DATE
FIGURE Ground Clearances - Flap Tracks - Retracted		May 01/15
FIGURE Ground Clearances - Flap Tracks - 1 + F		May 01/15
FIGURE Ground Clearances - Aileron Down		May 01/15
FIGURE Ground Clearances - Aileron Up		May 01/15
FIGURE Ground Clearances - Spoilers - Extended		May 01/15
FIGURE Ground Clearances - Leading Edge Slats - Extended		May 01/15
Subject 2-4-1		May 01/16
Interior Arrangements - Plan View		Way 01/10
FIGURE Interior Arrangements - Plan View - Typical Configuration - Single-Class, High Density		May 01/16
FIGURE Interior Arrangements - Plan View - Typical Configuration - Two-Class		May 01/16
Subject 2-5-0		
Interior Arrangements - Cross Section		May 01/15
FIGURE Interior Arrangements - Cross Section - Economy Class, 6 Abreast - Wider Aisle		May 01/15
FIGURE Interior Arrangements - Cross Section - First-Class		May 01/15
Subject 2-6-0		NA-11 04/45
Cargo Compartments		May 01/15
FIGURE Cargo Compartments - Locations and Dimensions		May 01/15

L.E.C. Page 2 Dec 01/23

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

CONTENT	CHG CODE	LAST REVISION DATE
FIGURE Cargo Compartments - Loading Combinations		May 01/15
Subject 2-7-0		
Door Clearances		Mar 01/22
FIGURE Door Identification and Location - Door Identification		Feb 01/18
FIGURE Doors Clearances - Forward Passenger/Crew Doors		May 01/15
FIGURE Doors Clearances - Emergency Exits		May 01/15
FIGURE Doors Clearances - Aft Passenger/Crew Doors		May 01/15
FIGURE Doors Clearances - Forward Cargo Compartment Door		May 01/15
FIGURE Doors Clearances - Forward Cargo Compartment Door		May 01/15
FIGURE Doors Clearances - Aft Cargo Compartment Door		May 01/15
FIGURE Doors Clearances - Main Landing Gear Doors		May 01/15
FIGURE Doors Clearances - Radome		May 01/15
FIGURE Doors Clearances - APU and Nose Landing Gear Doors		May 01/15
FIGURE Doors Clearances - Airstairs - Location		Mar 01/22
FIGURE Doors Clearances - Airstairs - Dimensions		Mar 01/22
FIGURE Doors Clearances - Airstairs - Location for Operating the Airstairs		Mar 01/22
FIGURE Operation of the Airstairs		Mar 01/22

L.E.C. Page 3 Dec 01/23

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

CONTENT	CHG CODE	LAST REVISION DATE
Subject 2-8-0		D 04/40
Escape Slides		Dec 01/18
FIGURE Escape Slides - Location		Feb 01/18
FIGURE Escape Slides - Dimensions		Feb 01/18
Subject 2-9-0		
Landing Gear		Mar 01/22
FIGURE Landing Gear - Main Landing Gear - Twin-Wheel		May 01/14
FIGURE Landing Gear - Main Landing Gear Dimensions - Twin-Wheel		May 01/14
FIGURE Landing Gear - Nose Landing Gear of ACJ		Mar 01/22
FIGURE Operation of Airstairs for ACJ		Mar 01/22
FIGURE Landing Gear - Nose Landing Gear Dimensions		May 01/14
Landing Gear Maintenance Pits		May 01/14
FIGURE Landing Gear Maintenance Pits - Maintenance Pit Envelopes		May 01/14
FIGURE Landing Gear Maintenance Pits - Maintenance Pit Envelopes		May 01/14
Subject 2-10-0		
Exterior Lighting		May 01/15
FIGURE Exterior Lighting		May 01/14
FIGURE Exterior Lighting		May 01/14

L.E.C. Page 4 Dec 01/23

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

CONTENT	CHG CODE	LAST REVISION DATE
FIGURE Exterior Lighting		May 01/14
FIGURE Exterior Lighting		May 01/14
Subject 2-11-0		Mary 04/44
Antennas and Probes Location		May 01/14
FIGURE Antennas and Probes - Location		May 01/14
Subject 2-12-0		Dec 01/15
Auxiliary Power Unit		
FIGURE Auxiliary Power Unit - Access Doors		Dec 01/15
FIGURE Auxiliary Power Unit - General Layout		Dec 01/15
Engine and Nacelle		May 01/23
FIGURE Power Plant Handling - Major Dimensions - CFM56 Series Engine		May 01/14
FIGURE Power Plant Handling - Major Dimensions - CFM56 Series Engine		May 01/14
FIGURE Power Plant Handling - Fan Cowls - CFM56 Series Engine		May 01/17
FIGURE Power Plant Handling - Thrust Reverser Cowls - CFM56 Series Engine		May 01/17
FIGURE Power Plant Handling - Major Dimensions - IAE V2500 Series Engine		May 01/14
FIGURE Power Plant Handling - Major Dimensions - IAE V2500 Series Engine		May 01/14

L.E.C. Page 5 Dec 01/23

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

CONTENT	CHG CODE	LAST REVISION DATE
FIGURE Power Plant Handling - Fan Cowls - IAE V2500 Series Engine		May 01/17
FIGURE Power Plant Handling - Thrust Reverser Halves - IAE V2500 Series Engine		May 01/17
FIGURE Power Plant Handling - Major Dimensions - PW 1100G Engine		May 01/17
FIGURE Power Plant Handling - Fan Cowls - PW 1100G Engine		May 01/17
FIGURE Power Plant Handling - Thrust Reverser Halves - PW 1100G Engine		May 01/14
FIGURE Power Plant Handling - Major Dimensions - CFM LEAP-1A Engine		May 01/15
FIGURE Power Plant Handling - Major Dimensions - CFM LEAP-1A Engine		May 01/17
Subject 2-13-0		
Leveling, Symmetry and Alignment		May 01/14
FIGURE Location of the Leveling Points		May 01/14
Subject 2-14-0		
Jacking for Maintenance		Mar 01/22
FIGURE Jacking for Maintenance - Jacking Point Locations		May 01/15
FIGURE Jacking for Maintenance - Forward Jacking Point		May 01/14
FIGURE Jacking for Maintenance - Wing Jacking Points		May 01/14
FIGURE Jacking for Maintenance - Safety Stay		May 01/15

L.E.C. Page 6 Dec 01/23

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

CONTENT	CHG CODE	LAST REVISION DATE
FIGURE Jacking for Maintenance - Jacking Design		Mar 01/22
FIGURE Jacking for Maintenance - Jacking Design		May 01/23
FIGURE Jacking for Maintenance - Location of Shoring Cradles		May 01/14
Jacking of the Landing Gear		May 01/17
FIGURE Jacking of the Landing Gear - MLG Jacking Point Location - Twin Wheels		May 01/14
FIGURE Jacking of the Landing Gear - MLG Jacking with Cantilever Jack - Twin Wheels		May 01/14
FIGURE Jacking of the Landing Gear - NLG Jacking - Point Location		May 01/14
FIGURE Jacking of the Landing Gear - Maximum Load Capacity to Lift Each Jacking Point		May 01/17
FIGURE Jacking of the Landing Gear - Maximum Load Capacity to Lift Each Jacking Point		May 01/17
CHAPTER 3 Subject 3-1-0		
General Information		May 01/14
Subject 3-2-1		May 01/15
Payload/Range - ISA Conditions		
FIGURE Payload/Range - ISA Conditions		May 01/15
FIGURE Payload/Range - ISA Conditions - Sharklet		May 01/15
FIGURE Payload/Range - ISA Conditions		May 01/15

L.E.C. Page 7 Dec 01/23

CONTENT	CHG CODE	LAST REVISION DATE
Subject 3-3-1		Dec 01/21
Take-Off Weight Limitation - ISA Conditions		Dec 01/21
FIGURE Take-Off Weight Limitation - ISA Conditions - CFM56 Series Engine		May 01/14
FIGURE Take-Off Weight Limitation - ISA Conditions - IAE V2500 Series Engine		May 01/14
FIGURE Take-Off Weight Limitation - ISA Conditions - LEAP Engines		Dec 01/21
Subject 3-3-2		
Take-Off Weight Limitation - ISA +15°C (+27°F) Conditions		Dec 01/21
FIGURE Take-Off Weight Limitation - ISA +15°C (+27°F) Conditions - CFM56 Series Engine		Dec 01/18
FIGURE Take-Off Weight Limitation - ISA +15°C (+27°F) Conditions - IAE V2500 Series Engine		Dec 01/18
FIGURE Take-Off Weight Limitation - ISA +15°C (+27°F) Conditions - Leap Engines		Dec 01/21
Subject 3-3-3		
Aerodrome Reference Code		Apr 01/20
Subject 3-4-1		
Landing Field Length - ISA Conditions		Dec 01/21
FIGURE Landing Field Length - ISA Conditions - CFM56-5A Series Engine		May 01/14
FIGURE Landing Field Length - ISA Conditions - IAE V2500 Series Engine		May 01/14

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

CONTENT	CHG CODE	LAST REVISION DATE
FIGURE Landing Field Length - ISA Conditions - Leap Engines		Dec 01/21
Subject 3-5-0		
Final Approach Speed		May 01/14
CHAPTER 4 Subject 4-1-0		
General Information		May 01/14
Subject 4-2-0		5 01/15
Turning Radii		Dec 01/15
FIGURE Turning Radii, No Slip Angle - (Sheet 1)		Dec 01/15
FIGURE Turning Radii, No Slip Angle - (Sheet 2)		Dec 01/15
Subject 4-3-0		Dec 01/15
Minimum Turning Radii		Dec 01/15
FIGURE Minimum Turning Radii		May 01/14
Subject 4-4-0		
Visibility from Cockpit in Static Position		May 01/14
FIGURE Visibility from Cockpit in Static Position		Dec 01/18
FIGURE Binocular Visibility Through Windows from Captain Eye Position		May 01/14
Subject 4-5-0		
Runway and Taxiway Turn Paths		May 01/14
Subject 4-5-1		
135° Turn - Runway to Taxiway		May 01/14

L.E.C. Page 9 Dec 01/23

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

CONTENT	CHG CODE	LAST REVISION DATE
FIGURE 135° Turn - Runway to Taxiway - Cockpit Over Centerline Method		Dec 01/18
FIGURE 135° Turn - Runway to Taxiway - Judgemental Oversteering Method		Dec 01/18
Subject 4-5-2		
90° Turn - Runway to Taxiway		May 01/14
FIGURE 90° Turn - Runway to Taxiway - Cockpit Over Centerline Method		Dec 01/18
FIGURE 90° Turn - Runway to Taxiway - Judgemental Oversteering Method		Dec 01/18
Subject 4-5-3		
180° Turn on a Runway		Dec 01/18
FIGURE 180° Turn on a Runway - Edge of Runway Method		Dec 01/18
FIGURE 180° Turn on a Runway - Edge of Runway Method		Dec 01/18
Subject 4-5-4		
135° Turn - Taxiway to Taxiway		May 01/14
FIGURE 135° Turn - Taxiway to Taxiway - Cockpit Over Centerline Method		Dec 01/18
Subject 4-5-5		
90° Turn - Taxiway to Taxiway		May 01/14
FIGURE 90° Turn - Taxiway to Taxiway - Cockpit Over Centerline Method		Dec 01/18
Subject 4-6-0		

L.E.C. Page 10 Dec 01/23

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

CONTENT	CHG CODE	LAST REVISION DATE
Runway Holding Bay (Apron)		May 01/14
FIGURE Runway Holding Bay (Apron)		May 01/14
Subject 4-7-0		May 04/44
Minimum Line-Up Distance Corrections		May 01/14
FIGURE Minimum Line-Up Distance Corrections - 90° Turn on Runway Entry		May 01/14
FIGURE Minimum Line-Up Distance Corrections - 180° Turn on Runway Turn Pad		May 01/14
FIGURE Minimum Line-Up Distance Corrections - 180° Turn on Runway Width		May 01/14
Subject 4-8-0		
Aircraft Mooring		May 01/14
FIGURE Aircraft Mooring		May 01/14
CHAPTER 5		
Subject 5-1-1 Aircraft Servicing Arrangements		May 01/14
Subject 5-1-2		
Typical Ramp Layout – Open Apron		May 01/14
FIGURE Typical Ramp Layout - Open Apron - Bulk Loading		May 01/14
FIGURE Typical Ramp Layout - Open Apron - ULD Loading		May 01/14
Subject 5-1-3		
Typical Ramp Layout - Gate		May 01/14

L.E.C. Page 11 Dec 01/23

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

CONTENT	CHG CODE	LAST REVISION DATE
FIGURE Typical Ramp Layout - Gate		May 01/14
Subject 5-2-0		
Terminal Operations - Full Servicing Turn Round Time		Dec 01/18
FIGURE Full Servicing Turn Round Time Chart		Dec 01/18
Subject 5-3-0		Dec 01/10
Terminal Operations - Outstation Turn Round Time		Dec 01/18
FIGURE Outstation Turn Round Time Chart		Dec 01/18
Subject 5-4-1		May 01/14
Ground Service Connections Layout		
FIGURE Ground Service Connections Layout		May 01/14
Subject 5-4-2		Mov 01/14
Grounding (Earthing) Points		May 01/14
FIGURE Ground Service Connections - Grounding (Earthing) Points - Landing Gear		May 01/14
FIGURE Ground Service Connections - Grounding (Earthing) Points - Wing (If Installed)		May 01/14
FIGURE Ground Service Connections - Grounding (Earthing) Point - Avionics Compartment Door-Frame		May 01/14
FIGURE Ground Service Connections - Grounding (Earthing) Point - Engine Air Intake (If Installed)		May 01/14
Subject 5-4-3		
Hydraulic Servicing		May 01/16

L.E.C. Page 12 Dec 01/23

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

CONTENT	CHG CODE	LAST REVISION DATE
FIGURE Ground Service Connections - Green System Ground Service Panel		May 01/16
FIGURE Ground Service Connections - Blue System Ground Service Panel		May 01/16
FIGURE Ground Service Connections - Yellow System Ground Service Panel		May 01/16
FIGURE Ground Service Connections - RAT		May 01/16
Subject 5-4-4 Electrical System		May 01/15
FIGURE Ground Service Connections - External Power Receptacles		May 01/14
Subject 5-4-5		May 01/14
Oxygen System		
FIGURE Ground Service Connections - Oxygen System		May 01/14
Subject 5-4-6		May 01/14
Fuel System		Way 01/14
FIGURE Ground Service Connections - Refuel/Defuel Control Panel		May 01/14
FIGURE Ground Service Connections - Refuel/Defuel Couplings		May 01/14
FIGURE Ground Service Connections - Overwing Gravity-Refuel Cap (If Installed)		May 01/14
FIGURE Ground Service Connections - Overpressure Protectors and NACA Vent Intake		May 01/14
Subject 5-4-7		

L.E.C. Page 13 Dec 01/23

CONTENT	CHG CODE	LAST REVISION DATE
Pneumatic System		May 01/14
FIGURE Ground Service Connections - LP and HP Ground Connectors		May 01/14
Subject 5-4-8		Dec 01/21
Oil System		Dec 01/21
FIGURE Ground Service Connections - Engine Oil Tank – CFM56 Series Engine		May 01/14
FIGURE Ground Service Connections - IDG Oil Tank – CFM56 Series Engine		May 01/14
FIGURE Ground Service Connections - Starter Oil Tank – CFM56 Series Engine		May 01/14
FIGURE Ground Service Connections - Engine Oil Tank – IAE V2500 Series Engine		May 01/14
FIGURE Ground Service Connections - IDG Oil Tank – IAE V2500 Series Engine		May 01/14
FIGURE Ground Service Connections - Starter Oil Tank – IAE V2500 Series Engine		May 01/14
FIGURE Ground Service Connections - APU Oil Tank		May 01/14
FIGURE Ground Service Connections - Engine Oil Tank – CFM LEAP- 1A Series Engine		Dec 01/21
FIGURE Ground Service Connections - IDG Oil Tank – CFM LEAP-1A Series Engine		Dec 01/21
FIGURE Ground Service Connections - Starter Oil Tank – CFM LEAP- 1A Series Engine		Dec 01/21

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

CONTENT	CHG CODE	LAST REVISION DATE
Subject 5-4-9		
Potable Water System		May 01/14
FIGURE Ground Service Connections - Potable Water Ground Service Panels		May 01/14
FIGURE Ground Service Connections - Potable Water Tank Location		May 01/14
Subject 5-4-10		
Waste Water System		Nov 01/19
FIGURE Ground Service Connections - Waste Water Ground Service Panel		May 01/14
FIGURE Ground Service Connections - Waste Tank Location		May 01/14
Subject 5-5-0		
Engine Starting Pneumatic Requirements		Dec 01/21
Subject 5-6-0		
Ground Pneumatic Power Requirements		May 01/15
FIGURE Ground Pneumatic Power Requirements - Heating		May 01/14
FIGURE Ground Pneumatic Power Requirements - Cooling		May 01/14
Subject 5-7-0		May 01/15
Preconditioned Airflow Requirements		May 01/15
FIGURE Preconditioned Airflow Requirements		May 01/16
Subject 5-8-0	_	
Ground Towing Requirements	R	Dec 01/23

L.E.C. Page 15 Dec 01/23

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

CONTENT	CHG CODE	LAST REVISION DATE
FIGURE Ground Towing Requirements	N	Dec 01/23
Subject 5-9-0		
De-Icing and External Cleaning		May 01/14
<u>CHAPTER 6</u> Subject 6-1-0		
Engine Exhaust Velocities and Temperatures		Dec 01/15
Subject 6-1-1		
Engine Exhaust Velocities Contours - Ground Idle Power		Dec 01/15
FIGURE Engine Exhaust Velocities - Ground Idle Power – CFM56 Series Engine		Dec 01/15
FIGURE Engine Exhaust Velocities - Ground Idle Power – IAE V2500 Series Engine		Dec 01/15
FIGURE Engine Exhaust Velocities - Ground Idle Power – CFM LEAP- 1A Engine		Dec 01/15
FIGURE Engine Exhaust Velocities - Ground Idle Power – PW 1100G Engine		Dec 01/15
Subject 6-1-2		
Engine Exhaust Temperatures Contours - Ground Idle Power		Dec 01/15
FIGURE Engine Exhaust Temperatures - Ground Idle Power – CFM56 Series Engine		Dec 01/15
FIGURE Engine Exhaust Temperatures - Ground Idle Power – IAE V2500 Series Engine		Dec 01/15
FIGURE Engine Exhaust Temperatures - Ground Idle Power – CFM LEAP-1A Engine		Dec 01/15

L.E.C. Page 16 Dec 01/23

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

CONTENT	CHG CODE	LAST REVISION DATE
FIGURE Engine Exhaust Temperatures - Ground Idle Power – PW 1100G Engine		Dec 01/15
Subject 6-1-3		
Engine Exhaust Velocities Contours - Breakaway Power		Dec 01/18
FIGURE Engine Exhaust Velocities - Breakaway Power 12% MTO – CFM LEAP-1A Engine		Dec 01/15
FIGURE Engine Exhaust Velocities - Breakaway Power 12% MTO – PW 1100G Engine		Dec 01/15
FIGURE Engine Exhaust Velocities - Breakaway Power 24% MTO – CFM LEAP-1A Engine		Dec 01/15
FIGURE Engine Exhaust Velocities - Breakaway Power 24% MTO – PW 1100G Engine		Dec 01/15
FIGURE Engine Exhaust Velocities - Breakaway Power - CFM56 Series Engine		Dec 01/18
FIGURE Engine Exhaust Velocities - Breakaway Power - IAE V2500 Series Engine		Dec 01/18
Subject 6-1-4		
Engine Exhaust Temperatures Contours - Breakaway Power		Dec 01/18
FIGURE Engine Exhaust Temperatures - Breakaway Power 12% MTO - CFM LEAP-1A Engine		Dec 01/15
FIGURE Engine Exhaust Temperatures - Breakaway Power 12% MTO - PW 1100G Engine		Dec 01/15
FIGURE Engine Exhaust Temperatures - Breakaway Power 24% MTO - CFM LEAP-1A Engine		Dec 01/15

L.E.C. Page 17 Dec 01/23

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

CONTENT	CHG CODE	LAST REVISION DATE
FIGURE Engine Exhaust Temperatures - Breakaway Power 24% MTO - PW 1100G Engine		Dec 01/15
FIGURE Engine Exhaust Temperatures - Breakaway Power - CFM56 Series Engine		Dec 01/18
FIGURE Engine Exhaust Temperatures - Breakaway Power - IAE V2500 Series Engine		Dec 01/18
Subject 6-1-5		
Engine Exhaust Velocities Contours - Takeoff Power		Dec 01/15
FIGURE Engine Exhaust Velocities - Takeoff Power – CFM56 Series Engine		Dec 01/15
FIGURE Engine Exhaust Velocities - Takeoff Power – IAE V2500 Series Engine		Dec 01/15
FIGURE Engine Exhaust Velocities - Takeoff Power – CFM LEAP-1A Engine		Dec 01/15
FIGURE Engine Exhaust Velocities - Takeoff Power – PW 1100G Engine		Dec 01/15
Subject 6-1-6		
Engine Exhaust Temperatures Contours - Takeoff Power		Dec 01/15
FIGURE Engine Exhaust Temperatures - Takeoff Power – CFM56 Series Engine		Dec 01/15
FIGURE Engine Exhaust Temperatures - Takeoff Power – IAE V2500 Series Engine		Dec 01/15
FIGURE Engine Exhaust Temperatures - Takeoff Power – CFM LEAP- 1A Engine		Dec 01/15

L.E.C. Page 18 Dec 01/23

CONTENT	CHG CODE	LAST REVISION DATE
FIGURE Engine Exhaust Temperatures - Takeoff Power – PW 1100G Engine		Dec 01/15
Subject 6-3-0		
Danger Areas of Engines		Dec 01/18
Subject 6-3-1		
Ground Idle Power		Dec 01/15
FIGURE Danger Areas of the Engines - CFM56 Series Engine		Dec 01/18
FIGURE Danger Areas of the Engines - IAE V2500 Series Engine		Dec 01/18
FIGURE Danger Areas of the Engines - CFM LEAP-1A Engine		Dec 01/18
FIGURE Danger Areas of the Engines - PW 1100G Engine		Dec 01/18
Subject 6-3-2		
Breakaway Power		Feb 01/18
FIGURE Danger Areas of the Engines - CFM56 Series Engine		Nov 01/19
FIGURE Danger Areas of the Engines - IAE V2500 Series Engine		Nov 01/19
FIGURE Danger Areas of the Engines - CFM LEAP-1A Engine		Nov 01/19
FIGURE Danger Areas of the Engines - PW 1100G Engine		Nov 01/19
Subject 6-3-3		
Take Off Power		Feb 01/18
FIGURE Danger Areas of the Engines - CFM56 Series Engine		Dec 01/18
FIGURE Danger Areas of the Engines - IAE V2500 Series Engine		Dec 01/18

CONTENT	CHG CODE	LAST REVISION DATE
FIGURE Danger Areas of the Engines - CFM LEAP-1A Engine		Dec 01/18
FIGURE Danger Areas of the Engines - PW 1100G Engine		Dec 01/18
Subject 6-4-1		
APU - APIC & GARRETT		May 01/14
FIGURE Exhaust Velocities and Temperatures - APU – APIC & GARRETT		May 01/14
CHAPTER 7 Subject 7-1-0		
General Information		Mar 01/22
Subject 7-2-0		
Landing Gear Footprint		Mar 01/22
FIGURE Landing Gear Footprint		Mar 01/22
FIGURE Landing Gear Footprint		May 01/23
FIGURE Landing Gear Footprint for ACJ319NEO		May 01/23
Subject 7-3-0		Mar 01/22
Maximum Pavement Loads		Mar 01/22
FIGURE Maximum Pavement Loads for A319-100 and ACJ319-100		Mar 01/22
FIGURE Maximum Pavement Loads for ACF319NEO Maximum Pavement Loads for ACF319NEO		May 01/23
Subject 7-4-0		
Landing Gear Loading on Pavement		Mar 01/22
Subject 7-5-0		

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

CONTENT	CHG CODE	LAST REVISION DATE
Flexible Pavement Requirements - US Army Corps of Engineers Design Method		Mar 01/22
Subject 7-6-0		
Flexible Pavement Requirements - LCN Conversion		Mar 01/22
Subject 7-7-0		
Rigid Pavement Requirements - Portland Cement Association Design Method		Mar 01/22
Subject 7-8-0		
Rigid Pavement Requirements - LCN Conversion		Mar 01/22
Subject 7-9-0		
Aircraft Classification Number - Flexible and Rigid Pavements		Mar 01/22
FIGURE ACN Table for A319-100		Mar 01/22
FIGURE ACN Table for A319NEO and ACJ319NEO - ACN Table for A319NEO		May 01/23
Subject 7-10-0		
ACR/PCR Reporting System - Flexible and Rigid Pavements		Mar 01/22
FIGURE ACR Table for A319-100 and A319-100 CJ		Mar 01/22
FIGURE ACR Table		May 01/23
FIGURE ACR Table for ACJ319NEO		May 01/23
CHAPTER 8		
Subject 8-0-0		Dec 01/15
Scaled Drawings		
FIGURE Scaled Drawing		Dec 01/15

L.E.C. Page 21 Dec 01/23

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

CONTENT	CHG CODE	LAST REVISION DATE
FIGURE Scaled Drawing		Dec 01/15
CHAPTER 10 Subject 10-0-0		
Aircraft Rescue and Fire Fighting		May 01/15
FIGURE Front Page		Nov 01/19
FIGURE Highly Flammable and Hazardous Materials and Components		Nov 01/19
FIGURE Batteries Location and Access		Nov 01/19
FIGURE Wheel/Brake Overheat - Wheel Safety Area		Nov 01/19
FIGURE Composite Materials		May 01/14
FIGURE L/G Ground Lock Safety Devices		Nov 01/19
FIGURE Emergency Evacuation Devices		Nov 01/19
FIGURE Pax/Crew Doors		Nov 01/19
FIGURE Emergency Exit Hatch		Nov 01/19
FIGURE FWD and AFT Lower Deck Cargo Doors		Nov 01/19
FIGURE Control Panels		Nov 01/19
FIGURE APU Access Door		Nov 01/19
FIGURE Aircraft Ground Clearances		Nov 01/19
FIGURE Structural Break-in Points		Nov 01/19

L.E.C. Page 22 Dec 01/23

@Δ319

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

TABLE OF CONTENTS

1-2-0	Glossary
2	AIRCRAFT DESCRIPTION
2-1-1	General Aircraft Characteristics Data
2-2-0	General Aircraft Dimensions
2-3-0	Ground Clearances
2-4-1	Interior Arrangements - Plan View
2-5-0	Interior Arrangements - Cross Section
2-6-0	Cargo Compartments
2-7-0	Door Clearances and Location
2-8-0	Escape Slides
2-9-0	Landing Gear
2-10-0	Exterior Lighting
2-11-0	Antennas and Probes Location
2-12-0	Power Plant
2-13-0	Leveling, Symmetry and Alignment
2-14-0	Jacking
3	AIRCRAFT PERFORMANCE
3-1-0	General Information
3-2-1	Payload / Range - ISA Conditions
3-3-1	Take-off Weight Limitation - ISA Conditions
3-3-2	Take-off Weight Limitation - ISA +15°C (+59°F) Conditions
3-3-3	Aerodrome Reference Code
3-4-1	Landing Field Length - ISA Conditions
3-5-0	Final Approach Speed
4	GROUND MANEUVERING
4-1-0	General Information
4-2-0	Turning Radii
100	

SCOPE

Introduction

1 1-1-0

- 4-3-0 Minimum Turning Radii
- 4-4-0 Visibility from Cockpit in Static Position
- Runway and Taxiway Turn Paths 4-5-0
- 135° Turn Runway to Taxiway 4-5-1

T.O.C. Page 1 Dec 01/23

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

- 4-5-2 90° Turn Runway to Taxiway
- 4-5-3 180° Turn on a Runway
- 4-5-4 135° Turn Taxiway to Taxiway
- 4-5-5 90° Turn Taxiway to Taxiway
- 4-6-0 Runway Holding Bay (Apron)
- 4-7-0 Minimum Line-Up Distance Corrections
- 4-8-0 Aircraft Mooring
- 5 TERMINAL SERVICING
- 5-1-1 Aircraft Servicing Arrangements
- 5-1-2 Typical Ramp Layout Open Apron
- 5-1-3 Typical Ramp Layout Gate
- 5-2-0 Terminal Operations Full Servicing Turn Round Time Chart
- 5-3-0 Terminal Operation Outstation Turn Round Time Chart
- 5-4-1 Ground Service Connections
- 5-4-2 Grounding Points
- 5-4-3 Hydraulic System
- 5-4-4 Electrical System
- 5-4-5 Oxygen System
- 5-4-6 Fuel System
- 5-4-7 Pneumatic System
- 5-4-8 Oil System
- 5-4-9 Potable Water System
- 5-4-10 Waste Water System
- 5-5-0 Engine Starting Pneumatic Requirements
- 5-6-0 Ground Pneumatic Power Requirements
- 5-7-0 Preconditioned Airflow Requirements
- 5-8-0 Ground Towing Requirements
- 5-9-0 De-Icing and External Cleaning
- 6 OPERATING CONDITIONS
- 6-1-0 Engine Exhaust Velocities and Temperatures
- 6-1-1 Engine Exhaust Velocities Contours Ground Idle Power
- 6-1-2 Engine Exhaust Temperatures Contours Ground Idle Power
- 6-1-3 Engine Exhaust Velocities Contours Breakaway Power
- 6-1-4 Engine Exhaust Temperatures Contours Breakaway Power
- 6-1-5 Engine Exhaust Velocities Contours Takeoff Power
- 6-1-6 Engine Exhaust Temperatures Contours Takeoff Power
- 6-3-0 Danger Areas of Engines

T.O.C. Page 2 Dec 01/23

⑤A319

- 6-3-1 Ground Idle Power
- 6-3-2 Breakaway Power
- 6-3-3 Max Take Off Power
- 6-4-1 APU
- 7 PAVEMENT DATA
- 7-1-0 General Information
- 7-2-0 Landing Gear Footprint
- 7-3-0 Maximum Pavement Loads
- 7-4-0 Landing Gear Loading on Pavement
- 7-5-0 Flexible Pavement Requirements U.S. Army Corps of Engineers Design Method
- 7-6-0 Flexible Pavement Requirements LCN Conversion
- 7-7-0 Rigid Pavement Requirements Portland Cement Association Design Method
- 7-8-0 Rigid Pavement Requirements LCN Conversion
- 7-9-0 ACN/PCN Reporting System Flexible and Rigid Pavements
- 7-10-0 ACR/PCR Reporting System Flexible And Rigid Pavements
- 8 SCALED DRAWINGS
- 8-0-0 SCALED DRAWINGS
- 10 AIRCRAFT RESCUE AND FIRE FIGHTING
- 10-0-0 AIRCRAFT RESCUE AND FIRE FIGHTING

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

<u>SCOPE</u>

1-1-0 Introduction

**ON A/C A319-100 A319neo

Purpose

1. General

The A319 AIRCRAFT CHARACTERISTICS – AIRPORT AND MAINTENANCE PLANNING (AC) manual is issued for the A319-100 series aircraft that have the wing-tip fences or sharklets, to give necessary data to the airport operators, airlines and Maintenance/Repair Organizations (MRO) for airport and maintenance facilities planning.

The A320 Family is the world's best-selling single-aisle aircraft. An A320 takes off or lands in the world each 1.5 seconds for each day, the family recorded more than 117 million cycles since the entry-into-service and records the best-in-class dispatch reliability of 99.7%.

To make sure this true market leadership, Airbus continues to invest in improvements in the A320 Family: enhancements to the aerodynamics for example the sharklet wingtip devices, upgrades to the widest passenger cabin in its class, the A320 Family neo. The latter mixes topof-class engine efficiency offered with two new engine options: the PW1100G PurePower from Pratt&Whitney and the LEAP-1A from CFM International offered the new sharklet devices with superior aerodynamics.

The A320neo family offers a minimum of 15% fuel savings and an additional flight range of about 500 nm (926 km) and up to 20% fuel savings got through the cabin innovations and efficiency improvements. For the environment, the A320neo family is also more eco-friendly, with 5 000 t (11 023 113 lb) less CO2 emissions each year for each aircraft and almost 50% reduction in noise footprint compared to before generation aircraft.

When you fly the ACJ family member, we pride ourselves on four key intertwined DNA strands that are behind everything. We give the ultimate comfort, intercontinental freedom, pioneering technology and reliability. An ACJ is not only a plane but a home where you can experience space like no other jet, crafted ambience and artisanal quality materials you can connect with. We have selected the space and technology to let you do fine dining, pampering, movie night, working from the sky to make strategic business decisions or simply relaxing with your loved ones and guests, uncompromisingly.

Page 1 Dec 01/23

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

1-2-0 Glossary

**ON A/C A319-100 A319neo

Glossary

1. List of Abbreviations

A/C	Aircraft
ACF	Aircraft Cabin Flex
ACN	Aircraft Classification Number
ACR	Aircraft Classification Rating
AMM	Aircraft Maintenance Manual
APU	Auxiliary Power Unit
B/C	Business Class
CBR	California Bearing Ratio
CC	Cargo Compartment
CG	Center of Gravity
СКРТ	Cockpit
E	Young's Modulus
ELEC	Electric, Electrical, Electricity
ESWL	Equivalent Single Wheel Load
FAA	Federal Aviation Administration
F/C	First Class
FDL	Fuselage Datum Line
FR	Frame
FSTE	Full Size Trolley Equivalent
FWD	Forward
GPU	Ground Power Unit
GSE	Ground Support Equipment
HYD	Hydraulic
ICAO	International Civil Aviation Organisation
IDG	Integrated Drive Generator
ISA	International Standard Atmosphere
L	Left
L	Radius of relative stiffness
LCN	Load Classification Number
LD	Lower Deck
L/G	Landing Gear
LH	Left Hand
LPS	Last Pax Seating
MAC	Mean Aerodynamic Chord

MAX	Maximum
MIN	Minimum
MLG	Main Landing Gear
NLG	Nose Landing Gear
OAT	Outside Air Temperature
PAX	Passenger
PBB	Passenger Boarding Bridge
PCA	Portland Cement Association
PCN	Pavement Classification Number
PCR	Pavement Classification Rating
PRM	Passenger with Reduced Mobility
R	Right
RH	Right Hand
ULD	Unit Load Device
US	United States
WV	Weight Variant
Y/C	Tourist Class

- 2. Design Weight Terminology
 - Maximum Design Ramp Weight (MRW): Maximum weight for ground maneuver (including weight of taxi and run-up fuel) as limited by aircraft strength and airworthiness requirements. It is also called Maximum Design Taxi Weight (MTW).
 - Maximum Design Landing Weight (MLW):
 Maximum weight for landing as limited by aircraft strength and airworthiness requirements.
 - Maximum Design Takeoff Weight (MTOW): Maximum weight for takeoff as limited by aircraft strength and airworthiness requirements. (This is the maximum weight at start of the take-off run).
 - Maximum Design Zero Fuel Weight (MZFW):
 Maximum permissible weight of the aircraft without usable fuel.
 - Maximum Seating Capacity: Maximum number of passengers specifically certified or anticipated for certification.
 - Usable Volume: Usable volume available for cargo, pressurized fuselage, passenger compartment and cockpit.
 - Water Volume:
 - Maximum volume of cargo compartment.
 - Usable Fuel: Fuel available for aircraft propulsion.

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

AIRCRAFT DESCRIPTION

2-1-1 General Aircraft Characteristics Data

**ON A/C A319-100 A319neo

General Aircraft Characteristics Data

**ON A/C A319-100

1. The following table gives characteristics of A319-100 models, these data are specific to each weight variant:

Aircraft Characteristics						
	WV000	WV001	WV002			
Maximum Ramp Weight (MRW)	64 400 kg	70 400 kg	75 900 kg			
Maximum Taxi Weight (MTW)	(141 978 lb)	(155 205 lb)	(167 331 lb)			
Maximum Take-Off Weight (MTOW)	64 000 kg	70 000 kg	75 500 kg			
	(141 096 lb)	(154 324 lb)	(166 449 lb)			
Maximum Landing Weight (MLW)	61 000 kg	61 000 kg	62 500 kg			
	(134 482 lb)	(134 482 lb)	(137 789 lb)			
Maximum Zero Fuel Weight (MZFW)	57 000 kg	57 000 kg	58 500 kg			
	(125 663 lb)	(125 663 lb)	(128 970 lb)			

Aircraft Characteristics						
	WV002 ACJ	WV003	WV004			
Maximum Ramp Weight (MRW)	75 900 kg	68 400 kg	68 400 kg			
Maximum Taxi Weight (MTW)	(167 331 lb)	(150 796 lb)	(150 796 lb)			
Maximum Take-Off Weight (MTOW)	75 500 kg (166 449 lb)	68 000 kg (149 914 lb)	68 000 kg (149 914 lb)			
Maximum Landing Weight (MLW)	62 500 kg (137 789 lb)	61 000 kg (134 482 lb)	62 500 kg (137 789 lb)			
Maximum Zero Fuel Weight (MZFW)	58 500 kg (128 970 lb)	57 000 kg (125 663 lb)	58 500 kg (128 970 lb)			

Aircraft Characteristics						
	WV005	WV005 ACJ	WV006			
Maximum Ramp Weight (MRW)	70 400 kg	70 400 kg	73 900 kg			
Maximum Taxi Weight (MTW)	(155 205 lb)	(155 205 lb)	(162 922 lb)			
Maximum Take-Off Weight (MTOW)	70 000 kg (154 324 lb)	70 000 kg (154 324 lb)	73 500 kg (162 040 lb)			
Maximum Landing Weight (MLW)	62 500 kg (137 789 lb)	62 500 kg (137 789 lb)	62 500 kg (137 789 lb)			
Maximum Zero Fuel Weight (MZFW)	58 500 kg (128 970 lb)	58 500 kg (128 970 lb)	58 500 kg (128 970 lb)			

Aircraft Characteristics							
	WV007	WV008	WV009				
Maximum Ramp Weight (MRW)	75 900 kg	64 400 kg	66 400 kg				
Maximum Taxi Weight (MTW)	(167 331 lb)	(141 978 lb)	(146 387 lb)				
Maximum Take-Off Weight (MTOW)	75 500 kg	64 000 kg	66 000 kg				
	(166 449 lb)	(141 096 lb)	(145 505 lb)				
Maximum Landing Weight (MLW)	61 000 kg	62 500 kg	62 500 kg				
	(134 482 lb)	(137 789 lb)	(137 789 lb)				
Maximum Zero Fuel Weight (MZFW)	57 000 kg	58 500 kg	58 500 kg				
	(125 663 lb)	(128 970 lb)	(128 970 lb)				

Aircraft Characteristics								
	WV010	WV011	WV012	WV013	WV014			
	ACJ			ACJ	ACJ			
Maximum Ramp Weight								
(MRW)	76 900 kg	66 400 kg	62 400 kg	75 900 kg	76 900 kg			
Maximum Taxi Weight	(169 535 lb)	(146 387 lb)	(137 568 lb)	(167 331 lb)	(169 535 lb)			
(MTW)								
Maximum Take-Off Weight	76 500 kg	66 000 kg	62 000 kg	75 500 kg	76 500 kg			
(MTOW)	(168 653 lb)	(145 505 lb)	(136 686 lb)	(166 449 lb)	(168 653 lb)			
Maximum Landing Weight	62 500 kg	61 000 kg	61 000 kg	62 500 kg	62 500 kg			
(MLW)	(137 789 lb)	(134 482 lb)	(134 482 lb)	(137 789 lb)	(137 789 lb)			
Maximum Zero Fuel Weight	58 500 kg	57 000 kg	57 000 kg	52 000 kg	52 000 kg			
(MZFW)	(128 970 lb)	(125 663 lb)	(125 663 lb)	(114 640 lb)	(114 640 lb)			

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

**ON A/C A319neo

2. The following table gives characteristics of A319NEO and ACJA319NEO models, these data are specific to each weight variant:

Aircraft Characteristics								
	WV050	WV051	WV052	WV053	WV054			
Maximum Ramp Weight (MRW) Maximum Taxi Weight (MTW)	64 400 kg (141 978 lb)	64 400 kg (141 978 lb)	70 400 kg (155 205 lb)	70 400 kg (155 205 lb)	75 900 kg (167 331 lb)			
Maximum Take-Off Weight	64 000 kg	64 000 kg	70 000 kg	70 000 kg	75 500 kg			
(MTOW)	(141 096 lb)	(141 096 lb)	(154 323 lb)	(154 323 lb)	(166 449 lb)			
Maximum Landing Weight	62 800 kg	63 900 kg	62 800 kg	63 900 kg	62 800 kg			
(MLW)	(138 450 lb)	(140 875 lb)	(138 450 lb)	(140 875 lb)	(138 450 lb)			
Maximum Zero Fuel Weight	58 800 kg	60 300 kg	58 800 kg	60 300 kg	58 800 kg			
(MZFW)	(129 632 lb)	(132 939 lb)	(129 632 lb)	(132 939 lb)	(129 632 lb)			

Aircraft Characteristics							
	WV054 WV055		WV055	WV110	WV111		
	ACJ	00000	ACJ	ACJ	ACJ		
Maximum Ramp Weight							
(MRW)	75 900 kg	75 900 kg	75 900 kg	77 700 kg	77 700 kg		
Maximum Taxi Weight	(167 331 lb)	(167 331 lb)	(167 331 lb)	(171 299 lb)	(171 299 lb)		
(MTW)							
Maximum Take-Off Weight	75 500 kg	75 500 kg	75 500 kg	77 300 kg	77 300 kg		
(MTOW)	(166 449 lb)	(166 449 lb)	(166 449 lb)	(170 417 lb)	(170 417 lb)		
Maximum Landing Weight	62 800 kg	63 900 kg	63 900 kg	63 900 kg	62 800 kg		
(MLW)	(138 450 lb)	(140 875 lb)	(140 875 lb)	(140 875 lb)	(138 450 lb)		
Maximum Zero Fuel Weight	58 800 kg	60 300 kg	60 300 kg	60 300 kg	58 800 kg		
(MZFW)	(129 632 lb)	(132 939 lb)	(132 939 lb)	(132 939 lb)	(129 632 lb)		

Aircraft Characteristics							
	WV112	WV113	WV114	WV115	WV116	WV120	
	ACJ	ACJ	ACJ	ACJ	ACJ	ACJ	
Maximum Ramp							
Weight (MRW)	77 700 kg	76 900 kg	76 900 kg	76 900 kg	75 900 kg	78 600 kg	
Maximum Taxi Weight	(171 299 lb)	(169 535 lb)	(169 535 lb)	(169 535 lb)	(167 331 lb)	(173 283 lb)	
(MTW)							
Maximum Take-Off	77 300 kg	76 500 kg	76 500 kg	76 500 kg	75 500 kg	78 200 kg	
Weight (MTOW)	(170 417 lb)	(168 654 lb)	(168 654 lb)	(168 654 lb)	(166 449 lb)	(172 401 lb)	

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

Aircraft Characteristics							
WV112 WV113 WV114 WV115 WV116 WV120							
	ACJ	ACJ	ACJ	ACJ	ACJ	ACJ	
Maximum Landing	63 900 kg	63 900 kg	62 800 kg	63 900 kg	63 900 kg	63 900 kg	
Weight (MLW)	(140 875 lb)	(140 875 lb)	(138 450 lb)	(140 875 lb)	(140 875 lb)	(140 875 lb)	
Maximum Zero Fuel	53 800 kg	60 300 kg	58 800 kg	53 800 kg	53 800 kg	53 800 kg	
Weight (MZFW)	(118 609 lb)	(132 939 lb)	(129 632 lb)	(118 609 lb)	(118 609 lb)	(118 609 lb)	

**ON A/C A319-100 A319neo

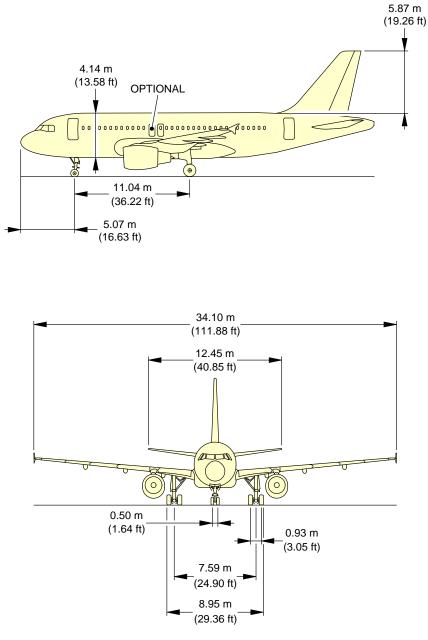
3. The following table gives characteristics of A319-100 and A319neo models, these data are common to each weight variant:

Aircraft Characteristics							
Standard Seating Capacity			156	(Single-Cla	ass)		
Usable Fuel Capacity (density = 0.785 kg/l)		A319CEO CFM Engine	A319CEO IAE Engine	ACJ3 19CEO	A319NEO	ACJ3 19NEO	
	Total Wing Fuel	15 959 l (4 216 US gal)	15 609 I (4 123 US gal)	15 609 l (4 123 US gal)	15 490 I (4 092 US gal)	15 490 I (4 092 US gal)	
	Center Tank Fuel	8 250 I (2 179 US gal)	8 250 I (2 179 US gal)	8 250 I (2 179 US gal)	8 250 I (2 179 US gal)	8 250 I (2 179 US gal)	
	ACT 1	Х	х	3 121 I (824 US gal)	х	3 121 I (824 US gal)	
	ACT 2	Х	х	3 121 I (824 US gal)	х	3 121 I (824 US gal)	
	ACT4 / 4.1 / FWD	Х	х	2 186 I (577 US gal)	х	3 046 l (805 US gal)	
	Maximum Total Aircraft- Fuel	24 209 I (6 395 US gal)	23 859 I (6 303 US gal)	32 287 I (8 529 US gal)	23 740 I (6 271 US gal)	33 028 I (8 725 US gal)	
Pressurized Fuselage Volume (A/C non equipped)		285 m³ (10 065 ft³)					
Passenger Compartment Volume		120 m ³ (4 238 ft ³)					

Aircraft Characteristics	
Cockpit Volume	9 m³
	(318 ft ³)
Usable Volume, FWD CC	8.52 m ³
	(301 ft ³)
Usable Volume, AFT CC	11.92 m ³
	(421 ft ³)
Usable Volume, Bulk CC	7.22 m ³
	(255 ft ³)
Water Volume, FWD CC	10.63 m ³
	(375 ft ³)
Water Volume, AFT CC	13.91 m ³
	(491 ft ³)
Water Volume, Bulk CC	7.51 m ³
	(265 ft ³)

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

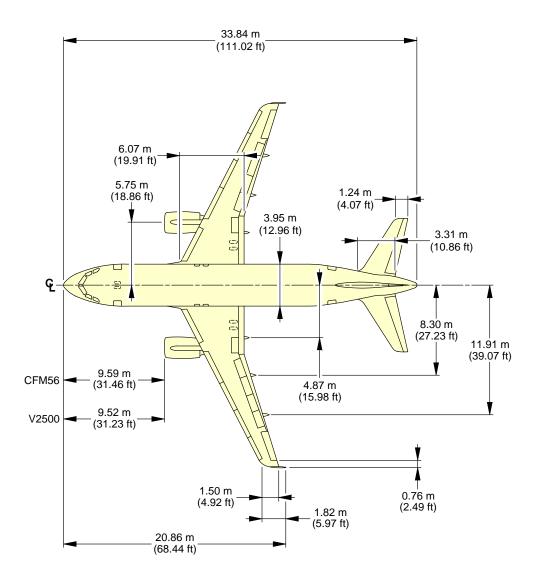
2-2-0 General Aircraft Dimensions


**ON A/C A319-100 A319neo

General Aircraft Dimensions

1. This section provides general aircraft dimensions.

**ON A/C A319-100



NOTE: RELATED TO AIRCRAFT ATTITUDE AND WEIGHT.

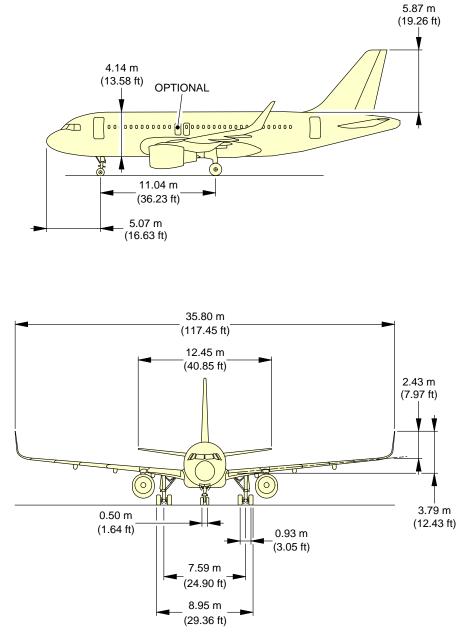
General Aircraft Dimensions Wing Tip Fence (Sheet 1 of 4) FIGURE-2-2-0-991-002-A01 N_AC_020200_1_0020101_01_04

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

**ON A/C A319-100

NOTE: RELATED TO AIRCRAFT ATTITUDE AND WEIGHT.

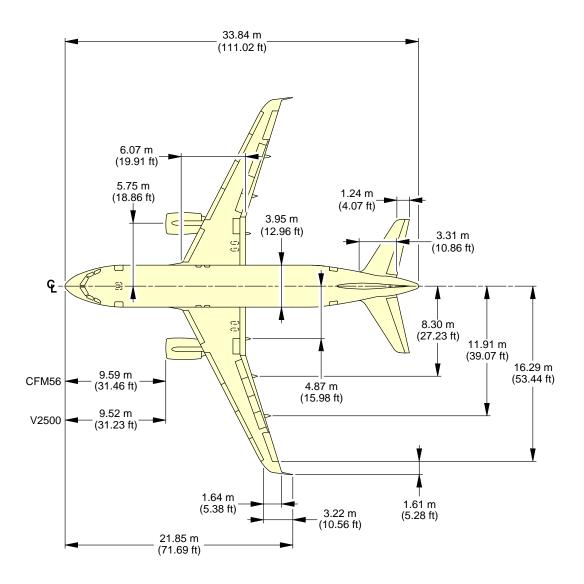
N_AC_020200_1_0020103_01_02


General Aircraft Dimensions Wing Tip Fence (Sheet 2 of 4) FIGURE-2-2-0-991-002-A01

2-2-0

Page 3 Dec 01/23

**ON A/C A319-100


NOTE: RELATED TO AIRCRAFT ATTITUDE AND WEIGHT.

N_AC_020200_1_0020102_01_02

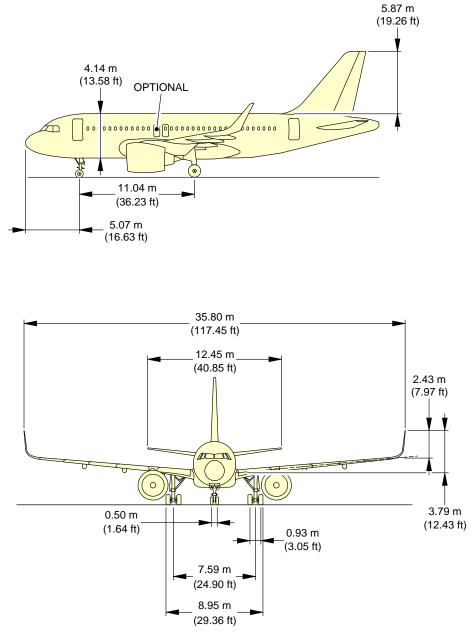
General Aircraft Dimensions Sharklet (Sheet 3 of 4) FIGURE-2-2-0-991-002-A01

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

**ON A/C A319-100

NOTE: RELATED TO AIRCRAFT ATTITUDE AND WEIGHT.

N_AC_020200_1_0020104_01_02

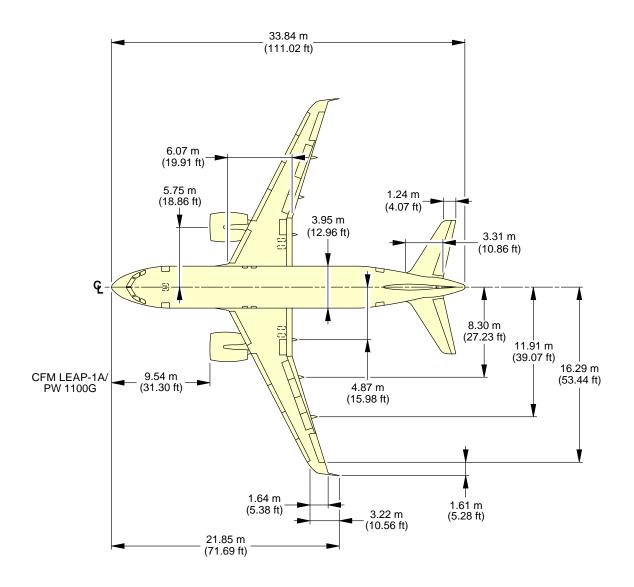

General Aircraft Dimensions Sharklet (Sheet 4 of 4) FIGURE-2-2-0-991-002-A01

2-2-0

Page 5 Dec 01/23

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

**ON A/C A319neo


NOTE: RELATED TO AIRCRAFT ATTITUDE AND WEIGHT.

N_AC_020200_1_0080101_01_01

General Aircraft Dimensions (Sheet 1 of 2) FIGURE-2-2-0-991-008-A01

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

**ON A/C A319neo

NOTE: RELATED TO AIRCRAFT ATTITUDE AND WEIGHT.

N_AC_020200_1_0080102_01_01

General Aircraft Dimensions (Sheet 2 of 2) FIGURE-2-2-0-991-008-A01

Page 7 Dec 01/23

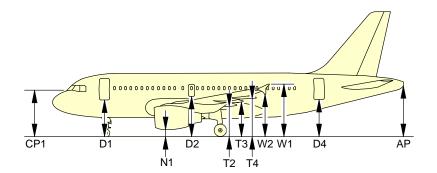
AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

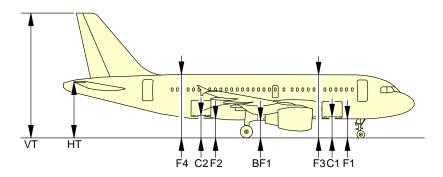
2-3-0 Ground Clearances

**ON A/C A319-100 A319neo

Ground Clearances

1. This section provides the height of various points of the aircraft, above the ground, for different aircraft configurations.


Dimensions in the tables are approximate and will vary with tire type, weight and balance and other special conditions.


The dimensions are given for:

- A light weight, for an A/C in maintenance configuration with a mid CG,
- An aircraft at Maximum Ramp Weight with a FWD CG and an AFT CG,
- Aircraft on jacks, FDL at 4.60 m (15.09 ft).
- <u>NOTE</u> : Passenger and cargo door ground clearances are measured from the center of the door sill and from floor level.

**ON A/C A319-100

N_AC_020300_1_0020101_01_08

Ground Clearances Wing Tip Fence (Sheet 1 of 2) FIGURE-2-3-0-991-002-A01

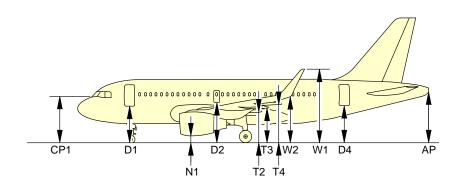
2-3-0

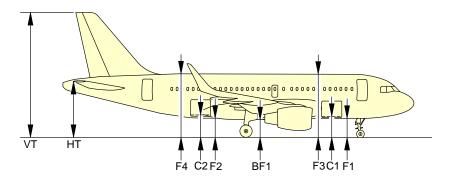
Page 2 Dec 01/23

GA319

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

**ON A/C A319-100


A/C JACKED EDI = 4.60 m	(15.09 ft)	ft	13.556	14.878	13.556	8.307	8.307	16.269	7.985	7.985	21.571	21.571	7.401	10.656	12.063	13.139	17.562	14.379	19.455	17.070	12.445 40.830	4.064	4.064	4.645
A/C J/	(15.	٤	4.132	4.535	4.132	2.532	2.532	4.959	2.434	2.434	6.575	6.575	2.256	3.248	3.677	4.005	5.353	4.383	5.930	5.203		1.239	1.239	1.416
.W 25 kg 79 lb)	CG (28%)	Ħ	11.394	13.038	12.175	6.263	6.666	13.966	5.994	6.361	19.596	19.967	5.675	8.940	10.367	11.486	15.990	12.798	18.310	15.984	39.717	2.191	2.191	2.795
OEW 39 725 kg (87 579 lb)	:) 00	٤	3.473	3.974	3.711	1.909	2.032	4.257	1.827	1.939	5.973		1.730	2.725	3.160	3.501	4.874	3.901	5.581	4.872	12.106	0.668	0.668	0.852
22 lb)	,FT CG (36%)	ft	11.266	12.736	11.617	6.069	6.253	13.917	5.774	5.938	19.366	19.534 6.086	5.308	8.566	9.983	11.079	15.538	12.352	17.624	15.265	11.891 39.012 12.106	1.906	1.906	2.496
MRW (WV6) 00 kg (162 92	AFT CG (36%)	٤	3.434	3.882	3.541	1.850	1.906	4.242	1.760	1.810	5.903	5.954	1.618	2.611	3.043	3.377	4.736	3.765	5.372	4.653		0.581	0.581	0.761
MRW (WV6) 73 900 kg (162 922 lb)	FWD CG (21%)	Ħ	11.079	12.723	11.856	5.948	6.351	13.654	5.679	6.046	19.284	19.652	5.360	8.622	10.052	11.171	15.675	12.483	17.992	15.669	39.140 12.009 39.399	1.876	1.876	2.480
73	FWD C((21%)	٤	3.377	3.878	3.614	1.813	1.936	4.162	1.731	1.843		5.990	1.634	2.628	3.064	3.405	4.778	3.805	5.484	4.776	12.009	0.572	0.572	0.756
(ql	ۍ ن	ft	11.322	3.905 12.811	11.729	6.131	6.341	13.963	5.839	6.030	5.924 19.435 5.878	5.982 19.625 5.990		8.651	10.072	3.405 11.171	15.633	12.447	5.410 17.749	4.693 15.396	39.140	1.981	1.981	2.572
WV0) 41 978	AFT CG (36%)	٤	3.451	3.905	3.575	1.869	1.933	4.256	1.780	1.838	5.924	5.982	1.644	2.637	3.070	3.405	4.765	3.794	5.410	4.693	11.930	0.604	0.604	0.784
MRW(WV0) 64 400 kg(141 978 lb)	SCG	ft	11.125	12.801	11.981	6.003	6.446	13.684	5.741	6.145	19.347	19.750	5.449	8.713	10.144	11.266	15.777	12.585	18.139	15.820	39.547	1.948	1.952	2.555
64 ,	FWD CG (21%)	٤	3.391	3.902	3.652	1.830	1.965	4.171	1.750	1.873	5.897	6.020	1.661	2.656	3.092	3.434	4.809	3.836	5.529	4.822	12.054	0.594	0.595	0.779
	C2 C1 D1 C2		C2	CP1	μ	F2	F3	F4	BF1	T2	T3	T4	W1	W2	НТ	AP	VΤ	£	£	Σ				
A/C CONFIGURATION			DOOR 1	EMERGENCY HATCH	DOOR 2	FWD CARGO DOOR	AFT CARGO DOOR	PILOT VIEW	BOTTOM FWD	BOTTOM AFT	TOP FWD	TOP AFT	BELLY FAIRING	FLAP TRACK 2	FLAP TRACK 3	FLAP TRACK 4	WING TIP FENCE TOP	WING TIP FENCE BOTTOM	HORIZONTAL TAIL PLANE	APU EXHAUST	VERTICAL TAIL PLANE	CFM 5A NACELLE LOW POINT	CFM 5B NACELLE LOW POINT	V2500 NACELLE LOW POINT
	A/C			PASSENGER DOORS		CARGO	DOORS	REFERENCE POINT			FUSELAGE						MING			TAILPLANE			ENGINE/ NACELLE	


NOTE: PASSENGER AND CARGO DOOR GROUND CLEARANCES ARE MEASURED FROM THE CENTER OF THE DOOR SILL AND FROM FLOOR LEVEL. N_AC_020300_1_0020103_01_01

Ground Clearances Wing Tip Fence (Sheet 2 of 2) FIGURE-2-3-0-991-002-A01

**ON A/C A319-100

N_AC_020300_1_0280101_01_04

Ground Clearances Sharklet (Sheet 1 of 2) FIGURE-2-3-0-991-028-A01

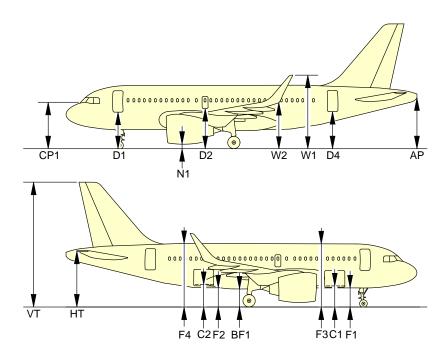
Page 4 Dec 01/23

GA319

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

**ON A/C A319-100

CKED	9 ft)	Ħ	13.556	14.878	13.556	8.307	8.307	16.269	7.985	7.985	21.571	21.571	7.401	10.656	12.063	13.139	23.927	15.265	19.455	17.070	40.830	4.064	4.064	4.645
A/C JACKED EDI - 4 60 m	(15.09 ft)	٤	4.132 13.556	4.535	4.132	2.532	2.532	4.959	2.434	2.434	5.924 19.435 5.878 19.284 5.903 19.366 5.973 19.596 6.575 21.571	6.575	2.256	3.248	3.677	4.005	7.293 23.927	4.653 15.265	5.930 19.455	5.203	12.445 40.830	1.239	1.239	1.416
		Ħ	11.394	13.038	12.175	6.263	6.666	13.966	5.994	6.361	19.596		5.675	8.940	10.367	11.486	6.814 22.355	13.606	18.310	15.984	39.717	2.191	2.191	2.795
OEW 39 725 kg (87 579 lb)	CG (28%)	٤	3.473	3.974	3.711	1.909	2.032	4.257	1.827	1.939	5.973	5.954 19.534 6.086 19.967	1.730	2.725	3.160	3.501	6.814	4.147	5.581	4.872	12.106	0.668	0.668	0.852
22 lb)	AFT CG (36%)	ft	3.434 11.266	12.736	3.541 11.617	6.069	6.253	13.917	5.774	5.938	19.366	19.534	5.308	8.566	9.983	11.079	6.676 21.902	4.036 13.241	5.372 17.624	4.653 15.265	11.930 39.140 12.009 39.399 11.891 39.012 12.106	1.906	1.906	2.496
MRW (WV6) 73 900 kg (162 922 lb)	AFT (36	E		3.882		1.850	1.906	4.242	1.760	1.810	5.903		1.618	2.611	3.043	3.377	6.676				11.891	0.581	0.581	0.761
MRV 3 900 kg	FWD CG (21%)	Ħ	11.079	12.723	11.856	5.948	6.351	13.654	5.679	1.843 6.046	19.284	5.982 19.625 5.990 19.652	5.360	8.622	10.072 3.064 10.052	3.405 11.171	6.705 21.998 6.650 21.817	13.336 4.010 13.156	5.484 17.992	4.693 15.396 4.776 15.669	39.399	1.876	1.876	2.480
2	FWD (21	٤	3.377	3.878	3.614	1.813	1.936	13.963 4.162	1.731		5.878	5.990	1.634	2.628	3.064	3.405	6.650	4.010		4.776	12.009	0.572	0.572	0.756
(qı	ບ ເວົ	ft	11.322	12.811	11.729	6.131	6.341			6.030	19.435	19.625	5.393		10.072	11.171	21.998	13.336	5.410 17.749	15.396	39.140	1.981	1.981	2.572
WV0) 141 978	AFT CG (36%)	٤	3.451	3.905	3.575	1.869	1.933	4.256	1.780	1.838			1.644	2.637	3.070	3.405		4.065	5.410			0.604	0.604	0.784
MRW(WV0) 64 400 kg(141 978 lb)	00 %	Ħ	11.125	12.801	11.981	6.003	6.446	13.684	5.741	6.145	19.347	19.750	5.449	8.713	10.144	11.266	22.142	13.480	18.139	15.820	39.547	1.948	1.952	2.555
64	MI 64 400 FWD CG (21%)		3.391	3.902	3.652	1.830	1.965	4.171	1.750	1.873	5.897	6.020	1.661	2.656	3.092	3.434	6.749	4.109	5.529	4.822	12.054	0.594	0.595	0.779
			Б	D2	D4	C1	C2	CP1	F	F2	F3	F4	BF1	T2	Т3	Τ4	W1	W2	Ħ	AP	Υ	۶	۶	۶
A/C CONFIGURATION			DOOR 1	EMERGENCY HATCH	DOOR 2	FWD CARGO DOOR	AFT CARGO DOOR	PILOT VIEW	BOTTOM FWD	BOTTOM AFT	TOP FWD	TOP AFT	BELLY FAIRING	FLAP TRACK 2	FLAP TRACK 3	FLAP TRACK 4	SHARKLET TOP	SHARKLET BOTTOM	HORIZONTAL TAIL PLANE	APU EXHAUST	VERTICAL TAIL PLANE	CFM 5A NACELLE LOW POINT	CFM 5B NACELLE LOW POINT	V2500 NACELLE LOW POINT
	A/C C			PASSENGER		CARGO	DOORS	REFERENCE POINT			FUSELAGE						MING			TAILPLANE			ENGINE/ NACELLE	

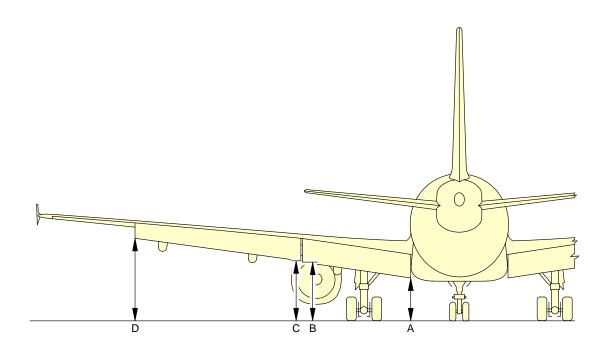

NOTE: PASSENGER AND CARGO DOOR GROUND CLEARANCES ARE MEASURED FROM THE CENTER OF THE DOOR SILL AND FROM FLOOR LEVEL. N_AC_020300_1_0280103_01_01

Ground Clearances Sharklet (Sheet 2 of 2) FIGURE-2-3-0-991-028-A01

2-3-0

**ON A/C A319neo

			MF	RM		40 00 (88 1	00 kg 85 lb)	A/C JACKED FDL = 4.60 m (15.09 ft	
A/C CON	FIGURATION	FWD C	G (21%)	AFT CO	G (36%)	CG (28%)	FDL = 4.60	m (15.09 ft)
		m	ft	m	ft	m	ft	m	ft
	D1	3.38	11.09	3.43	11.25	3.47	11.38	4.13	13.55
	D2	3.88	12.73	3.88	12.73	3.97	13.02	4.54	14.89
DOORS	D4	3.61	11.84	3.54	11.61	3.71	12.17	4.13	13.55
	C1	1.99	6.53	2.03	6.66	2.09	6.86	2.71	8.89
	C2	2.12	6.96	2.09	6.86	2.22	7.28	2.71	8.89
	F1	1.73	5.68	1.76	5.77	1.83	6.00	2.43	7.97
	F2	1.84	6.04	1.81	5.94	1.94	6.36	2.43	7.97
FUSELAGE	F3	5.88	19.29	5.90	19.36	5.97	19.59	6.58	21.59
FUSLEAGE	F4	5.99	19.65	5.95	19.52	6.09	19.98	6.58	21.59
	BF1	1.63	5.35	1.62	5.31	1.73	5.68	2.26	7.41
	CP1	4.16	13.65	4.24	13.91	4.26	13.98	4.96	16.27
WINGS	W1	6.72	22.05	6.68	21.92	6.81	22.34	7.29	23.92
WINGS	W2	4.08	13.39	4.04	13.25	4.17	13.68	4.65	15.26
	HT	5.48	17.98	5.37	17.62	5.58	18.31	5.93	19.46
TAILPLANE	AP	4.78	15.68	4.65	15.26	4.87	15.98	5.20	17.06
	VT	12.01	39.40	11.89	39.01	12.11	39.73	12.45	40.85
ENGINE/ NACELLE	N1 (CFM LEAP-1A)	0.46	1.51	0.47	1.54	0.56	1.84	1.13	3.71
	N1 (PW 1100G)	0.46	1.51	0.47	1.54	0.56	1.84	1.13	3.71

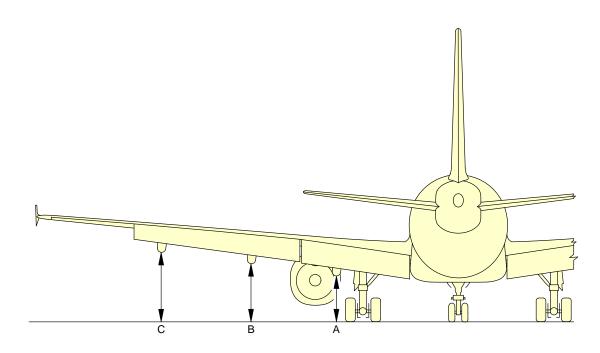

NOTE:

PASSENGER AND CARGO DOOR GROUND CLEARANCES ARE MEASURED FROM THE CENTER OF THE DOOR SILL AND FROM FLOOR LEVEL. N_AC_020300_1_0310101_01_02

> Ground Clearances FIGURE-2-3-0-991-031-A01

**ON A/C A319-100 A319neo

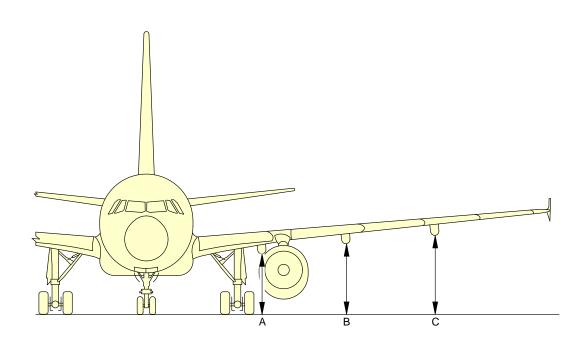
	FLAPS EXTENDED														
DESCRIPTION	١	CONFIGU	NTENANCE JRATION CG		M RAMP FWD CG	MAXIMUM RAMP WEIGHT AFT CG									
		m	ft	m	ft	m	ft								
FLAP 1 INBD	А	2.07	6.79	1.94	6.36	1.93	6.33								
FLAP 1 OUTBD	В	2.79	9.15	2.67	8.76	2.65	8.69								
FLAP 2 INBD	С	2.83	9.28	2.70	8.86	2.69	8.83								
FLAP 2 OUTBD	D	3.67	12.04	3.54	11.61	3.51	11.52								


N_AC_020300_1_0110101_01_02

Ground Clearances Trailing Edge Flaps - Extended FIGURE-2-3-0-991-011-A01

2-3-0

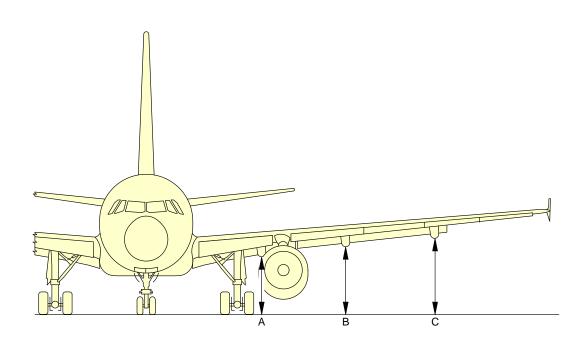
**ON A/C A319-100 A319neo


	FLAP TRACKS EXTENDED														
DESCRIPTION	١	CONFIGU	NTENANCE JRATION CG	-	M RAMP FWD CG	MAXIMUM RAMP WEIGHT AFT CG									
		m	ft	m	ft	m	ft								
FLAP TRACK 2	А	2.11	6.92	1.99	6.53	1.97	6.46								
FLAP TRACK 3 B		2.61	8.56	2.48	8.14	2.46	8.07								
FLAP TRACK 4	С	3.06	10.06	2.93	9.61	2.91	9.55								

N_AC_020300_1_0380101_01_00

Ground Clearances Flap Tracks - Extended FIGURE-2-3-0-991-038-A01

**ON A/C A319-100 A319neo

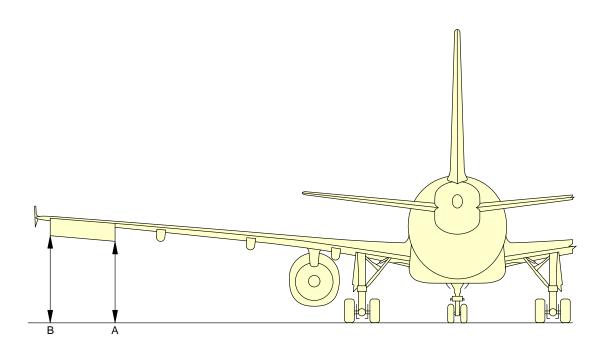

	FLAP TRACKS RETRACTED														
DESCRIPTION	١	CONFIGL	NTENANCE JRATION CG		M RAMP FWD CG	MAXIMUM RAMP WEIGHT AFT CG									
		m	ft	m	ft	m	ft								
FLAP TRACK 2	А	2.70	8.86	2.60	8.53	2.58	8.46								
FLAP TRACK 3	В	3.10	10.17	3.00	9.84	2.97	9.74								
FLAP TRACK 4	С	3.50	11.48	3.39	11.12	3.36	11.02								

N_AC_020300_1_0120101_01_02

Ground Clearances Flap Tracks - Retracted FIGURE-2-3-0-991-012-A01

**ON A/C A319-100 A319neo

	FLAP TRACKS 1+F														
DESCRIPTION		CONFIGU	NTENANCE JRATION CG		M RAMP FWD CG	MAXIMUM RAMP WEIGHT AFT CG									
		m	ft	m	ft	m	ft								
FLAP TRACK 2	A	1.95	6.40	1.85	6.07	1.83	6.00								
FLAP TRACK 3	В	2.31	7.58	2.21	7.25	2.18	7.15								
FLAP TRACK 4	С	2.89	9.48	2.78	9.12	2.75	9.02								

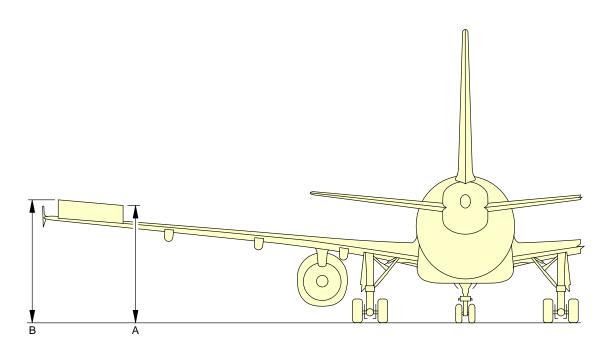

N_AC_020300_1_0390101_01_00

Ground Clearances Flap Tracks - 1 + F FIGURE-2-3-0-991-039-A01

Page 10 Dec 01/23

**ON A/C A319-100 A319neo

	AILERON DOWN													
DESCRIPTION		A/C IN MAII CONFIGL MID	-	-	M RAMP FWD CG	MAXIMUM RAMP WEIGHT AFT CG								
		m	ft	m	ft	m	ft							
AILERON INBD	А	3.86	12.66	3.73	12.24	3.71	12.17							
AILERON OUTBD	В	4.20	13.78	4.06	13.32	4.04	13.25							

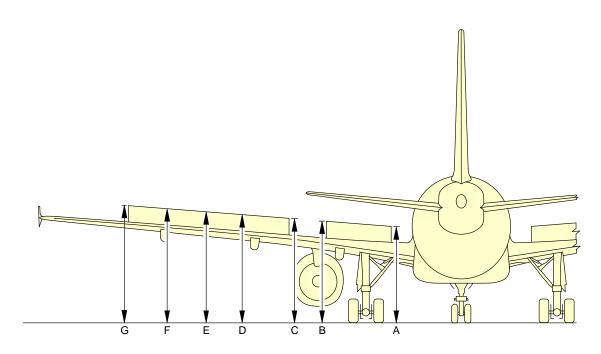

N_AC_020300_1_0130101_01_02

Ground Clearances Aileron Down FIGURE-2-3-0-991-013-A01

2-3-0

**ON A/C A319-100 A319neo

	AILERON UP													
DESCRIPTION		A/C IN MAII CONFIGL MID	-	MAXIMU WEIGHT	M RAMP FWD CG	MAXIMUM RAMP WEIGHT AFT CG								
		m	ft	m	ft	m	ft							
AILERON INBD	А	4.38	14.37	4.25	13.94	4.23	13.88							
AILERON OUTBD	В	4.58	15.03	4.44	14.57	4.42	14.50							

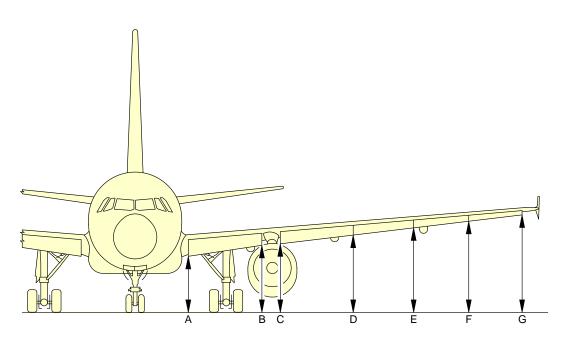

N_AC_020300_1_0400101_01_00

Ground Clearances Aileron Up FIGURE-2-3-0-991-040-A01

2-3-0

**ON A/C A319-100 A319neo

SPOILERS EXTENDED													
DESCRIPTION		CONFIGU	NTENANCE JRATION CG		IM RAMP FWD CG	-	IM RAMP AFT CG						
		m	ft	m	ft	m	ft						
SPOILER 1 INBD	А	3.77	12.37	3.65	11.98	3.64	11.94						
SPOILER 1 OUTBD	В	4.02	13.19	3.91	12.83	3.90	12.80						
SPOILER 2 INBD	С	4.09	13.42	3.97	13.02	3.96	12.99						
SPOILER 2/3	D	4.23	13.88	4.11	13.48	4.10	13.10						
SPOILER 3/4	E	4.37	14.34	4.24	13.91	4.23	13.88						
SPOILER 4/5 F		4.49	14.73	4.37	14.34	4.35	14.27						
SPOILER 5 OUTBD	4.62	15.16	4.49	14.73	4.47	14.67							


N_AC_020300_1_0140101_01_02

Ground Clearances Spoilers - Extended FIGURE-2-3-0-991-014-A01

GA319

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

**ON A/C A319-100 A319neo

LEADING EDGE SLATS EXTENDED													
DESCRIPTION		CONFIGU	NTENANCE JRATION CG	-	M RAMP FWD CG	MAXIMUM RAMP WEIGHT AFT CG							
		m	ft	m	ft	m	ft						
SLAT 1 INBD	А	2.57	8.43	2.47	8.10	2.49	8.17						
SLAT 1 OUTBD	В	2.98	9.78	2.88	9.45	2.89	9.48						
SLAT 2 INBD	С	3.07	10.07	2.97	9.74	2.97	9.74						
SLAT 2/3	D	3.37	11.06	3.26	10.70	3.26	10.70						
SLAT 3/4	E	3.63	11.91	3.51	11.52	3.51	11.52						
SLAT 4/5 F		3.88	12.73	3.76	12.34	3.75	12.30						
SLAT 5 OUTBD	4.12	13.52	3.99	13.09	3.97	13.02							

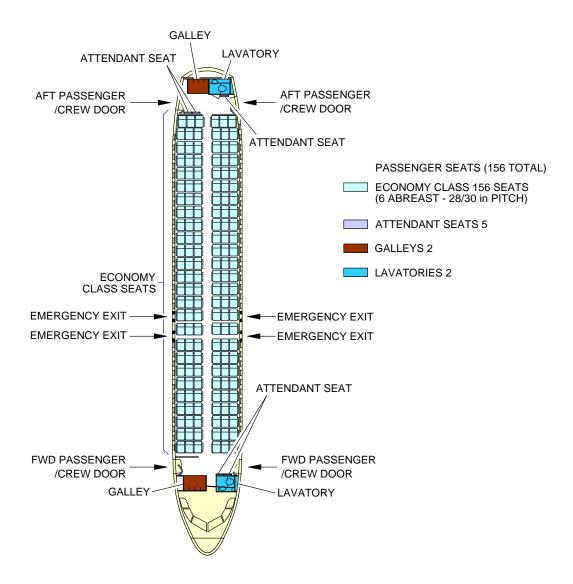
N_AC_020300_1_0150101_01_02

Ground Clearances Leading Edge Slats - Extended FIGURE-2-3-0-991-015-A01

2-3-0

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

2-4-1 Interior Arrangements - Plan View

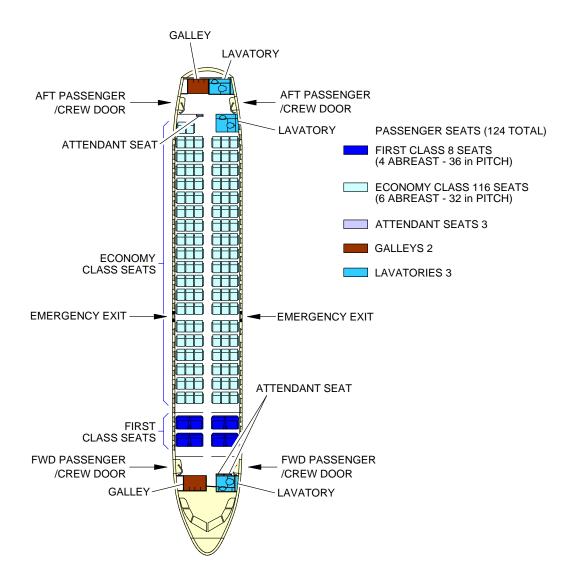

**ON A/C A319-100 A319neo

Interior Arrangements - Plan View

1. This section provides the typical interior configuration.

**ON A/C A319-100 A319neo

N_AC_020401_1_0020101_01_03


Interior Arrangements - Plan View Typical Configuration - Single-Class, High Density FIGURE-2-4-1-991-002-A01

2-4-1

Page 2 Dec 01/23

**ON A/C A319-100 A319neo

N_AC_020401_1_0080101_01_01

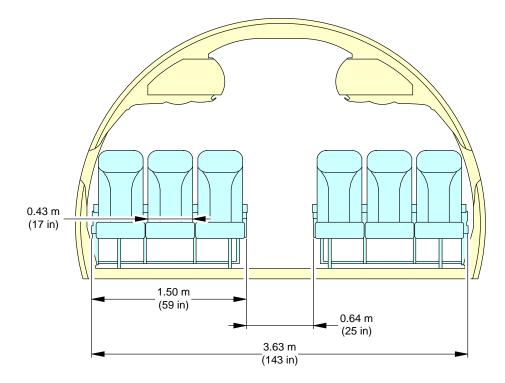
Interior Arrangements - Plan View Typical Configuration - Two-Class FIGURE-2-4-1-991-008-A01

GA319

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

2-5-0 Interior Arrangements - Cross Section

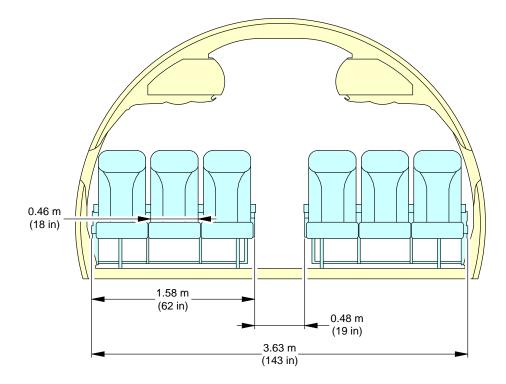
**ON A/C A319-100 A319neo


Interior Arrangements - Cross Section

1. This section provides the typical configuration.

**ON A/C A319-100 A319neo

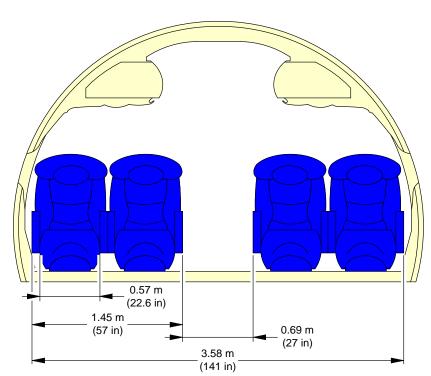
6 ABREAST-WIDER AISLE


N_AC_020500_1_0050101_01_01

Interior Arrangements - Cross Section Economy Class, 6 Abreast - Wider Aisle (Sheet 1 of 2) FIGURE-2-5-0-991-005-A01

**ON A/C A319-100 A319neo

6 ABREAST-WIDER SEAT



N_AC_020500_1_0050102_01_03

Interior Arrangements - Cross Section Economy Class, 6 Abreast - Wider Seat (Sheet 2 of 2) FIGURE-2-5-0-991-005-A01

**ON A/C A319-100 A319neo

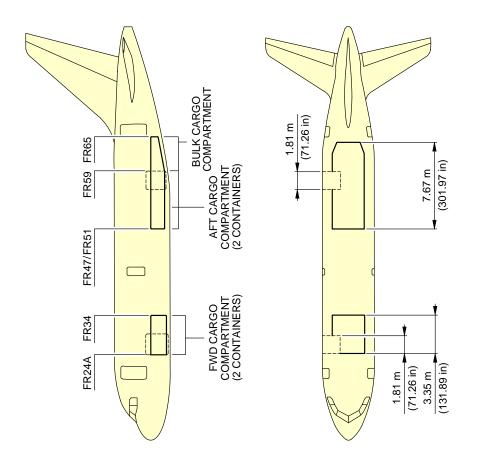
4 ABREAST-FIRST CLASS

N_AC_020500_1_0060101_01_01

Interior Arrangements - Cross Section First-Class FIGURE-2-5-0-991-006-A01

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

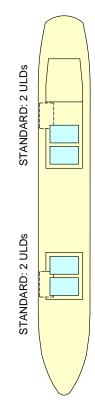
2-6-0 Cargo Compartments


**ON A/C A319-100 A319neo

Cargo Compartments

1. This section provides the cargo compartments locations, dimensions and loading combinations.

**ON A/C A319-100 A319neo



N_AC_020600_1_0020101_01_00

Cargo Compartments Locations and Dimensions FIGURE-2-6-0-991-002-A01

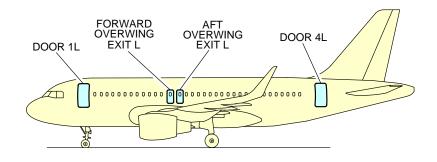
**ON A/C A319-100 A319neo

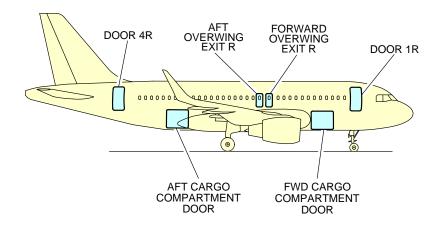
N_AC_020600_1_0050101_01_00

Cargo Compartments Loading Combinations FIGURE-2-6-0-991-005-A01

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

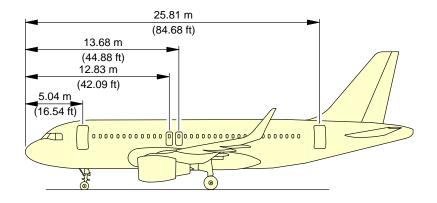
2-7-0 Door Clearances and Location

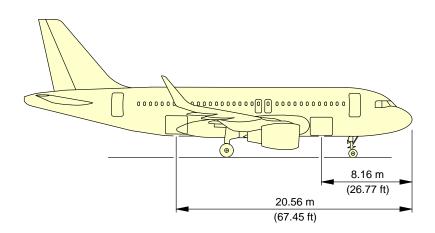

**ON A/C A319-100 A319neo


Door Clearances

- 1. This section gives door identification and location.
 - <u>NOTE</u>: Dimensions of the ground clearances are approximate and will change with tire type, weight and balance and other special conditions.

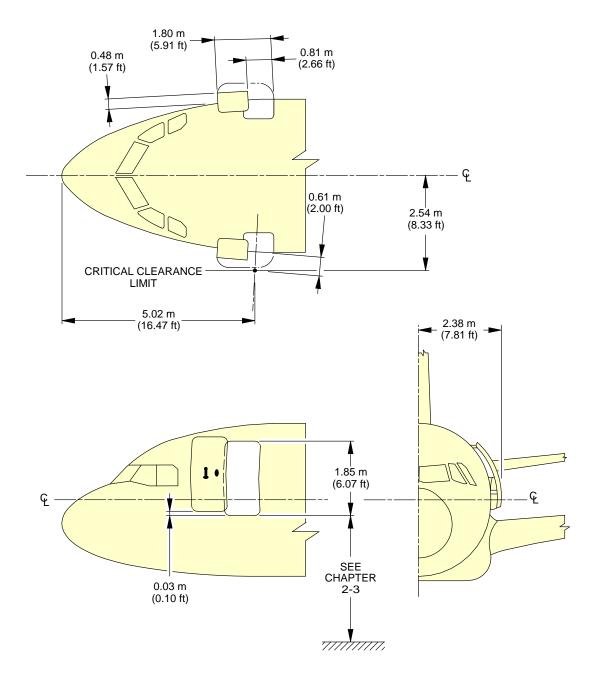
**ON A/C A319-100 A319neo




N_AC_020700_1_0020101_01_01

Door Identification and Location Door Identification (Sheet 1 of 2) FIGURE-2-7-0-991-002-A01

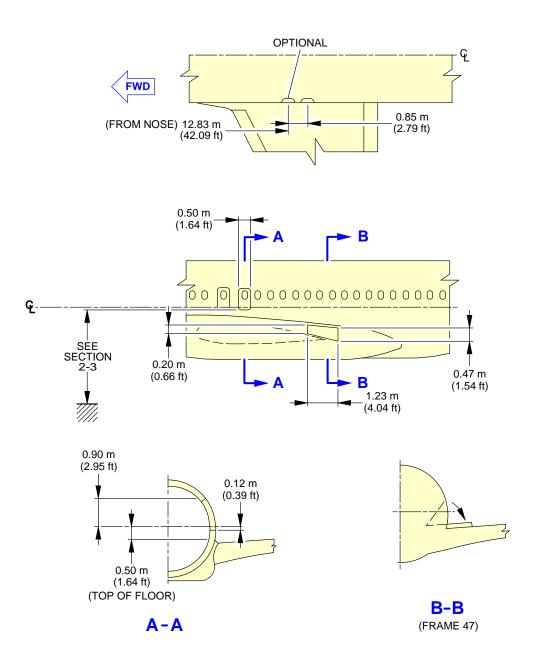
**ON A/C A319-100 A319neo



N_AC_020700_1_0020102_01_00

Door Identification and Location Door Location (Sheet 2 of 2) FIGURE-2-7-0-991-002-A01

**ON A/C A319-100 A319neo


N_AC_020700_1_0130101_01_00

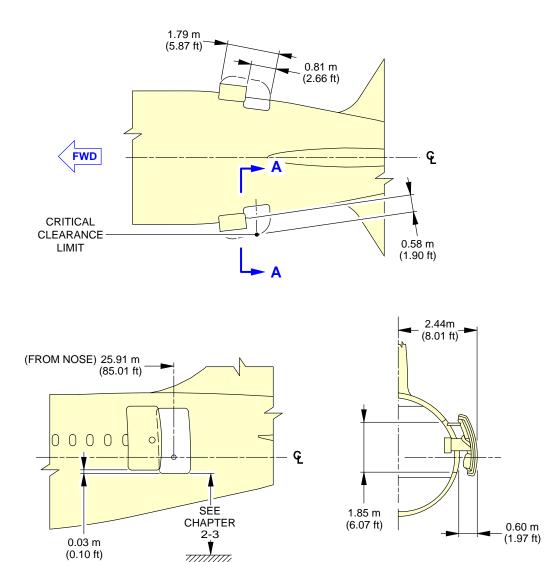
Doors Clearances Forward Passenger/Crew Doors FIGURE-2-7-0-991-013-A01

Page 4 Dec 01/23

**ON A/C A319-100 A319neo

NOTE: ESCAPE SLIDE COMPARTMENT DOOR OPENS ON WING UPPER SURFACE.

N_AC_020700_1_0140101_01_00


Doors Clearances Emergency Exits FIGURE-2-7-0-991-014-A01

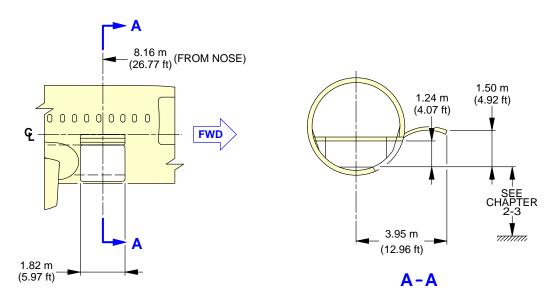
Page 5 Dec 01/23

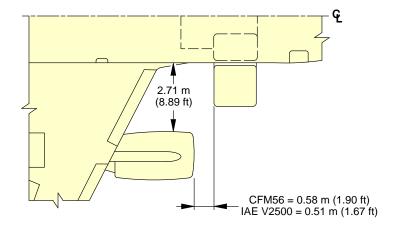
GA319

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

**ON A/C A319-100 A319neo

A-A

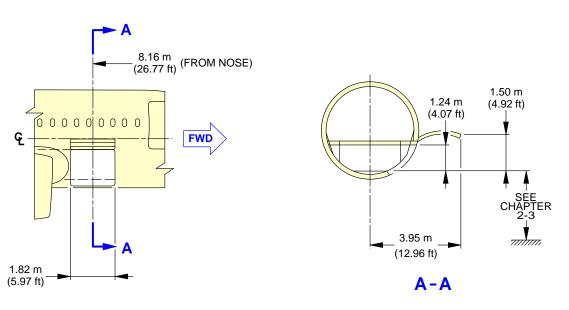

N_AC_020700_1_0150101_01_00

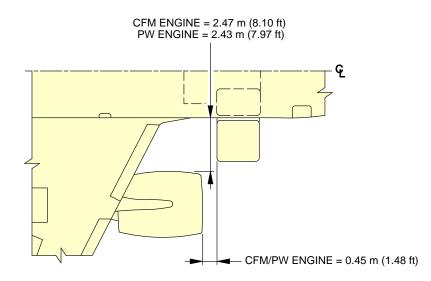

Doors Clearances Aft Passenger/Crew Doors FIGURE-2-7-0-991-015-A01

Page 6 Dec 01/23

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

**ON A/C A319-100



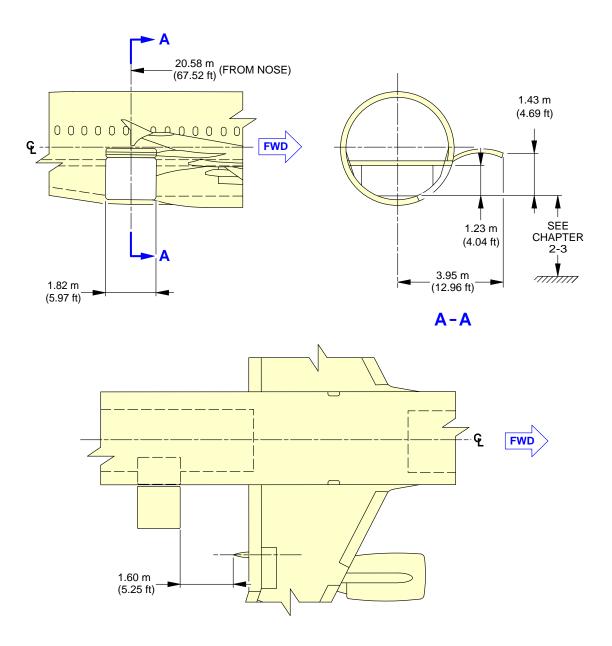

N_AC_020700_1_0160101_01_00

Doors Clearances Forward Cargo Compartment Door FIGURE-2-7-0-991-016-A01

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

**ON A/C A319neo

N_AC_020700_1_0170101_01_00


Doors Clearances Forward Cargo Compartment Door FIGURE-2-7-0-991-017-A01

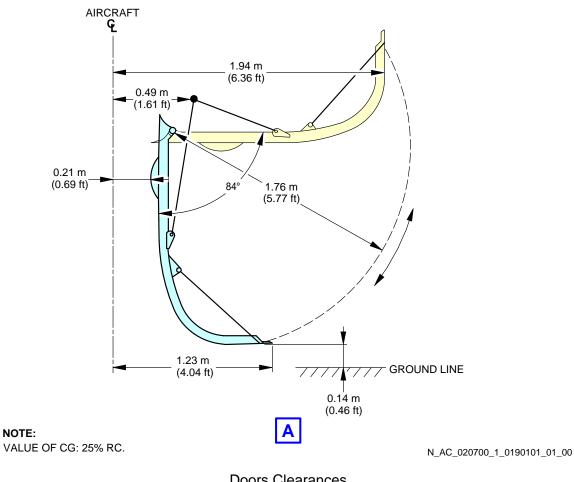
2-7-0

Page 8 Dec 01/23

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

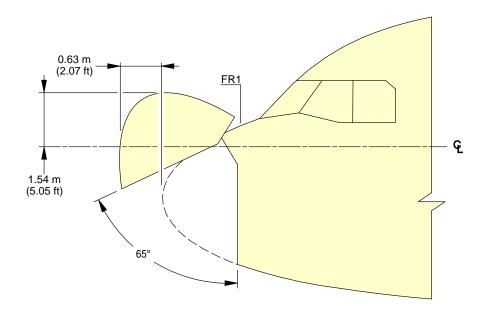
**ON A/C A319-100 A319neo


N_AC_020700_1_0180101_01_00


Doors Clearances Aft Cargo Compartment Door FIGURE-2-7-0-991-018-A01

Page 9 Dec 01/23

**ON A/C A319-100 A319neo

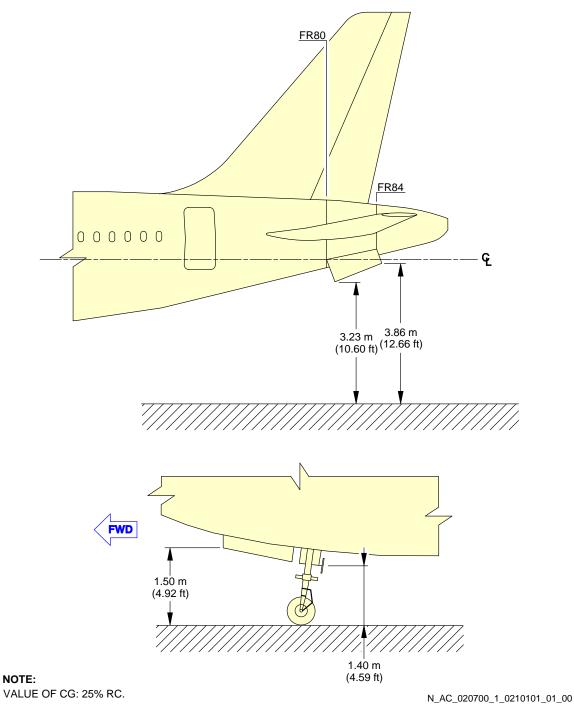


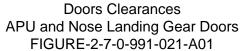
Doors Clearances Main Landing Gear Doors FIGURE-2-7-0-991-019-A01

Page 10 Dec 01/23

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

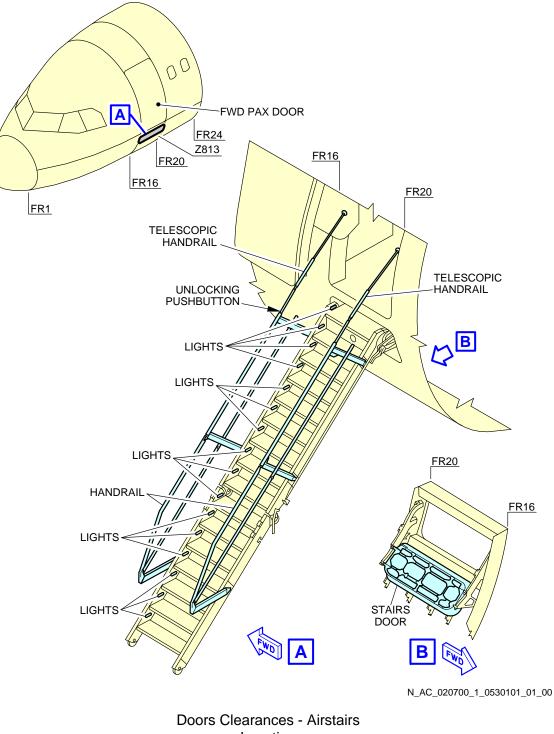
**ON A/C A319-100 A319neo


N_AC_020700_1_0200101_01_00

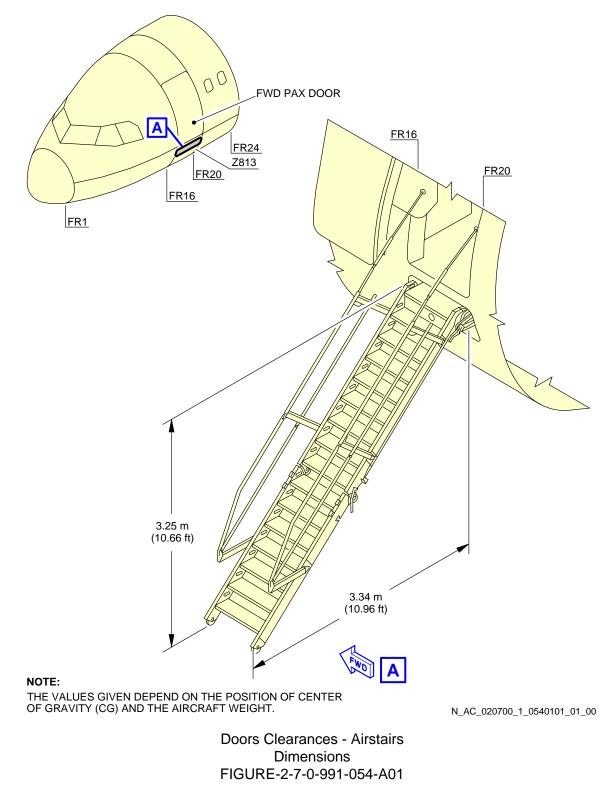

Doors Clearances Radome FIGURE-2-7-0-991-020-A01

Page 11 Dec 01/23

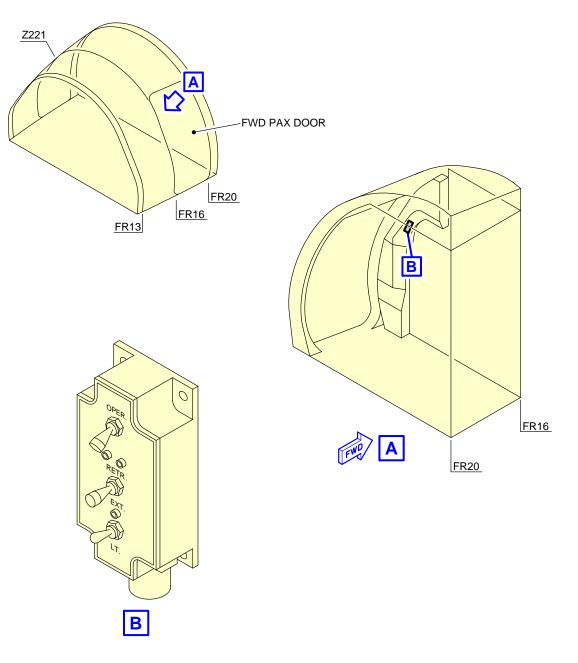
**ON A/C A319-100 A319neo



Page 12 Dec 01/23


**ON A/C A319-100 A319neo

Doors Clearances - Airstairs Location FIGURE-2-7-0-991-053-A01



**ON A/C A319-100 A319neo

**ON A/C A319-100 A319neo


N_AC_020700_1_0550101_01_00

Doors Clearances - Airstairs Location for Operating the Airstairs FIGURE-2-7-0-991-055-A01

Page 15 Dec 01/23

**ON A/C A319-100 A319neo

NOTE:

- 01) OPER.: WHEN THE FLIGHT CREW PUSHES THIS SWITCH TO THE OPER. POSITION AND HOLDS IT AGAINST THE SPRING, THE STAIRS WILL EXTEND OR RETRACT IF THE FLIGHT CREW ALSO HOLDS THE RETRACTION AND EXTENSION SWITCH IN THE RETR. OR EXT. POSITION. OFF: OPERATION OF THE STAIRS IS PREVENTED.
- 02 THE TWO RED LIGHTS ARE ON DURING THE EXTENSION AND RETRACTION.
- 03 NEUTRAL: THIS IS THE STABLE, LOCKED POSITION. OPERATION OF THE STAIRS IS PREVENTED. TO MOVE IT FROM THIS POSITION, THE FLIGHT CREW MUST PULL THE SWITCH OUT.
 - RETR.: WHEN THE FLIGHT CREW HOLDS THE SWITCH IN THIS POSITION AGAINST THE SPRING, THE STAIRS RETRACT IF:
 - THE OPERATION SWITCH IS HELD AT OPER.
 - THE TELESCOPIC HANDRAILS ARE FULLY STOWED.
- 04 UP: THE STAIR LIGHTS COMES ON ALONG WITH THE YELLOW CONTROL LIGHT, IF:
 - THE STAIRS ARE FULLY EXTENDED, AND
 - THE POWER IS AVAILABLE FROM DC BUS 2.

DOWN: THE STAIR LIGHTS AND THE YELLOW CONTROL LIGHT ARE OFF. N_AC_020700_1_0600101_01_00

Operation of the Airstairs FIGURE-2-7-0-991-060-A01

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

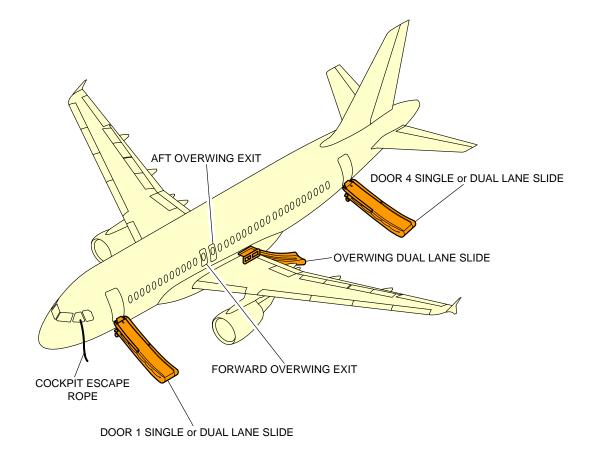
2-8-0 Escape Slides

**ON A/C A319-100 A319neo

Escape Slides

1. General

This section provides location of slides/rafts facilities and related clearances.


2. Location

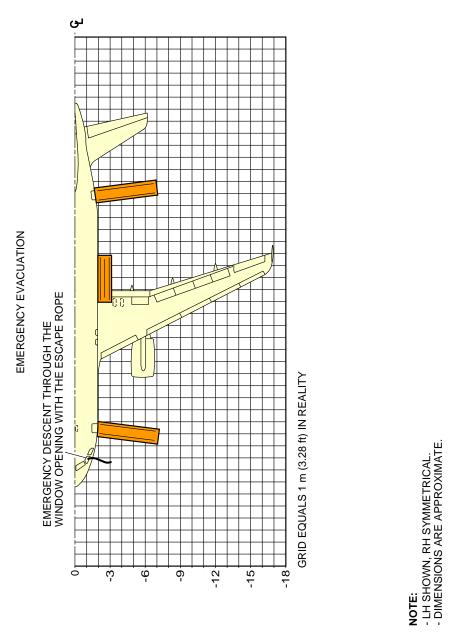
Slides/rafts facilities are provided at the following locations:

- One single or dual lane slide at each door 1 & 4 (total four)
- Dual lane overwing slides are installed above the wings in the left and right wing-to-fuselage fairings for off-the-wing evacuation (total 2).

**ON A/C A319-100 A319neo

NOTE: LH SHOWN, RH SYMMETRICAL.

 $N_AC_020800_1_0030101_01_04$


Escape Slides Location FIGURE-2-8-0-991-003-A01

2-8-0

Page 2 Dec 01/23

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

**ON A/C A319-100 A319neo

N_AC_020800_1_0040101_01_03

Escape Slides Dimensions FIGURE-2-8-0-991-004-A01

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

2-9-0 Landing Gear

**ON A/C A319-100 A319neo

Landing Gear

1. General

The landing gear is of the conventional retractable tricycle type comprising:

- Two main gears with twin-wheel,
- A twin-wheel nose gear.

The main landing gears are located under the wing and retract sideways towards the fuselage centerline.

The nose landing gear retracts forward into a fuselage compartment located between FR9 and FR20.

The landing gears and landing gear doors are operated and controlled electrically and hydraulically.

In abnormal operation, the landing gear can be extended by gravity.

For landing gear footprint and tire size, refer to 07-02-00.

- 2. Main Landing Gear
 - A. Twin-Wheel

Each of the two main landing gear assemblies consists of a conventional two-wheel direct type with an integral shock absorber supported in the fore and aft directions by a fixed drag strut and laterally by a folding strut mechanically locked when in the DOWN position.

3. Nose Landing Gear

The nose landing gear consists of a leg with a built-in shock absorber strut, carrying twin wheels with adequate shimmy damping and a folding strut mechanically locked when in the DOWN position.

4. Nose Wheel Steering

2-9-0

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

Steering is controlled by two hand wheels in the cockpit. For steering angle controlled by the hand wheels, refer to AMM 32-51-00. For steering angle limitation, refer to AMM 09-10-00.

A steering disconnection box is installed on the nose landing gear to allow steering deactivation for towing purposes.

- 5. Landing Gear Servicing Points
 - A. General

Filling of the landing-gear shock absorbers is done through MIL-PRF-6164 standard valves.

Charging of the landing-gear shock absorbers is accomplished with nitrogen through MIL-PRF-6164 standard valves.

B. Charging Pressure

For charging of the landing-gear shock absorbers, refer to AMM 12-14-32.

- 6. Braking
 - A. General

The four main wheels are equipped with carbon multidisc brakes.

The braking system is electrically controlled and hydraulically operated.

The braking system has four braking modes plus autobrake and anti-skid systems:

- Normal braking with anti-skid capability,
- Alternative braking with anti-skid capability,
- Alternative braking without anti-skid capability,
- Parking brake with full pressure application capability only.
- B. In-Flight Wheel Braking

The main gear wheels are braked automatically before the wheels enter the wheel bay.

The nose gear wheels are stopped by the wheels contacting a rubbing strip (the brake band) when the gear is in the retracted position.

**ON A/C A319-100 A319neo

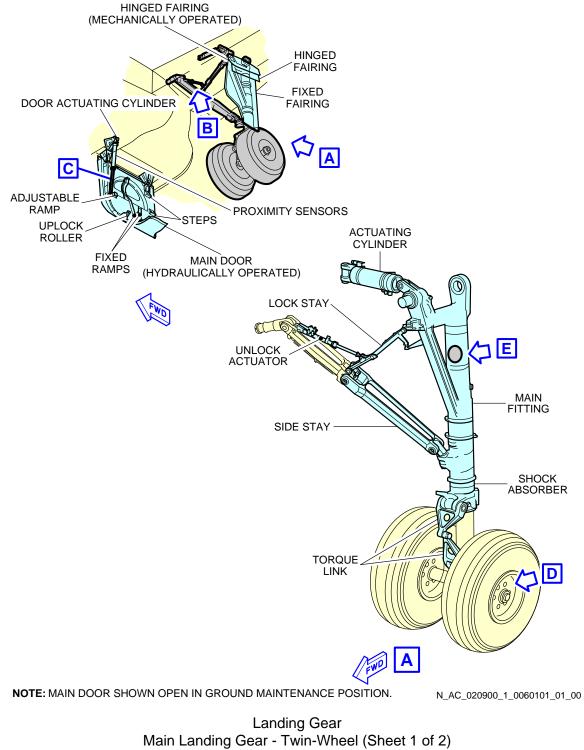
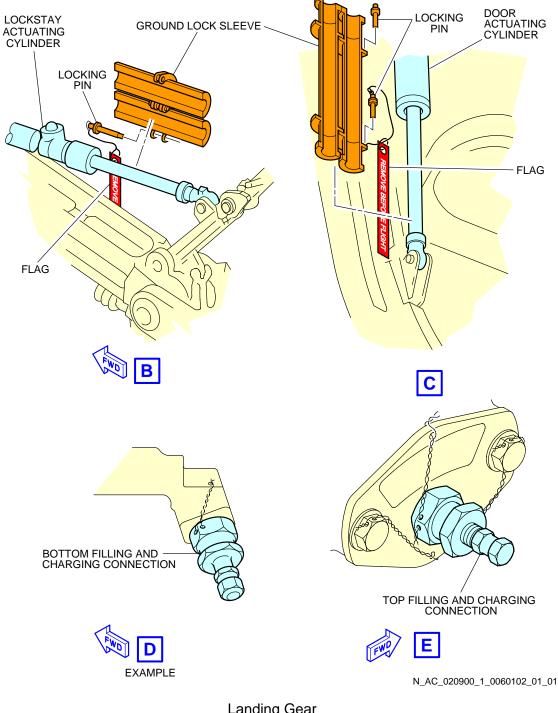
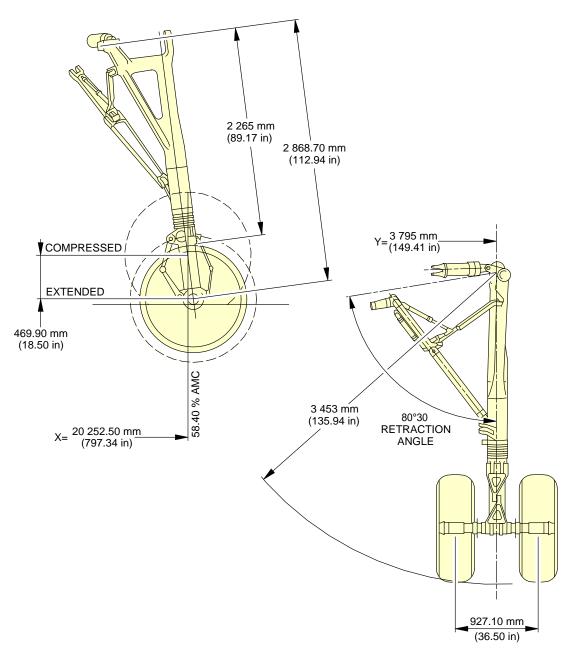



FIGURE-2-9-0-991-006-A01


**ON A/C A319-100 A319neo

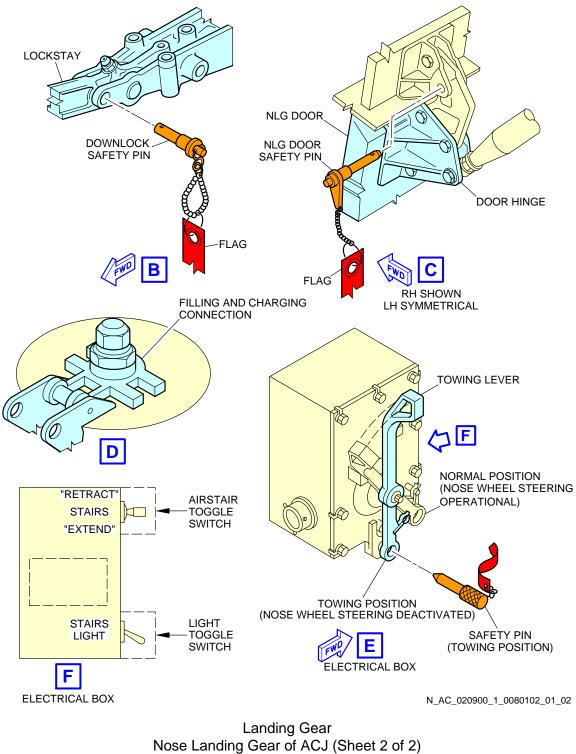
Landing Gear Main Landing Gear - Twin-Wheel (Sheet 2 of 2) FIGURE-2-9-0-991-006-A01

**ON A/C A319-100 A319neo

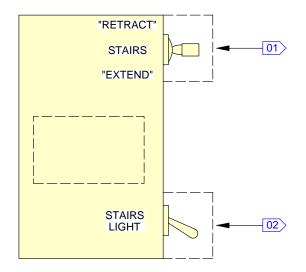
N_AC_020900_1_0070101_01_00

Landing Gear Main Landing Gear Dimensions - Twin-Wheel FIGURE-2-9-0-991-007-A01

2-9-0


**ON A/C A319-100 A319neo

Nose Landing Gear of ACJ (Sheet 1 of 2) FIGURE-2-9-0-991-008-A01



**ON A/C A319-100 A319neo

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

**ON A/C A319-100 A319neo

NOTE:

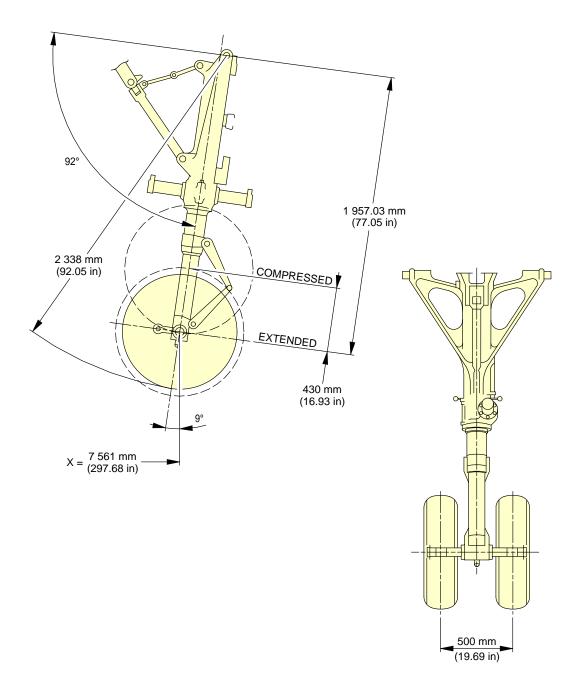
01 STAIRS SW

NEUTRAL: THIS STABLE AND LOCKED POSITION PREVENTS OPERATION OF THE AIRSTAIRS. THE FLIGHT CREW MUST PULL THE SWITCH OUT TO MOVE IT FROM THE NEUTRAL POSITION.

RETRACT: WHEN GROUND CREW HOLDS THE SWITCH AGAINST THE SPRING IN THIS POSITION, THE AIRSTAIRS RETRACT IF THE TELESCOPIC HANDRAILS ARE FULLY STOWED. EXTEND: WHEN GROUND CREW HOLDS THE SWITCH AGAINST THE SPRING IN THIS POSITION, THE AIRSTAIRS EXTEND.

02 STAIRS LIGHT

UP: STAIR LIGHTS COME ON, AS DOES THE YELLOW CONTROL LIGHT IN THE CABIN, IF: - THE STAIRS ARE FULLY EXTENDED, AND - POWER IS AVAILABLE FROM DC BUS 2.


DOWN: STAIR LIGHTS AND YELLOW CONTROL LIGHT ARE OFF.

N_AC_020900_1_0290101_01_00

Operation of Airstairs for ACJ FIGURE-2-9-0-991-029-A01

**ON A/C A319-100 A319neo

N_AC_020900_1_0090101_01_00

Landing Gear Nose Landing Gear Dimensions FIGURE-2-9-0-991-009-A01

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

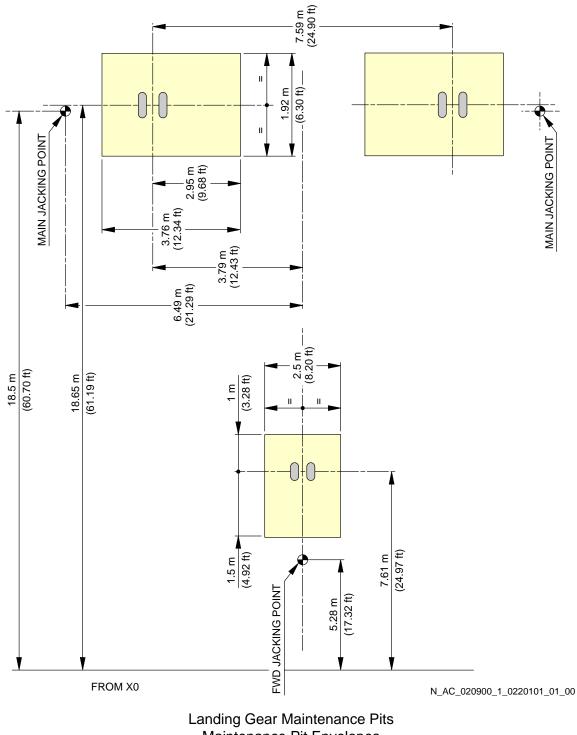
**ON A/C A319-100 A319neo

Landing Gear Maintenance Pits

1. Description

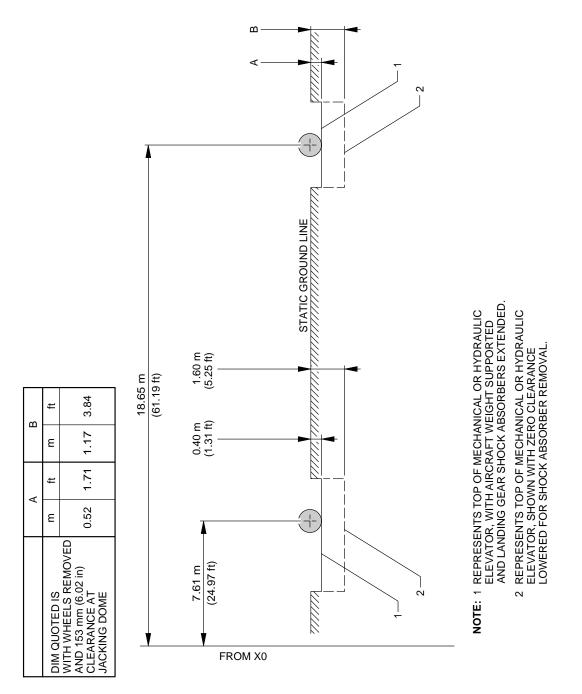
The minimum maintenance pit envelopes for the landing-gear shock absorber removal are shown in FIGURE 2-9-0-991-022-A and FIGURE 2-9-0-991-023-A.

All dimensions shown are minimum dimensions with zero clearances.


The dimensions for the pits have been determined as follows:

- The length and width of the pits allow the gear to rotate as the weight is taken off the landing gear.
- The depth of the pits allows the shock absorber to be removed when all the weight is taken off the landing gear.

Dimensions for elevators and associated mechanisms must be added to those in FIGURE 2-9-0-991-022-Aand FIGURE 2-9-0-991-023-A.


**ON A/C A319-100 A319neo

Maintenance Pit Envelopes FIGURE-2-9-0-991-022-A01

**ON A/C A319-100 A319neo

N_AC_020900_1_0230101_01_00

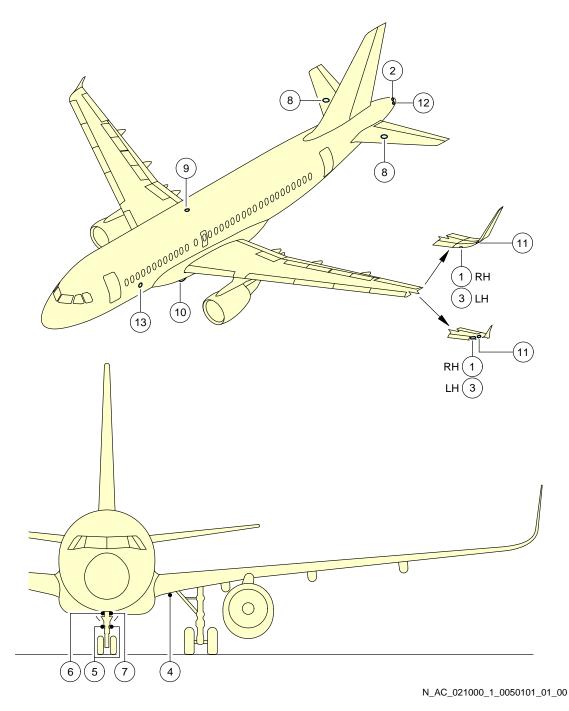
Landing Gear Maintenance Pits Maintenance Pit Envelopes FIGURE-2-9-0-991-023-A01

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

2-10-0 Exterior Lighting

**ON A/C A319-100 A319neo

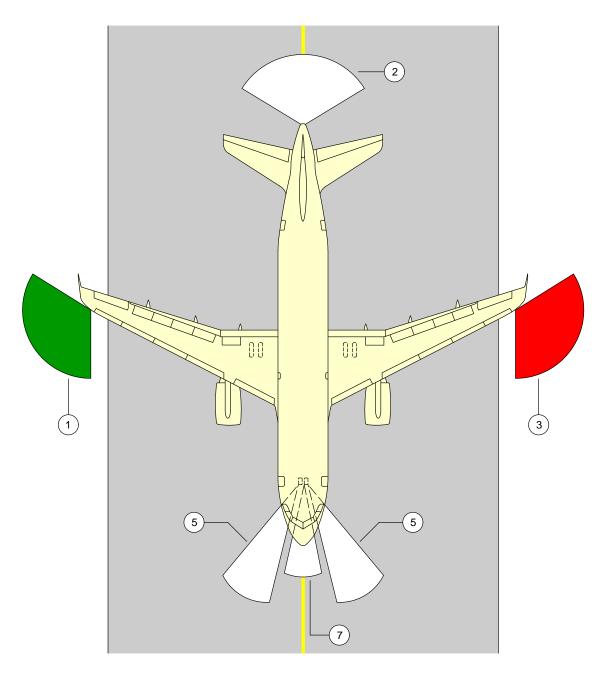
Exterior Lighting


1. General

This section provides the location of the aircraft exterior lighting.

EXTERIOR LIGHTING	
ITEM	DESCRIPTION
1	RIGHT NAVIGATION LIGHT (GREEN)
2	TAIL NAVIGATION LIGHT (WHITE)
3	LEFT NAVIGATION LIGHT (RED)
4	RETRACTABLE LANDING LIGHT
5	RUNWAY TURN OFF LIGHT
6	TAXI LIGHT
7	TAKE-OFF LIGHT
8	LOGO LIGHT
9	UPPER ANTI-COLLISION LIGHT/BEACON (RED)
10	LOWER ANTI-COLLISION LIGHT/BEACON (RED)
11	WING STROBE LIGHT (HIGH INTENSITY, WHITE)
12	TAIL STROBE LIGHT (HIGH INTENSITY, WHITE)
13	WING/ENGINE SCAN LIGHT
14	WHEEL WELL LIGHT (DOME)
15	CARGO COMPARTMENT FLOOD LIGHT

**ON A/C A319-100 A319neo

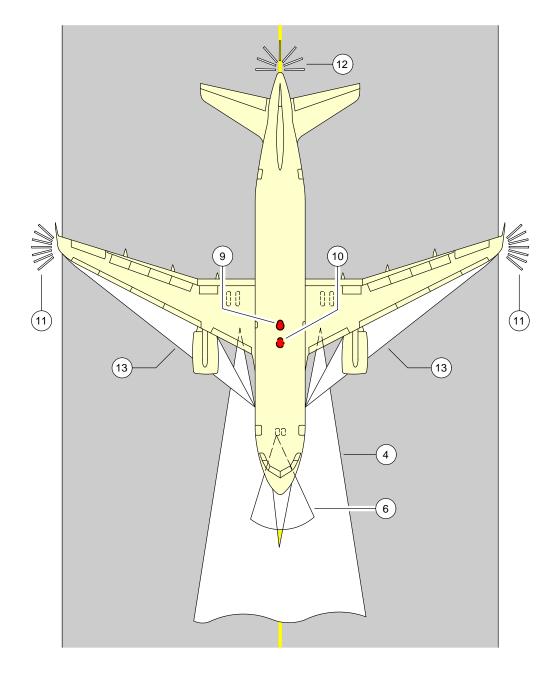

Exterior Lighting FIGURE-2-10-0-991-005-A01

2-10-0

Page 2 Dec 01/23

**ON A/C A319-100 A319neo

N_AC_021000_1_0060101_01_00

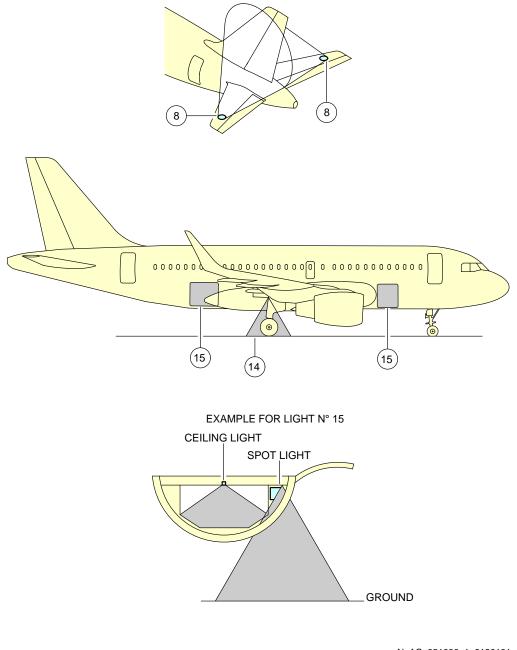

Exterior Lighting FIGURE-2-10-0-991-006-A01

2-10-0

Page 3 Dec 01/23

**ON A/C A319-100 A319neo

N_AC_021000_1_0070101_01_00


Exterior Lighting FIGURE-2-10-0-991-007-A01

2-10-0

Page 4 Dec 01/23

**ON A/C A319-100 A319neo

N_AC_021000_1_0180101_01_00

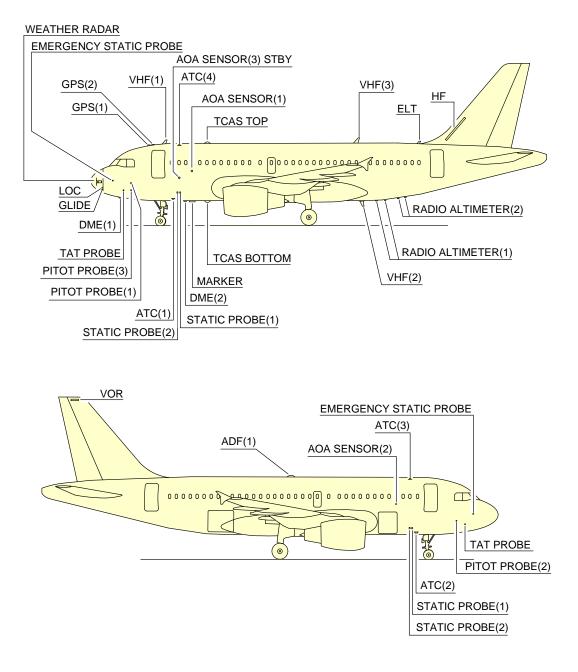
Exterior Lighting FIGURE-2-10-0-991-018-A01

2-10-0

Page 5 Dec 01/23

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

2-11-0 Antennas and Probes Location


**ON A/C A319-100 A319neo

Antennas and Probes Location

1. This section gives the location of antennas and probes.

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

**ON A/C A319-100 A319neo

NOTE: DEPENDING ON AIRCRAFT CONFIGURATION

N_AC_021100_1_0020101_01_00

Antennas and Probes Location FIGURE-2-11-0-991-002-A01

2-11-0

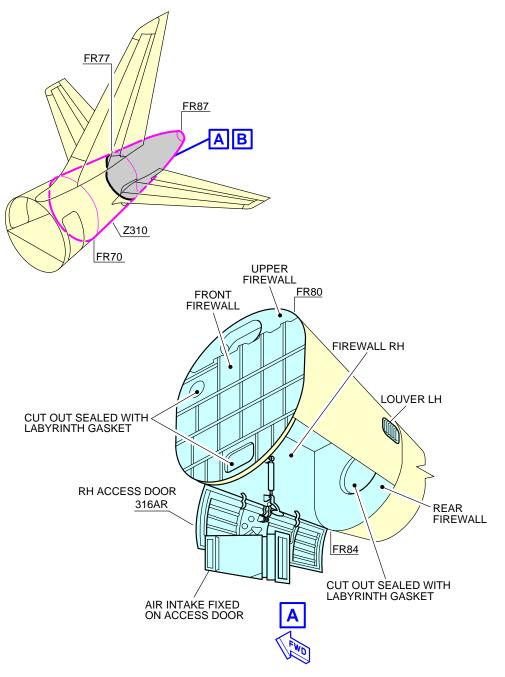
AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

2-12-0 Power Plant

**ON A/C A319-100 A319neo

Auxiliary Power Unit

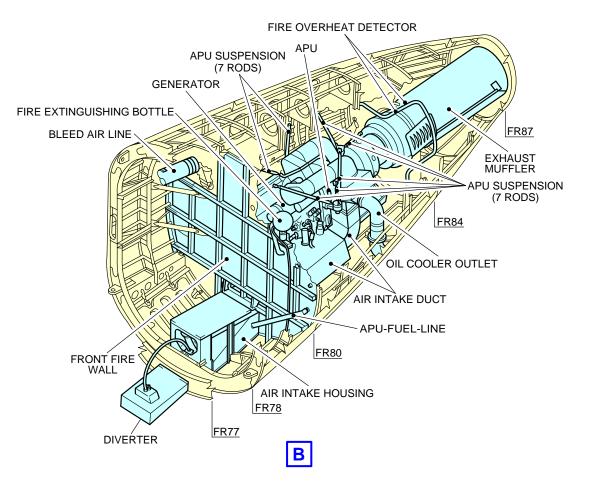
1. General


The APU is installed at the rear part of the fuselage in the tail cone. An air intake system with a flap-type door is installed in front of the APU compartment. The exhaust gases pass overboard at the end of the fuselage cone.

2. Controls and Indication

The primary APU controls and indications are installed on the overhead panel, on the center pedestal and on the center instrument panel. Additionally, an external APU panel is installed on the nose landing gear to initiate an APU emergency shutdown.

**ON A/C A319-100 A319neo


NOTE: LH ACCESS DOOR 315AL NOT SHOWN FOR CLARITY.

N_AC_021200_1_0030101_01_01

Auxiliary Power Unit Access Doors FIGURE-2-12-0-991-003-A01

**ON A/C A319-100 A319neo

N_AC_021200_1_0040101_01_01

Auxiliary Power Unit General Layout FIGURE-2-12-0-991-004-A01

2-12-0

Page 3 Dec 01/23

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

**ON A/C A319-100 A319neo

Engine and Nacelle

**ON A/C A319-100

- 1. Engine and Nacelle CFM56 Engine
 - A. Engine

The aircraft has two CFM International CFM56 engines that supply power to the aircraft. The engines are turbofan engines that have:

- A high bypass ratio,
- A Full Authority Digital Engine Control (FADEC),
- A fuel system,
- An oil system,
- An air system,
- A thrust reverser system,
- An ignition system and a start system.

The engine has:

Two compressor turbine assemblies:

- The Low Pressure (LP) compressor turbine assembly,
- The High Pressure (HP) compressor turbine assembly.

Each turbine operates its associated compressor via a shaft.

- One accessory gearbox,
- One combustion chamber.

The engine operates as follows:

- (1) The LP compressor, compresses the air.
- (2) Then, the air is divided into two flows:
 - Most of the air flows out of the core engine, and provides most of the engine thrust.
 - The remaining air enters the core engine.
- (3) The HP compressor compresses the air that enters the core engine.
- (4) The fuel is added to and mixed with the compressed air of the core engine. The mixture is ignited in the combustion chamber.
- (5) The gas that results from combustion drives the HP and the LP turbines.
 - The rotation speed of the fan provides the N1 engine parameter.
 - The rotation speed of the HP rotor provides the N2 engine parameter.
 - The N1 and N2 engine parameters appear on the Engine/Warning Display (E/ WD).
 - The N1 and N2 engine parameters are current rotation speeds displayed in percentage.

The FADEC uses:

- The N1 engine parameter to compute the applicable engine thrust,
- The N1 and N2 engine parameters for engine control and monitoring.

B. Nacelle

The cowls enclose the periphery of the engine so as to form the engine nacelle. Each engine is housed in a nacelle suspended from a pylon attached below the wing. The nacelle installation is designed to provide cooling and ventilation air for engine accessories mounted along the fan and core casing. The nacelle provides:

- Protection for the engine and the accessories
- Airflow around the engine during its operation
- Lighting protection
- HIRF and EMI attenuation.

2. Engine and Nacelle - IAE V2500 Engine

A. Engine

The aircraft has two International Aero Engines V2500 engines that supply power to the aircraft.

The engines are turbofan engines that have:

- A high bypass ratio,
- A Full Authority Digital Engine Control (FADEC),
- A fuel system,
- An oil system,
- An air system,
- A thrust reverser system,
- An ignition system and a start system.
- The engine has:

Two compressor turbine assemblies:

- The Low Pressure (LP) compressor turbine assembly,
- The High Pressure (HP) compressor turbine assembly.

Each turbine operates its associated compressor via a shaft.

- One accessory gearbox,
- One combustion chamber.

The engine operates as follows:

- (1) The LP compressor, compresses the air.
- (2) Then, the air is divided into two flows:
 - Most of the air flows out of the core engine, and provides most of the engine thrust.
 - The remaining air enters the core engine.
- (3) The HP compressor compresses the air that enters the core engine.
- (4) The fuel is added to and mixed with the compressed air of the core engine. The mixture is ignited in the combustion chamber.

2-12-0

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

- (5) The gas that results from combustion drives the HP and the LP turbines.
 - The rotation speed of the fan provides the N1 engine parameter.
 - The rotation speed of the HP rotor provides the N2 engine parameter.
 - The N1 and N2 engine parameters appear on the Engine/Warning Display (E/ WD).
 - The N1 and N2 engine parameters are current rotation speeds displayed in percentage.

The FADEC uses:

- The N1 engine parameter to compute the applicable engine thrust,
- The N1 and N2 engine parameters for engine control and monitoring.
- B. Nacelle

The cowls enclose the periphery of the engine so as to form the engine nacelle. Each engine is housed in a nacelle suspended from a pylon attached below the wing. The nacelle installation is designed to provide cooling and ventilation air for engine accessories mounted along the fan and core casing. The nacelle provides:

- Protection for the engine and the accessories
- Airflow around the engine during its operation
- Lighting protection
- HIRF and EMI attenuation.

**ON A/C A319neo

- 3. Engine and Nacelle CFM LEAP-1A Engine
 - A. Engine

The aircraft has two CFM International LEAP-1A engines that supply power to the aircraft. The engines are turbofan engines that have:

- A high bypass ratio,
- A Full Authority Digital Engine Control (FADEC),
- A fuel system,
- An oil system,
- An air system,
- A thrust reverser system,
- An ignition system and a start system.

The engine has:

Two compressor turbine assemblies:

- The Low Pressure (LP) compressor turbine assembly,
- The High Pressure (HP) compressor turbine assembly.

Each turbine operates its associated compressor via a shaft.

- One accessory gearbox,
- One combustion chamber.

The engine operates as follows:

(1) The LP compressor, compresses the air.

2-12-0

- (2) Then, the air is divided into two flows:
 - Most of the air flows out of the core engine, and provides most of the engine thrust.
 - The remaining air enters the core engine.
- (3) The HP compressor compresses the air that enters the core engine.
- (4) The fuel is added to and mixed with the compressed air of the core engine. The mixture is ignited in the combustion chamber.
- (5) The gas that results from combustion drives the HP and the LP turbines.
 - The rotation speed of the fan provides the N1 engine parameter.
 - The rotation speed of the HP rotor provides the N2 engine parameter.
 - The N1 and N2 engine parameters appear on the Engine/Warning Display (E/ WD).
 - The N1 and N2 engine parameters are current rotation speeds displayed in percentage.

The FADEC uses:

- The N1 engine parameter to compute the applicable engine thrust,
- The N1 and N2 engine parameters for engine control and monitoring.

B. Nacelle

The cowls enclose the periphery of the engine so as to form the engine nacelle. Each engine is housed in a nacelle suspended from a pylon attached below the wing. The nacelle installation is designed to provide cooling and ventilation air for engine accessories mounted along the fan and core casing. The nacelle provides:

- Protection for the engine and the accessories
- Airflow around the engine during its operation
- Lighting protection
- HIRF and EMI attenuation.
- 4. Engine and Nacelle PW1100G Engine
 - A. Engine

The aircraft has two Pratt & Whitney's Pure Power PW1100G engines that supply power to the aircraft.

The engines are turbofan engines that have:

- A high bypass ratio,
- A Full Authority Digital Engine Control (FADEC),
- A fuel system,
- An oil system,
- An air system,
- A thrust reverser system,
- An ignition system and a start system.

The engine has:

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

Two compressor turbine assemblies:

- The Low Pressure (LP) compressor turbine assembly,
- The High Pressure (HP) compressor turbine assembly.

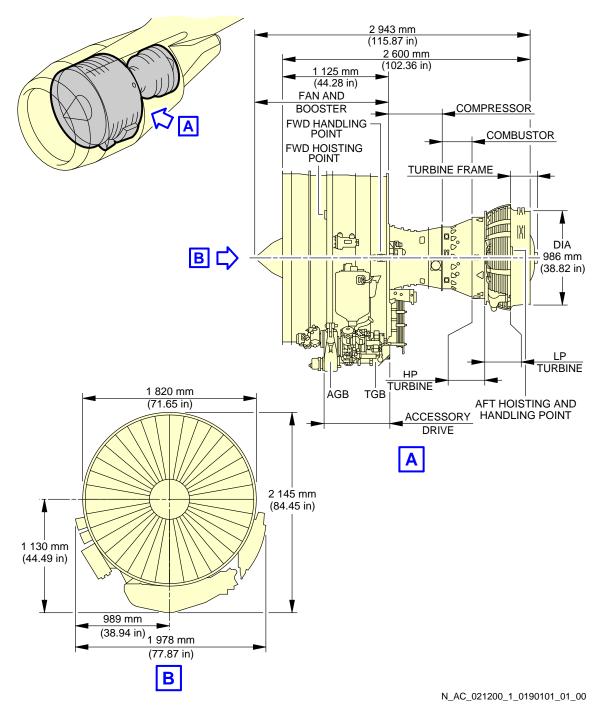
Each turbine operates its associated compressor via a shaft.

- One accessory gearbox,
- One combustion chamber.

The engine operates as follows:

- (1) The LP compressor, compresses the air.
- (2) Then, the air is divided into two flows:
 - Most of the air flows out of the core engine, and provides most of the engine thrust.
 - The remaining air enters the core engine.
- (3) The HP compressor compresses the air that enters the core engine.
- (4) The fuel is added to and mixed with the compressed air of the core engine. The mixture is ignited in the combustion chamber.
- (5) The gas that results from combustion drives the HP and the LP turbines.
 - The rotation speed of the fan provides the N1 engine parameter.
 - The rotation speed of the HP rotor provides the N2 engine parameter.
 - The N1 and N2 engine parameters appear on the Engine/Warning Display (E/ WD).
 - The N1 and N2 engine parameters are current rotation speeds displayed in percentage.

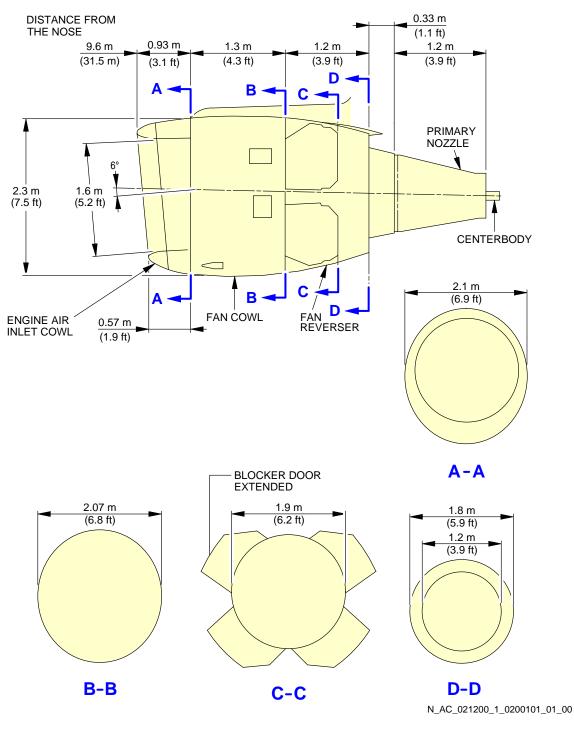
The FADEC uses:


- The N1 engine parameter to compute the applicable engine thrust,
- The N1 and N2 engine parameters for engine control and monitoring.
- B. Nacelle

The cowls enclose the periphery of the engine so as to form the engine nacelle. Each engine is housed in a nacelle suspended from a pylon attached below the wing. The nacelle installation is designed to provide cooling and ventilation air for engine accessories mounted along the fan and core casing. The nacelle provides:

- Protection for the engine and the accessories
- Airflow around the engine during its operation
- Lighting protection
- HIRF and EMI attenuation.

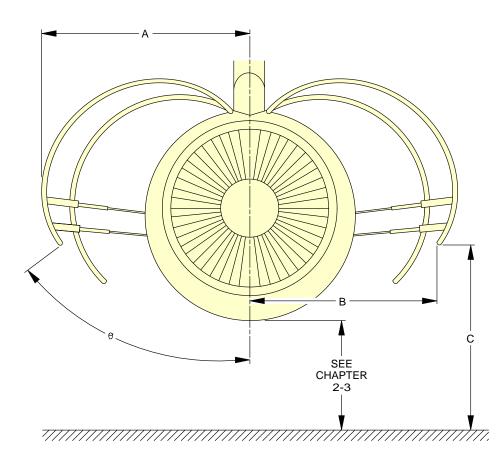
**ON A/C A319-100



2-12-0

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

**ON A/C A319-100


Power Plant Handling Major Dimensions - CFM56 Series Engine FIGURE-2-12-0-991-020-A01

2-12-0

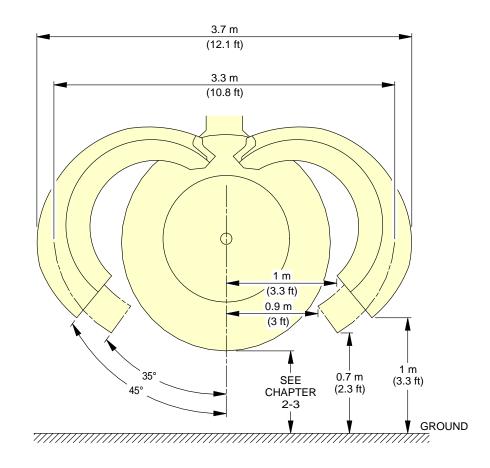
Page 10 Dec 01/23

**ON A/C A319-100

m (ft)	8	ଟ A B		С
VIEW COWLING	42°27	1.8 (5.9)	1.5 (4.9)	1.3 (4.3)
AFT	55°15	2.0 (6.6)	1.8 (5.9)	1.7 (5.6)
VIEW COWLING	40°40	1.8 (5.9)	1.4 (4.6)	1.3 (4.3)
FWD	52°56	2.0 (6.6)	1.7 (5.6)	1.6 (5.2)

NOTE: APPROXIMATE DIMENSIONS.

N_AC_021200_1_0210101_01_01


Power Plant Handling Fan Cowls - CFM56 Series Engine FIGURE-2-12-0-991-021-A01

2-12-0

Page 11 Dec 01/23

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

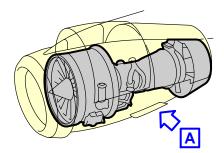
**ON A/C A319-100

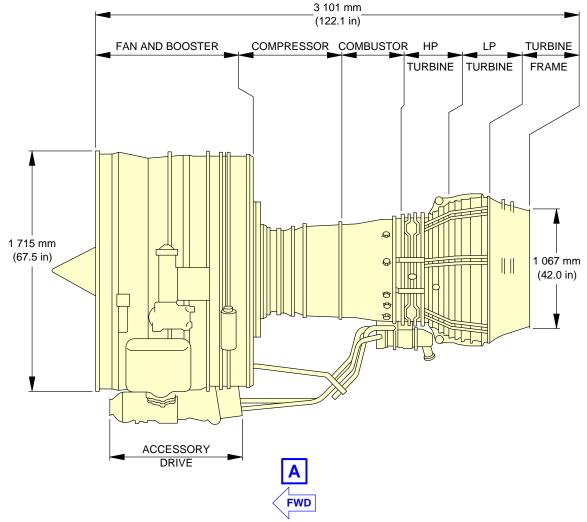
NOTE: APPROXIMATE DIMENSIONS.

CAUTION

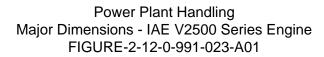
DO NOT ACTUATE SLATS: - WITH THRUST REVERSER COWLS 45° OPEN POSITION - WITH BLOCKER DOORS OPEN AND THRUST REVERSER COWLS AT 35° AND 45° OPEN POSITION.

N_AC_021200_1_0220101_01_01


Power Plant Handling Thrust Reverser Cowls - CFM56 Series Engine FIGURE-2-12-0-991-022-A01

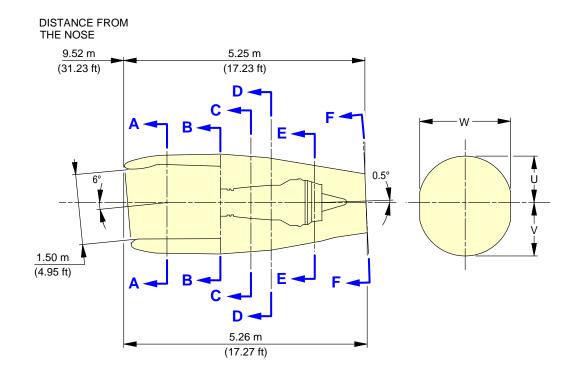

2-12-0

Page 12 Dec 01/23


AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

**ON A/C A319-100

N_AC_021200_1_0230101_01_00



2-12-0

Page 13 Dec 01/23

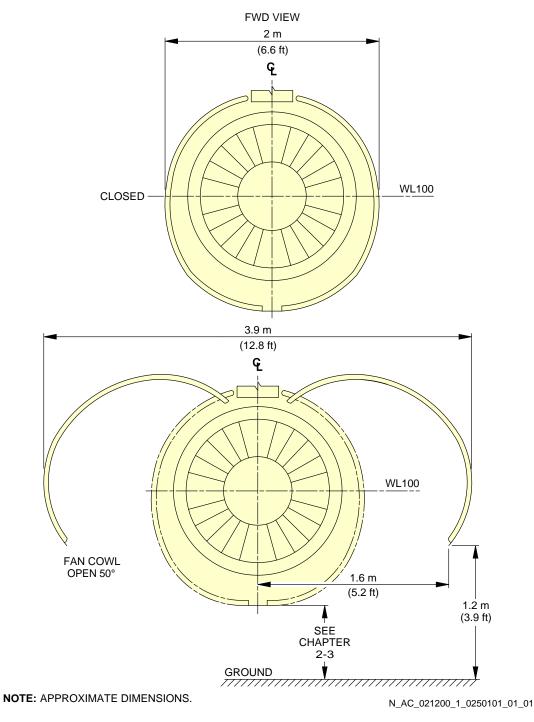
AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

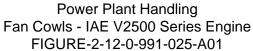
**ON A/C A319-100

	V	V	ι	J	V		PPS		AT	
	m	ft	m	ft	m	ft	m	ft	COMPONENT	
A-A	2.01	6.58	0.99	3.25	1.10	3.63	1.41	4.62	INLET ATTACH FLG	
B-B	2.01	6.58	1.00	3.29	1.11	3.64	2.59	8.50	TORQUE BOX "V" BLADE	
C-C	1.98	6.50	0.97	3.19	1.07	3.52	3.26	10.70	COMB. CHAMBER ENTRY FLG	
D-D	1.93	6.32	0.93	3.06	1.03	3.39	3.63	11.90	COMB. CHAMBER EXIT FLG	
E-E	1.64	5.38	0.78	2.57	0.86	2.83	4.60	15.10	TEC FLG TURB. EXIT CASE	
F-F	1.24	4.07	0.60	1.96	0.64	2.11			AFT END CNA	

NOTE: ALL SIZES GIVEN ON THIS ILLUSTRATION ARE APPROXIMATE

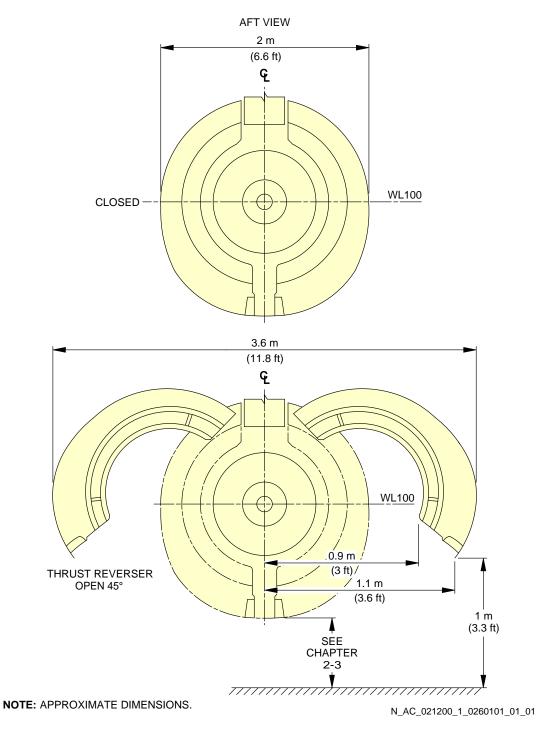
N_AC_021200_1_0240101_01_00


Power Plant Handling Major Dimensions - IAE V2500 Series Engine FIGURE-2-12-0-991-024-A01


2-12-0

Page 14 Dec 01/23

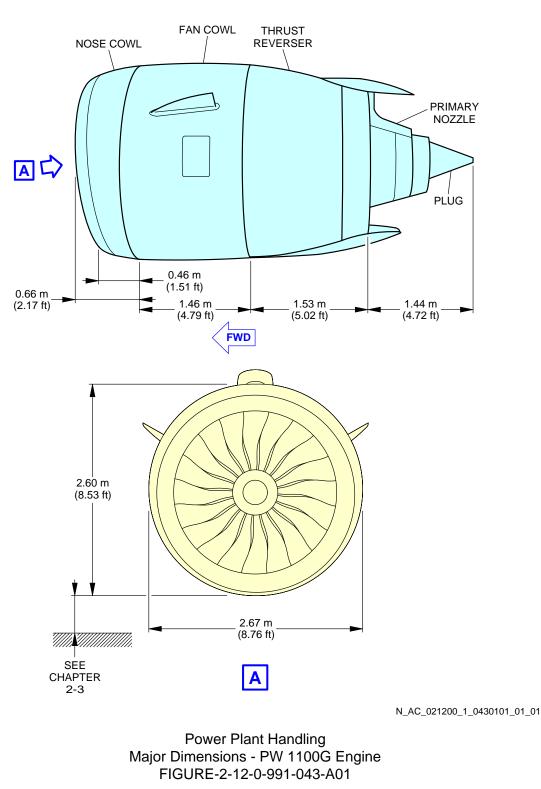
**ON A/C A319-100



2-12-0

Page 15 Dec 01/23

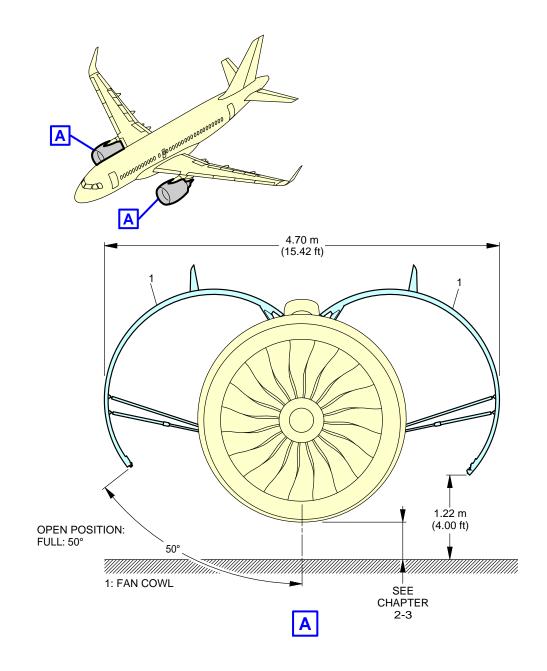
**ON A/C A319-100


Power Plant Handling Thrust Reverser Halves - IAE V2500 Series Engine FIGURE-2-12-0-991-026-A01

2-12-0

Page 16 Dec 01/23

**ON A/C A319neo

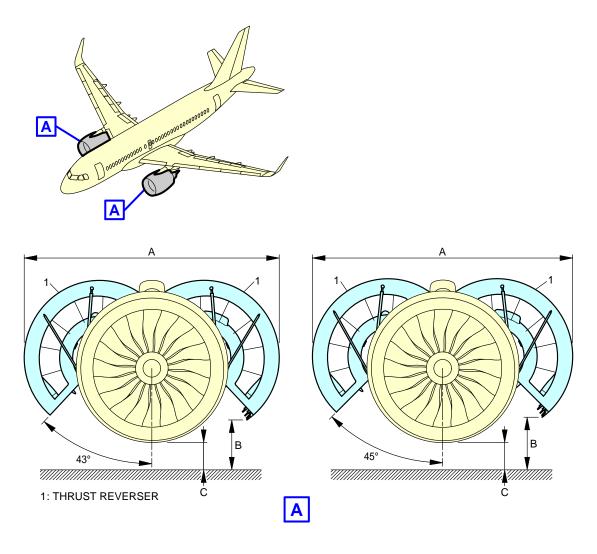


Page 17 Dec 01/23

2-12-0

**ON A/C A319neo

N_AC_021200_1_0440101_01_01


Power Plant Handling Fan Cowls - PW 1100G Engine FIGURE-2-12-0-991-044-A01

2-12-0

Page 18 Dec 01/23

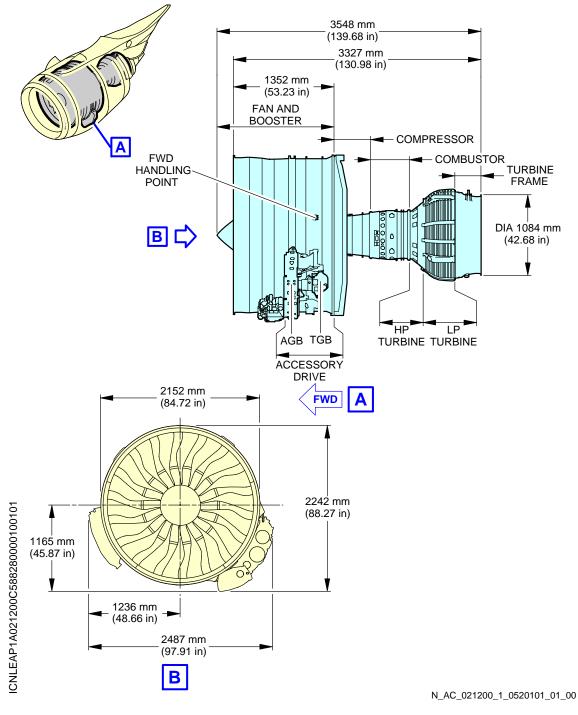
**ON A/C A319neo

OPEN	٨	E	3	С
POSITION	A	MIN.	MAX.	C
43°	4.26 m (13.98 ft)	0.80 m (2.62 ft)	0.90 m (2.95 ft)	SEE AC SECTION
45°	4.33 m (14.21 ft)	0.84 m (2.76 ft)	0.95 m (3.12 ft)	2-3-0

NOTE:

B AND C DEPENDING ON AIRCRAFT CONFIGURATION.

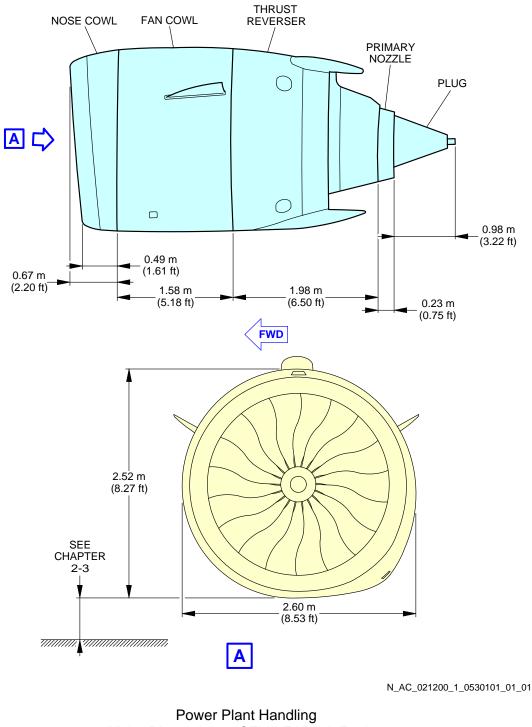
N_AC_021200_1_0450101_01_00


Power Plant Handling Thrust Reverser Halves - PW 1100G Engine FIGURE-2-12-0-991-045-A01

2-12-0

Page 19 Dec 01/23

**ON A/C A319neo



2-12-0

Page 20 Dec 01/23

**ON A/C A319neo

Power Plant Handling Major Dimensions - CFM LEAP-1A Engine FIGURE-2-12-0-991-053-A01

2-12-0

Page 21 Dec 01/23

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

2-13-0 Leveling, Symmetry and Alignment

**ON A/C A319-100 A319neo

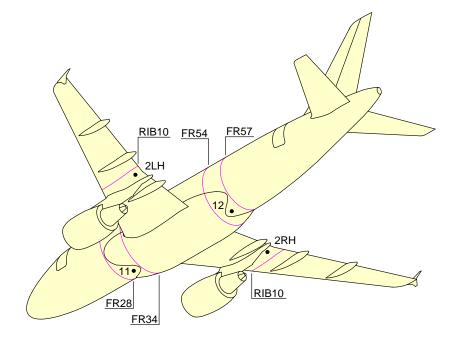
Leveling, Symmetry and Alignment

1. Quick Leveling

There are three alternative procedures to level the aircraft:

- Quick leveling procedure with Air Data/Inertial Reference Unit (ADIRU).
- Quick leveling procedure with a spirit level in the passenger compartment.
- Quick leveling procedure with a spirit level in the FWD cargo compartment.

2. Precise Leveling


For precise leveling, it is necessary to install sighting rods in the receptacles located under the fuselage (points 11 and 12 for longitudinal leveling) and under the wings (points 2LH and 2RH for lateral leveling) and use a sighting tube. With the aircraft on jacks, adjust the jacks until the reference marks on the sighting rods are aligned in the sighting plane (aircraft level).

3. Symmetry and Alignment Check

Possible deformation of the aircraft is measured by photogrammetry.

**ON A/C A319-100 A319neo

N_AC_021300_1_0020101_01_00

Location of the Leveling Points FIGURE-2-13-0-991-002-A01

2-13-0

Page 2 Dec 01/23

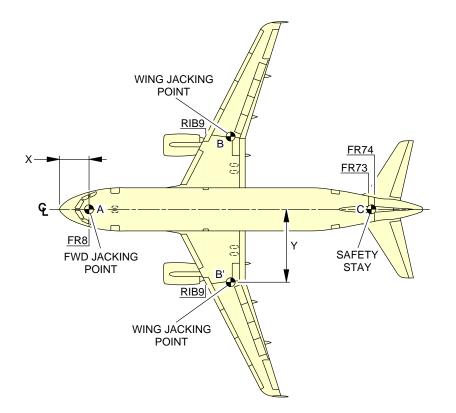
AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

2-14-0 Jacking

**ON A/C A319-100 A319neo

Jacking for Maintenance

- 1. Aircraft Jacking Points for Maintenance
 - A. General
 - (1) The A319 can be jacked:
 - At not more than 57 000 kg (125 663 lb),
 - Within the limits of the permissible wind speed when the aircraft is not in a closed environment.
 - B. Primary Jacking Points
 - (1) The aircraft is provided with three primary jacking points:
 - One located under the forward fuselage (FR8),
 - Two located under the wings (one under each wing, located at the intersection of RIB9 and the datum of the rear spar).
 - (2) Three jack adapters are used as intermediary parts between the aircraft and the jacks:
 - One male spherical jack adapter of 19 mm (0.75 in) radius, forming part of the aircraft structure (FR8),
 - Two wing jack pads (one attached to each wing at RIB9 with 2 bolts) for the location of the jack adaptor.
 - Wing jack pads are ground equipment.
 - C. Auxiliary Jacking Points (Safety Stay)
 - (1) When the aircraft is on jacks, it is recommended that a safety stay be placed under the fuselage, between FR73 and FR74, to prevent tail tipping caused by accidental displacement of the center of gravity.
 - (2) The safety stay must not be used to lift the aircraft.
 - (3) A male spherical ball pad with a 19 mm (0.75 in) radius, forming part of the aircraft structure, is provided to use the safety stay.
- 2. Jacks and Safety Stay
 - A. Jack Design
 - (1) The maximum permitted loads given in the table in FIGURE 2-14-0-991-005-A are the maximum loads applicable on jack fittings.


- (2) In the fully retracted position (jack stroke at minimum), the height of the jack is such that the jack may be placed beneath the aircraft in the most adverse conditions, namely, tires deflated and shock absorbers depressurized. In addition, there must be a clearance of approximately 50 mm (1.97 in) between the aircraft jacking point and the jack upper end.
- (3) The lifting jack stroke enables the aircraft to be jacked up so that the fuselage longitudinal datum line (aircraft center line) is parallel to the ground, with a clearance of 100 mm (3.94 in) between the main landing gear wheels and the ground. This enables the landing gear extension/retraction tests to be performed.
- 3. Shoring Cradles

When it is necessary to support the aircraft in order to release the loads on the structure to do modifications or major work, shoring cradles shall be placed under each wing and the fuselage as necessary.

<u>NOTE</u>: The aircraft must not be lifted or supported by the wings or fuselage alone without adequate support of the other.

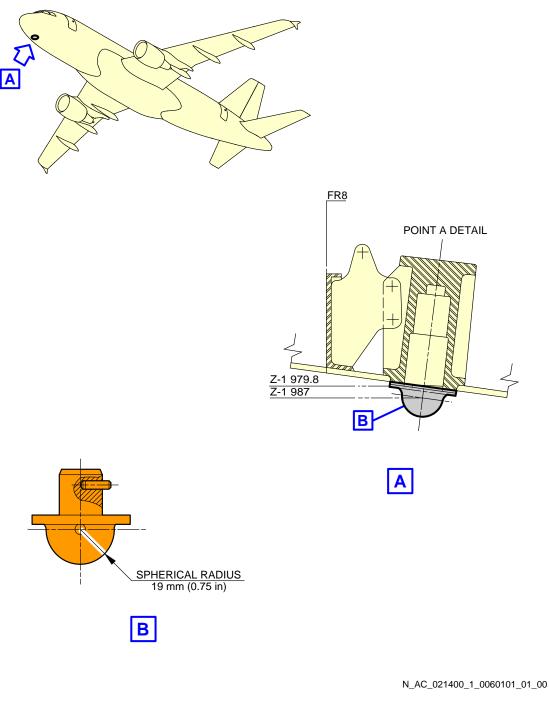
**ON A/C A319-100 A319neo

		х		Y	ſ	MAXIMUM LOAD ELIGIBLE
		m	ft	m	ft	daN
FORWARD FUSELA	AGE A	2.74	8.99	0	0	6 800
WING JACKING	В	15.97	52.40	6.50	21.33	28 500
POINT	Β'	15.97	52.40	-6.50	-21.33	28 500
SAFETY STAY	С	28.83	94.59	0	0	2 000

NOTE:

SAFETY STAY IS NOT USED FOR JACKING.

N_AC_021400_1_0050101_01_02


Jacking for Maintenance Jacking Point Locations FIGURE-2-14-0-991-005-A01

2-14-0

Page 3 Dec 01/23

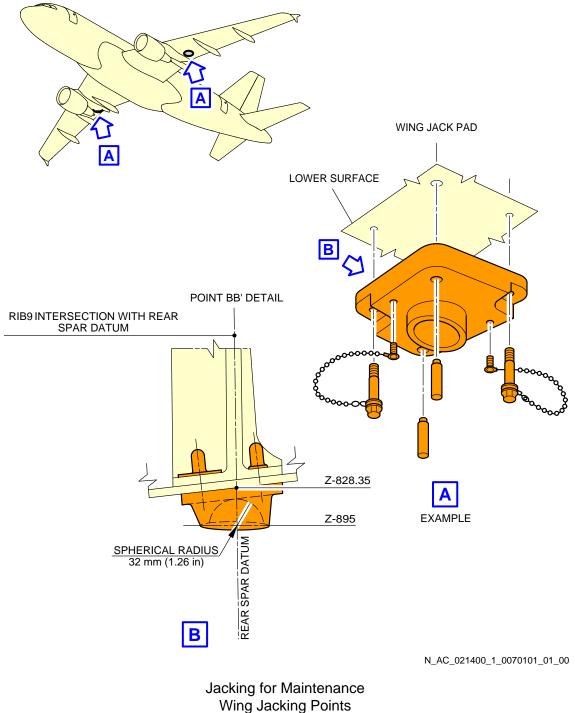
**ON A/C A319-100 A319neo

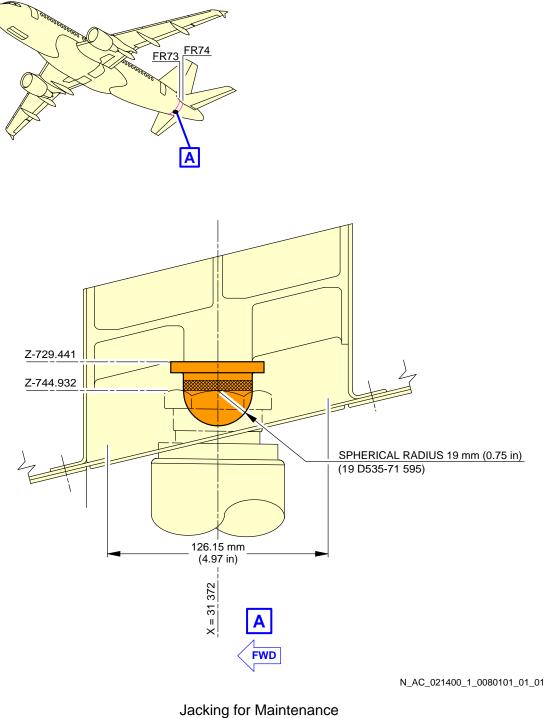
Jacking for Maintenance Forward Jacking Point FIGURE-2-14-0-991-006-A01

2-14-0

Page 4 Dec 01/23

**ON A/C A319-100 A319neo




FIGURE-2-14-0-991-007-A01

2-14-0

Page 5 Dec 01/23

**ON A/C A319-100 A319neo

Jacking for Maintenance Safety Stay FIGURE-2-14-0-991-008-A01

2-14-0

Page 6 Dec 01/23

GA319

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

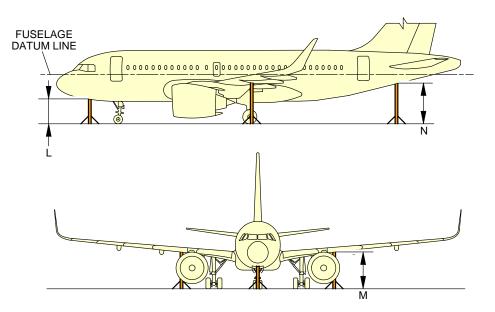
**ON A/C A319-100

FR8 FUSELAGE DATUM LINE		FR73 FR74
FORWARD JACK	WING JACK	SAFETY STAY N
Ĺ		
RIB9 =		
WING J	ACK FORWARD WING J JACK	ACK M

TYPICAL JACK INSTALLATION SHOWN

	DECODIDITION	DISTANCE BETWEEN JACKING/SAFETY POINTS AND THE GROUND				
CONFIGURATION	DESCRIPTION	L (FORWARD JACK)	M (WING JACK)	N (SAFETY STAY)		
	- NLG SHOCK ABSORBER DEFLATED AND NLG TIRES FLAT - MLG STANDARD TIRES, WITH STANDARD SHOCK ABSORBERS	1 576 mm (62.05 in)		3 672 mm (144.57 in)		
-AIRCRAFT ON WHEELS	TIRES FLAT SHOCK ABSORBERS DEFLATED	1 659 mm (65.31 in)		2 834 mm (111.57 in)		
	STANDARD TIRES STANDARD SHOCK ABSORBERS	1 859 mm (73.19 in)	3 121 mm (122.87 in)	3 400 mm (133.86 in)		
- AIRCRAFT ON JACKS (FORWARD JACK AND WING JACKS) - FUSELAGE DATUM LINE	STANDARD TIRES MLG SHOCK ABSORBERS EXTENDED WITH WHEEL CLEARANCE OF 120 mm (4.72 in) FOR MLG RETRACTION OR EXTENSION	2 554 mm (100.55 in)				
PARALLEL TO THE GROUND	STANDARD TIRES MLG SHOCK ABSORBERS EXTENDED WITH WHEEL CLEARANCE OF 770 mm (30.31 in) FOR REPLACEMENT OF THE MLG	3 204 mm (126.14 in)		-		
- AIRCRAFT ON FORWARD JACK - MLG WHEELS ON THE GROUND	STANDARD TIRES NLG SHOCK ABSORBERS EXTENDED WITH WHEEL CLEARANCE OF 60 mm (2.36 in) FOR NLG RETRACTION OR EXTENSION	2 394 mm (94.25 in)	NA	2 882 mm (113.46 in)		

NOTE:


THE SAFETY STAY IS NOT USED FOR JACKING.

N_AC_021400_1_0090101_01_02

Jacking for Maintenance Jacking Design FIGURE-2-14-0-991-009-A01

**ON A/C A319neo

	CG			HEI	GHT		
CONFIGURATION	POSITION	L		٩	N	Ν	
	(% MAC)	m	ft	m	ft	m	ft
	14	1.90	6.23	3.31 LH	10.86 LH	3.09	10.14
AIRCRAFT ON WHEELS, SHOCK-ABSORBERS		1.30	0.25	2.75 RH	9.02 RH	3.09	10.14
DEFLATED, TIRES DEFLATED (RH)	39	2.04	6.69	3.28 LH	10.76 LH	2.93	9.61
		2.04	0.00	2.75 RH	9.02 RH	2.35	3.01
AIRCRAFT ON JACKS, FDL AT 5.21 m (17.09 ft), AIRCRAFT FUSELAGE PARALLEL TO THE GROUND, SHOCK-ABSORBERS EXTENDED, CLEARANCE OF MAIN GEAR WHEELS = 0.73 m (2.40 ft) (STANDARD TIRES 01), CLEARANCE OF NOSE GEAR WHEELS = 0.95 m (3.12 ft) (STANDARD TIRES 01))	N/A	3.23	10.60	4.38	14.37	4.47	14.67
AIRCRAFT ON WHEELS (STANDARD TIRES 01)) MAXIMUM JACKING WEIGHT = 57 000 kg (125 663 lb)	14	1.84	6.04	3.20	10.50	3.48	11.42
	39	1.97	6.46	3.18	10.43	3.31	10.86
AIRCRAFT ON WHEELS (STANDARD TIRES 01))	14	1.88	6.17	3.24	10.63	3.53	11.58
OEW = 41 625 kg (91 767 lb)	39	2.03	6.66	3.23	10.60	3.36	11.02

NOTE:

01 STANDARD TIRES: NOSE LANDING GEAR = 762 x 233.52 R15 MAIN LANDING GEAR = 1 168.4 x 431.8 R20

N_AC_021400_1_0650101_01_01

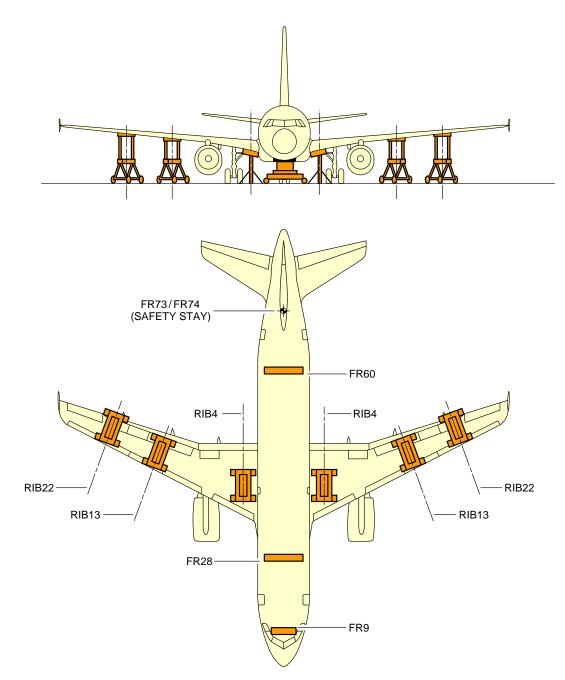
Jacking for Maintenance Jacking Design (Sheet 1 of 2) FIGURE-2-14-0-991-065-A01

GA319

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

**ON A/C A319neo

	CG			HEI	GHT		
CONFIGURATION	POSITION L (% MAC)		L	Ν	N		
	(% MAC)	m	ft	m	ft	m	ft
AIRCRAFT ON WHEELS, NLG SHOCK- ABSORBER DEFLATED AND TIRES	17	1.57	5.15	3.13	10.27	3.69	12.11
DEFLATED, MLG STANDARD SHOCK- ABSORBER (RH) (STANDARD TIRES 01)	36	1.58	5.18	3.11	10.2	3.65	11.98
AIRCRAFT ON JACKS, FDL PARALLEL TO THE GROUND AT 4.56 m (14.96 ft), SHOCK-ABSORBERS EXTENDED (STANDARD TIRES 01), FOR MLG RETRACTION/EXTENSION OR MLG REPLACEMENT MAKE SURE CLEARANCE OF 0.95 m (3.12 ft) FROM GROUND TO BOTTOM OF MAIN FITTING OR MAKE SURE CLEARANCE OF MLG WHEELS = 0.12 m (0.39 ft)	N/A	2.55	8.37	3.66	12.01	3.78	12.4
AIRCRAFT ON JACKS, FDL PARALLEL TO THE GROUND AT 5.21 m (17.09 ft), SHOCK-ABSORBERS EXTENDED (STANDARD TIRES 01), FOR REPLACEMENT OF MLG SHOCK-ABSORBER MAKE SURE CLEARANCE OF 1.6 m (5.25 ft) FROM GROUND TO BOTTOM OF MAIN FITTING OR MAKE SURE CLEARANCE OF MLG WHEELS = 0.77 m (2.53 ft)	N/A	3.2	10.5	4.31	14.14	4.43	14.53
AIRCRAFT ON JACK WITH MLG WHEELS ON GROUND, NLG SHOCK-ABSORBER EXTENDED (STANDARD TIRES 01), FOR NLG RETRACTION/EXTENSION OR	17	2.39	7.84	3.13	10.27	2.9	9.51
REPLACEMENT OF NLG SHOCK-ABSORBER MAKE SURE CLEARANCE OF 1 m (3.28 ft) FROM GROUND TO BOTTOM OF TURNING TUBE OR MAKE SURE CLEARANCE OF NOSE GEAR WHEELS = 0.60 m (1.97 ft)	36	2.4	7.87	3.11	10.2	2.86	9.38


NOTE: 01 STANDARD TIRES: NOSE LANDING GEAR = 762 x 233.52 R15 MAIN LANDING GEAR = 1 168.4 x 431.8 R20

N_AC_021400_1_0650103_01_00

Jacking for Maintenance Jacking Design (Sheet 2 of 2) FIGURE-2-14-0-991-065-A01

**ON A/C A319-100 A319neo

NOTE: THE SHORING CRADLE MUST BE INSTALLED AT THE EXACT LOCATION OF THE FRAME.

N_AC_021400_1_0110101_01_00

Jacking for Maintenance Location of Shoring Cradles FIGURE-2-14-0-991-011-A01

2-14-0

Page 10 Dec 01/23

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

**ON A/C A319-100 A319neo

Jacking of the Landing Gear

1. General

Landing gear jacking will be required to lift the landing gear wheels off the ground.

- <u>NOTE</u>: You can lift the aircraft at Maximum Ramp Weight (MRW).
- <u>NOTE</u>: The load at each jacking position is the load required to give a 25.4 mm (1 in) clearance between the ground and the tire.

**ON A/C A319-100

2. Main Gear Jacking

The main gears are normally jacked up by placing a jack directly under the ball pad.

The ball spherical radius is 19 mm (0.75 in).

It is also possible to jack the main gear using a cantilever jack.

The reactions at each of the jacking points are shown in the table, see FIGURE 2-14-0-991-059-A.

**ON A/C A319neo

3. Main Gear Jacking

The main gears are normally jacked up by placing a jack directly under the ball pad.

The ball spherical radius is 19 mm (0.75 in).

It is also possible to jack the main gear using a cantilever jack.

The reactions at each of the jacking points are shown in the table, see FIGURE 2-14-0-991-062-A.

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

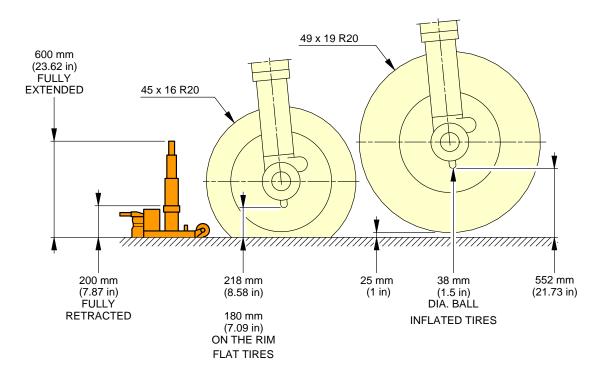
**ON A/C A319-100

4. Nose Gear Jacking

For nose gear jacking, a 19 mm (0.75 in) radius ball pad is fitted under the lower end of the shock-absorber sliding tube. Jacking can be accomplished either by placing a jack directly under the ball pad, or using an adapter fitting provided with an identical ball pad.

The reactions at each of the jacking points are shown in the table, see FIGURE 2-14-0-991-059-A.

**ON A/C A319neo


5. Nose Gear Jacking

For nose gear jacking, a 19 mm (0.75 in) radius ball pad is fitted under the lower end of the shock-absorber sliding tube. Jacking can be accomplished either by placing a jack directly under the ball pad, or using an adapter fitting provided with an identical ball pad.

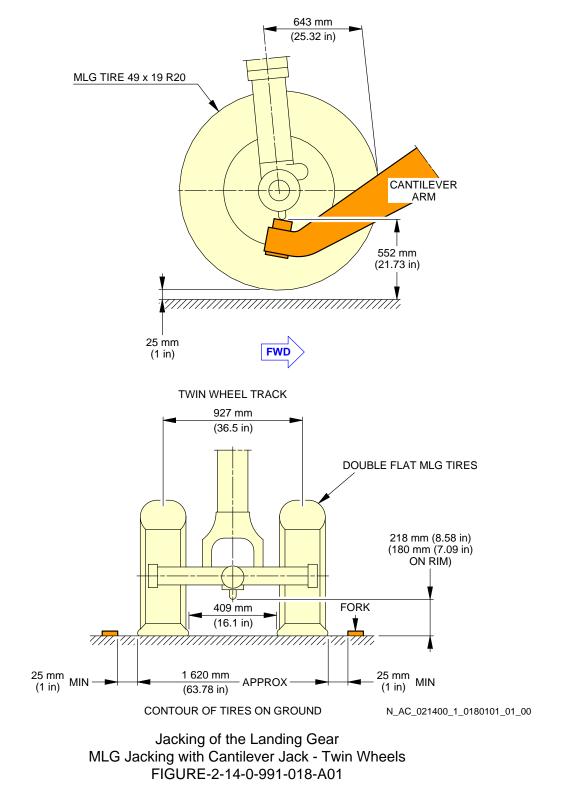
The reactions at each of the jacking points are shown in the table, see FIGURE 2-14-0-991-062-A.

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

**ON A/C A319-100 A319neo

NOTE: TWIN WHEEL TRACK IS 927 mm (36.5 in). THE FLAT TIRES VIEW SHOWS THE MINIMUM HEIGHT TO ENGAGE JACK WITH 2 FLAT TIRES. THE INFLATED TIRES VIEW SHOWS THE JACKING HEIGHT TO GIVE 25 mm (1 in) CLEARANCE BETWEEN THE TIRE AND GROUND.

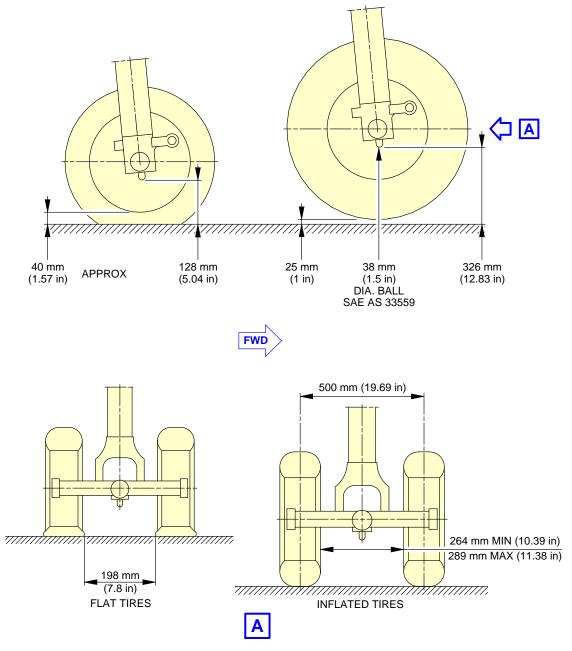
N_AC_021400_1_0170101_01_00


Jacking of the Landing Gear MLG Jacking Point Location - Twin Wheels FIGURE-2-14-0-991-017-A01

2-14-0

Page 13 Dec 01/23

**ON A/C A319-100 A319neo



2-14-0

Page 14 Dec 01/23

**ON A/C A319-100 A319neo

NOTE: THE FLAT TIRES VIEW SHOWS THE MINIMUM HEIGHT TO ENGAGE JACK WITH 2 FLAT TIRES. THE INFLATED TIRES VIEW SHOWS THE JACKING HEIGHT TO GIVE 25 mm (1 in) CLEARANCE BETWEEN THE TIRE AND GROUND.

N_AC_021400_1_0210101_01_00

Jacking of the Landing Gear NLG Jacking - Point Location FIGURE-2-14-0-991-021-A01

2-14-0

Page 15 Dec 01/23

GA319

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

**ON A/C A319-100

A319-100 AND A319 CJ WV010					
MAXIMUM DESIGN TAXI WEIGHT (MTW)	76 900 kg (169 535 lb)				
MAXIMUM DESIGN TAKE-OFF WEIGHT (MTOW)	76 500 kg (168 653 lb)				
MAXIMUM LOAD VALUE TO BE APPLIED ON NLG JACKING POINT	11 400 kg (25 133 lb)				
NUMBER OF JACKING POINTS ON ONE MLG	1				
MAXIMUM LOAD VALUE TO BE APPLIED ON MLG JACKING POINT (LEFT OR RIGHT)	35 000 kg (77 162 lb)				

N_AC_021400_1_0590101_01_00

Jacking of the Landing Gear Maximum Load Capacity to Lift Each Jacking Point FIGURE-2-14-0-991-059-A01

2-14-0

Page 16 Dec 01/23

GA319

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

**ON A/C A319neo

A319 NEO WV054 AND WV055						
MAXIMUM DESIGN TAXI WEIGHT (MTW)	75 900 kg (167 331 lb)					
MAXIMUM DESIGN TAKE-OFF WEIGHT (MTOW)	75 500 kg (166 449 lb)					
MAXIMUM LOAD VALUE TO BE APPLIED ON NLG JACKING POINT	15 683 kg (34 575 lb)					
NUMBER OF JACKING POINTS ON ONE MLG	1					
MAXIMUM LOAD VALUE TO BE APPLIED ON MLG JACKING POINT (LEFT OR RIGHT)	46 177 kg (101 803 lb)					

N_AC_021400_1_0620101_01_00

Jacking of the Landing Gear Maximum Load Capacity to Lift Each Jacking Point FIGURE-2-14-0-991-062-A01

2-14-0

Page 17 Dec 01/23

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

AIRCRAFT PERFORMANCE

3-1-0 General Information

**ON A/C A319-100 A319neo

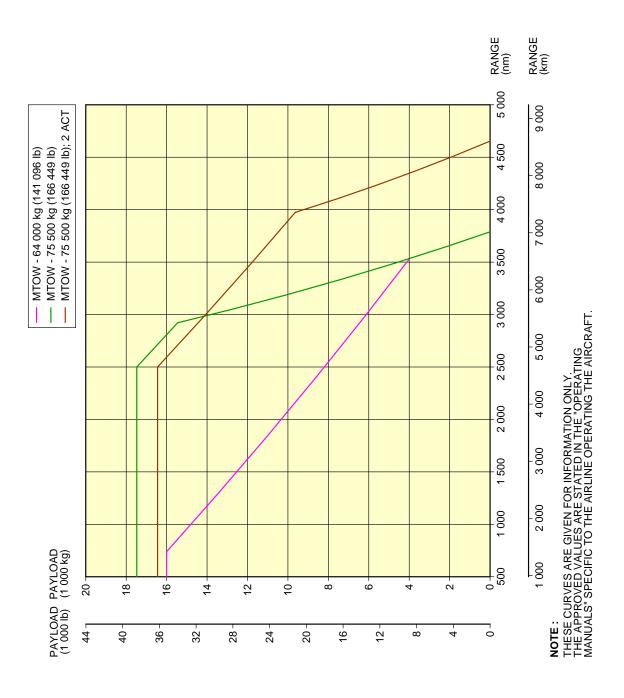
General Information

1. Standard day temperatures for the altitudes shown are tabulated below:

Standard Day Temperatures for the Altitudes									
	Altitude	Standa	rd Day Temperature						
FEET	METERS	°F	C°						
0	0	59.0	15.0						
2 000	610	51.9	11.1						
4 000	1 220	44.7	7.1						
6 000	1 830	37.6	3.1						
8 000	2 440	30.5	-0.8						

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

3-2-1 Payload / Range - ISA Conditions

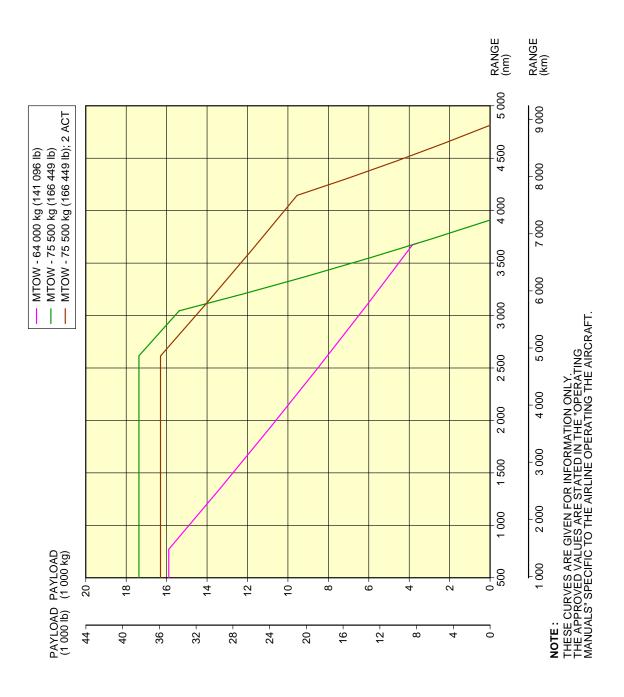

**ON A/C A319-100 A319neo

Payload/Range - ISA Conditions

1. This section provides the payload/range at ISA conditions.

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

**ON A/C A319-100


N_AC_030201_1_0130101_01_00

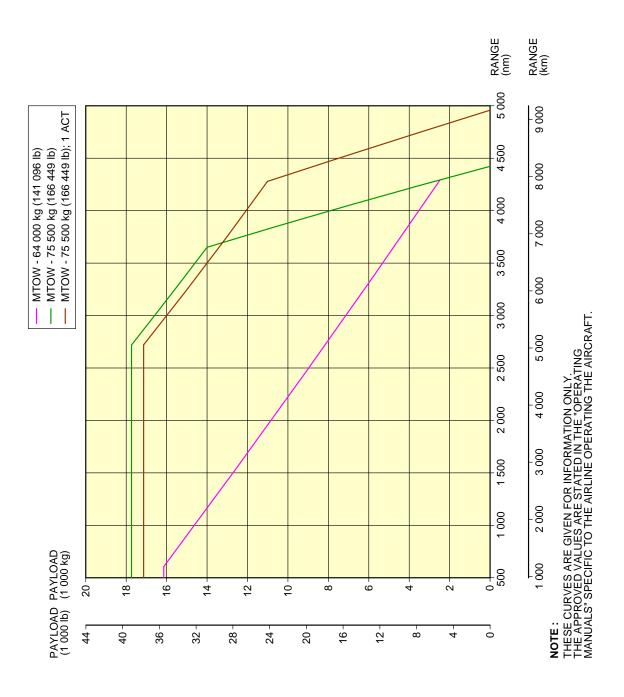
Payload/Range - ISA Conditions FIGURE-3-2-1-991-013-A01

3-2-1

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

**ON A/C A319-100

N_AC_030201_1_0140101_01_00


Payload/Range - ISA Conditions Sharklet FIGURE-3-2-1-991-014-A01

3-2-1

Page 3 Dec 01/23

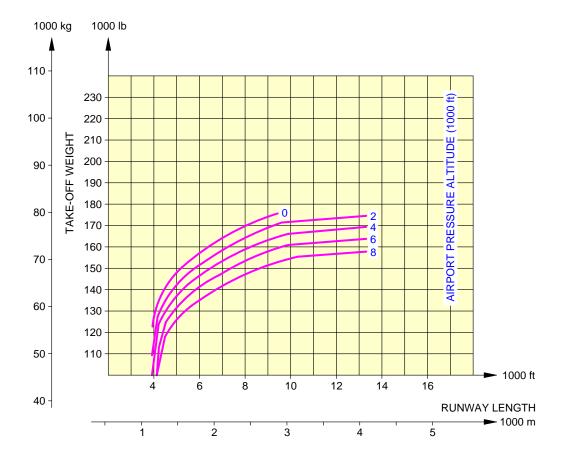
AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

**ON A/C A319neo

N_AC_030201_1_0150101_01_00

Payload/Range - ISA Conditions FIGURE-3-2-1-991-015-A01

3-3-1 Take-off Weight Limitation - ISA Conditions

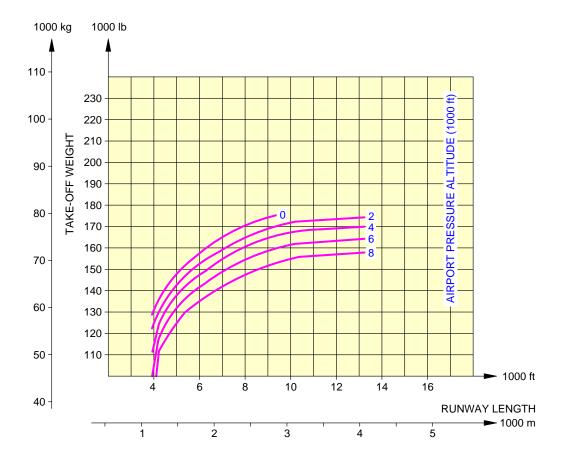

**ON A/C A319-100 A319neo

Take-Off Weight Limitation - ISA Conditions

1. This section gives the take-off weight limitation at ISA conditions.

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

**ON A/C A319-100

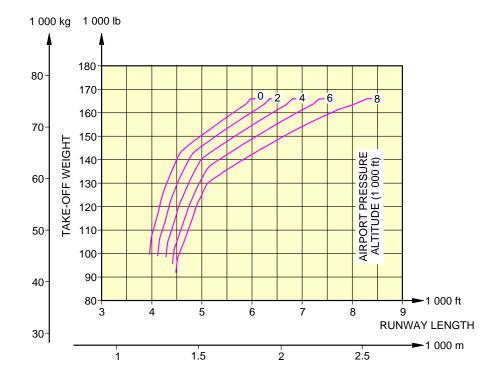

NOTE: THESE CURVES ARE GIVEN FOR INFORMATION ONLY THE APPROVED VALUES ARE STATED IN THE "OPERATING MANUALS" SPECIFIC TO THE AIRLINE OPERATING THE AIRCRAFT.

N_AC_030301_1_0030101_01_00

Take-Off Weight Limitation - ISA Conditions CFM56 Series Engine FIGURE-3-3-1-991-003-A01

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

**ON A/C A319-100


NOTE: THESE CURVES ARE GIVEN FOR INFORMATION ONLY THE APPROVED VALUES ARE STATED IN THE "OPERATING MANUALS" SPECIFIC TO THE AIRLINE OPERATING THE AIRCRAFT.

N_AC_030301_1_0040101_01_00

Take-Off Weight Limitation - ISA Conditions IAE V2500 Series Engine FIGURE-3-3-1-991-004-A01

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

**ON A/C A319neo

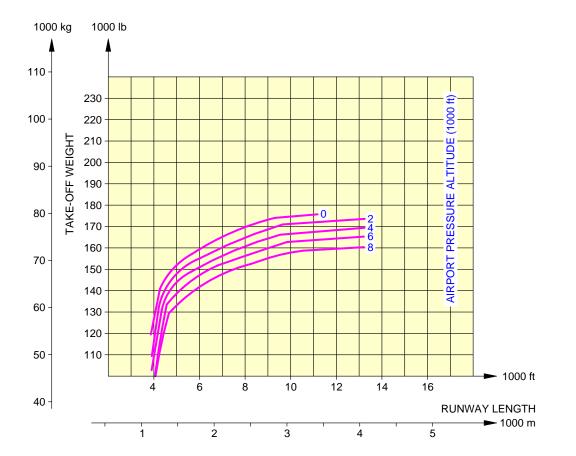
NOTE: THESE CURVES ARE GIVEN FOR INFORMATION ONLY. THE APPROVED VALUES ARE STATED IN THE "OPERATING MANUALS" SPECIFIC TO THE AIRLINE OPERATING THE AIRCRAFT.

N_AC_030301_1_0120101_01_00

Take-Off Weight Limitation - ISA Conditions LEAP Engines FIGURE-3-3-1-991-012-A01

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

3-3-2 Take-off Weight Limitation - ISA +15°C (+59°F) Conditions


**ON A/C A319-100 A319neo

Take-Off Weight Limitation - ISA +15°C (+27°F) Conditions

1. This section gives the take-off weight limitation at ISA +15°C (+27°F) conditions.

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

**ON A/C A319-100

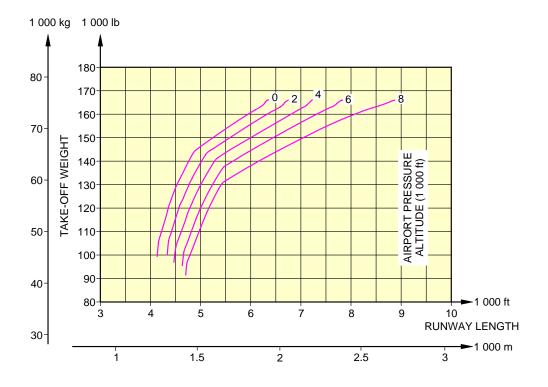
NOTE: THESE CURVES ARE GIVEN FOR INFORMATION ONLY THE APPROVED VALUES ARE STATED IN THE "OPERATING MANUALS" SPECIFIC TO THE AIRLINE OPERATING THE AIRCRAFT.

N_AC_030302_1_0030101_01_00

Take-Off Weight Limitation - ISA +15°C (+27°F) Conditions CFM56 Series Engine FIGURE-3-3-2-991-003-A01

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

**ON A/C A319-100


NOTE: THESE CURVES ARE GIVEN FOR INFORMATION ONLY THE APPROVED VALUES ARE STATED IN THE "OPERATING MANUALS" SPECIFIC TO THE AIRLINE OPERATING THE AIRCRAFT.

N_AC_030302_1_0040101_01_00

Take-Off Weight Limitation - ISA +15°C (+27°F) Conditions IAE V2500 Series Engine FIGURE-3-3-2-991-004-A01

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

**ON A/C A319neo

NOTE: THESE CURVES ARE GIVEN FOR INFORMATION ONLY. THE APPROVED VALUES ARE STATED IN THE "OPERATING MANUALS" SPECIFIC TO THE AIRLINE OPERATING THE AIRCRAFT.

N_AC_030302_1_0130101_01_00

Take-Off Weight Limitation - ISA +15°C (+27°F) Conditions Leap Engines FIGURE-3-3-2-991-013-A01

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

3-3-3 Aerodrome Reference Code

**ON A/C A319-100 A319neo

Aerodrome Reference Code

**ON A/C A319-100

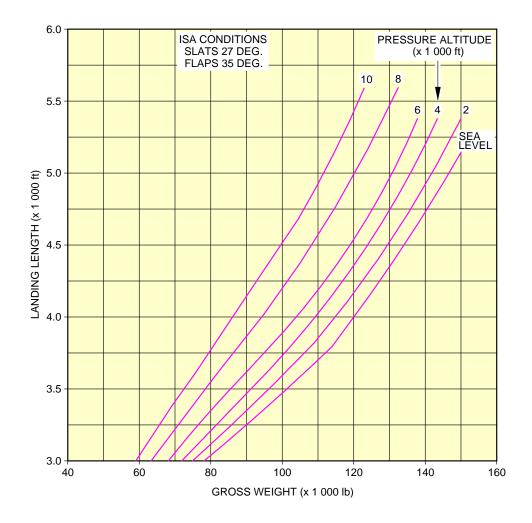
1. The aircraft is classified as code 3C as per ICAO Aerodrome Reference Code (up to and including 75 500 kg (166 449 lb)).

**ON A/C A319neo

2. The aircraft is classified as code 3C as per ICAO Aerodrome Reference Code.

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

3-4-1 Landing Field Length - ISA Conditions


**ON A/C A319-100 A319neo

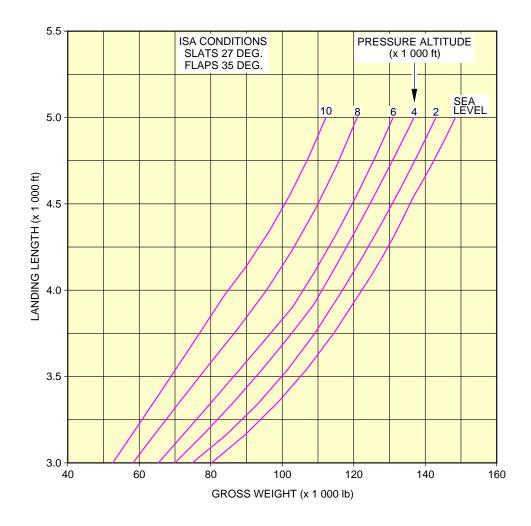
Landing Field Length - ISA Conditions

1. This section provides the landing field length.

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

**ON A/C A319-100

NOTE: THESE CURVES ARE GIVEN FOR INFORMATION ONLY. THE APPROVED VALUES ARE STATED IN THE "OPERATING MANUALS" SPECIFIC TO THE AIRLINE OPERATING THE AIRCRAFT.

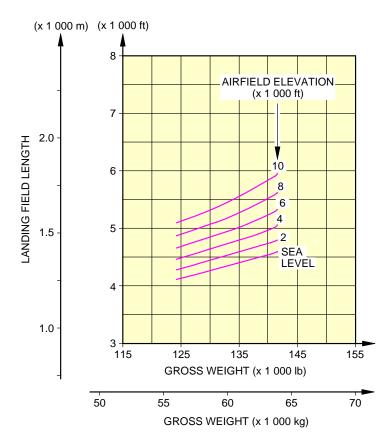

N_AC_030401_1_0030101_01_01

Landing Field Length - ISA Conditions CFM56-5A Series Engine FIGURE-3-4-1-991-003-A01

Page 2 Dec 01/23

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

**ON A/C A319-100


NOTE: THESE CURVES ARE GIVEN FOR INFORMATION ONLY. THE APPROVED VALUES ARE STATED IN THE "OPERATING MANUALS" SPECIFIC TO THE AIRLINE OPERATING THE AIRCRAFT.

N_AC_030401_1_0040101_01_01

Landing Field Length - ISA Conditions IAE V2500 Series Engine FIGURE-3-4-1-991-004-A01

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

**ON A/C A319neo

NOTE: THESE CURVES ARE GIVEN FOR INFORMATION ONLY. THE APPROVED VALUES ARE STATED IN THE "OPERATING MANUALS" SPECIFIC TO THE AIRLINE OPERATING THE AIRCRAFT.

N_AC_030401_1_0130101_01_00

Landing Field Length - ISA Conditions Leap Engines FIGURE-3-4-1-991-013-A01

Page 4 Dec 01/23

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

3-5-0 Final Approach Speed

**ON A/C A319-100

Final Approach Speed

- 1. This section provides the final approach speed. It is defined as the indicated airspeed at threshold in the landing configuration, at the certificated maximum flap setting and Maximum Landing Weight (MLW), in standard atmospheric conditions. The approach speed is used to classify the aircraft into an Aircraft Approach Category, a grouping of aircraft based on the indicated airspeed at threshold.
- 2. The final approach speed is 126 kt at a MLW of 62 500 kg (137 789 lb) and classifies the aircraft into the Aircraft Approach Category C.

<u>NOTE</u> : This value is given for information only.

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

GROUND MANEUVERING

4-1-0 General Information

**ON A/C A319-100 A319neo

General Information

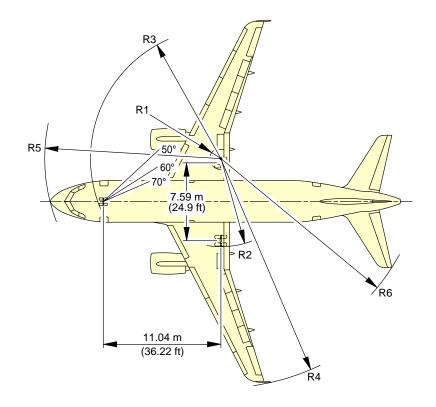
1. This section provides aircraft turning capability and maneuvering characteristics.

For ease of presentation, this data has been determined from the theoretical limits imposed by the geometry of the aircraft, and where noted, provides for a normal allowance for tire slippage. As such, it reflects the turning capability of the aircraft in favorable operating circumstances. This data should only be used as a guideline for the method of determination of such parameters and for the maneuvering characteristics of this aircraft type.

In ground operating mode, varying airline practices may demand that more conservative turning procedures be adopted to avoid excessive tire wear and reduce possible maintenance problems. Airline operating techniques will vary in the level of performance, over a wide range of operating circumstances throughout the world. Variations from standard aircraft operating patterns may be necessary to satisfy physical constraints within the maneuvering area, such as adverse grades, limited area or a high risk of jet blast damage. For these reasons, ground maneuvering requirements should be coordinated with the airlines in question prior to layout planning.

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

4-2-0 Turning Radii


**ON A/C A319-100 A319neo

Turning Radii

1. This section provides the turning radii.

**ON A/C A319-100 A319neo

NOTE: FOR STEERING DIMENSION TABLE SEE SHEET 2.

TURN TYPE:

- 1. ASYMMETRIC THRUST DIFFERENTIAL BRAKING (PIVOTTING ON ONE MAIN GEAR).
- 2. SYMMETRIC THRUST NO BRAKING.

N_AC_040200_1_0030101_01_02

Turning Radii, No Slip Angle (Sheet 1) FIGURE-4-2-0-991-003-A01

Page 2 Dec 01/23

**ON A/C A319-100 A319neo

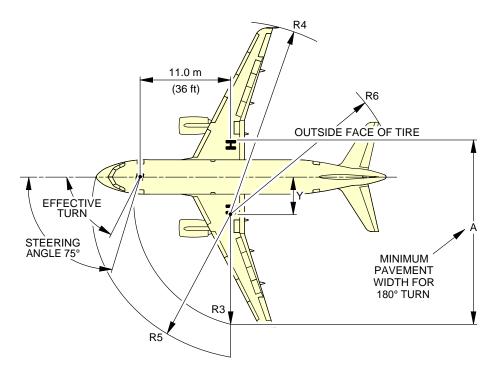
	MAXIMUN	MAXIMUM RAMP WEIGHT	RML RML	R1 RMLG	LML(R2 LMLG	R3 NLG	ო.თ		R4 - WING	NING		ХÖ	R5 NOSE	R6 THS	ۍ د
STEI AN	STEERING ANGLE (dea)	EFFECTIVE STEERING ANGLE (ded)	E	ft	E	ft	٤	Ŧ	WINGTIP	STIP CE	SHARKLET	KLET	٤	ft	٤	ft
-									E	ft	E	ft				
	20	19.4	28.2	92	35.8	117	33.5	110	48.6	159	49.4	162	35.2	116	41.2	135
	25	24.3	21.4	70	29.0	95	27.2	89	41.8	137	42.6	140	29.3	96	35.1	115
	30	29.1	16.7	55	24.3	80	23.0	76	37.1	122	38.0	125	25.6	84	31.1	102
	35	33.9	13.3	44	20.9	69	20.1	99	33.7	111	34.6	113	23.0	52	28.3	93
	40	38.8	10.6	35	18.2	60	17.9	59	31.1	102	31.9	105	21.2	69	26.2	86
	45	43.6	8.5	28	16.1	53	16.3	53	29.0	95	29.8	98	19.8	65	24.6	81
	50	48.4	6.7	22	14.3	47	15.0	49	27.2	89	28.0	92	18.9	62	23.3	76
	55	53.2	5.2	17	12.7	42	14.0	46	25.7	84	26.5	87	18.1	59	22.3	73
	60	57.9	3.8	13	11.4	37	13.2	43	24.4	80	25.2	8	17.5	58	21.4	70
	65	62.5	2.6	6	10.2	34	12.6	41	23.2	76	24.0	79	17.1	56	20.7	68
	70	66.9	1.6	5	9.2	30	12.2	40	22.2	73	23.0	76	16.8	55	20.1	66
	75 (MAX)	70.3	0.8	3	8.4	28	11.8	39	21.4	70	22.3	73	16.6	54	19.7	65
	50	48.6	6.6	22	14.2	47	14.9	49	27.1	89	28.0	92	18.8	62	23.2	76
	55	53.5	5.1	17	12.6	41	14.0	46	25.6	84	26.4	87	18.1	69	22.2	73
	60	58.3	3.7	12	11.3	37	13.2	43	24.3	80	25.1	82	17.5	22	21.3	70
	65	63.1	2.5	8	10.1	33	12.5	41	23.1	76	23.9	78	17.1	56	20.6	68
	70	67.7	1.4	5	9.0	30	12.1	40	22.0	72	22.8	75	16.7	55	20.0	66
	75 (MAX)	71.9	0.5	2	8.1	27	11.7	38	21.1	69	22.0	72	16.5	54	19.6	64
'	ABOVE 50 FYPE 1 TU	NOTE : ABOVE 50°, AIRLINES MAY USE TYPE 1 OR TYPE 2 TURNS DEPENDING ON THE SITUATION. TYPE 1 TURNS USE: ASYMMETRIC THRUST DURING THE WHOLE TURN; AND DIFFERENTIAL BRAKING TO INITIATE THE TURN ONLY.	SE TYPI ETRIC 1 3N ONL	E 1 OR THRUS .Y.	TYPE ST DUR	2 TURI ING TH	NS DEF HE WHC		IG ON ⁻ RN; AN	ID DIFF	TUATIC	DN. TIAL BI	RAKINC	0 TO IN	JITIATE	
	TYPE 2 TURNS USE IT IS POSSIBLE TO THE WHOLE TURN	ō	TRIC THER VAL	HRUST UES T	- DURIN HAN TI-	IG THE HOSE F	-ROM	LE TUR LYPE 1	ίΝ; ANE BY AP	D NO D	IFFERE G DIFFI	ERENT	- BRAKi TAL BR	ING AT AKING	ALL. DURIN	<u>n</u>

N_AC_040200_1_0040101_01_01

Turning Radii, No Slip Angle (Sheet 2) FIGURE-4-2-0-991-004-A01

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

4-3-0 Minimum Turning Radii


**ON A/C A319-100 A319neo

Minimum Turning Radii

1. This section provides the minimum turning radii.

**ON A/C A319-100 A319neo

NOTE: NOSE GEAR RADII TRACK R3, MEASURED FROM OUTSIDE FACE OF TIRE. MODEL 100 TURN DIMENSION SHOWN. THEORETICAL CENTER OF TURN FOR MINIMUM TURNING RADIUS. SLOW CONTINUOUS TURNING. APPROXIMATELY IDLE THRUST ON ALL ENGINES. NO DIFFERENTIAL BRAKING. DRY SURFACE.

TYPE	STEERING	EFFECTIVE				R3	R4 WING		R5	R6
OF TURN	ANGLE (DEG)	STEERING ANGLE		Y	A	NLG	WING TIP FENCE	SHARKLET	NOSE	THS
1	75 (MAX)	71.9°	m	3.6	20.1	11.7	21.1	22.0	16.5	19.6
'			ft	12	66	38	69	72	54	64
	75 (MAX)	70.3°	m	3.9	20.5	11.8	21.4	22.3	16.6	19.7
2			ft	13	67	39	70	73	54	65

NOTE: IT IS POSSIBLE TO GET LOWER VALUES THAN THOSE FROM TYPE 1 BY APPLYING DIFFERENTIAL BRAKING DURING THE WHOLE TURN.

N_AC_040300_1_0020101_01_02

Minimum Turning Radii FIGURE-4-3-0-991-002-A01

4-4-0 Visibility from Cockpit in Static Position

**ON A/C A319-100 A319neo

Visibility from Cockpit in Static Position

1. This section gives the visibility from cockpit in static position.

**ON A/C A319-100 A319neo

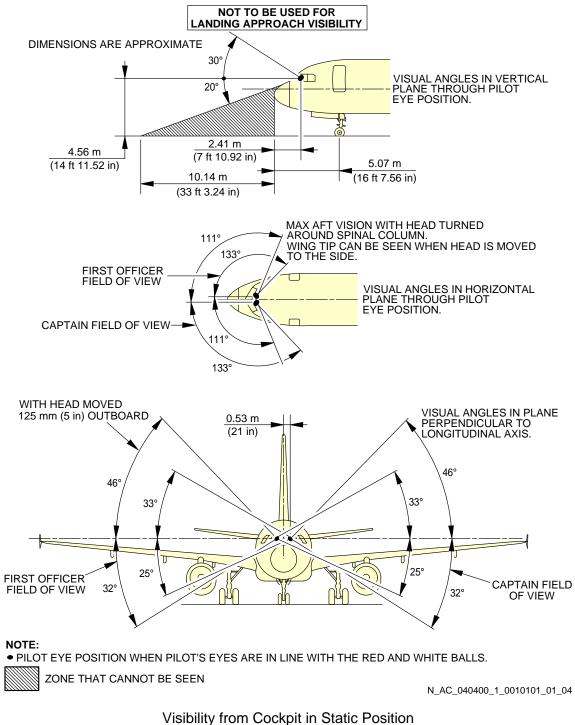
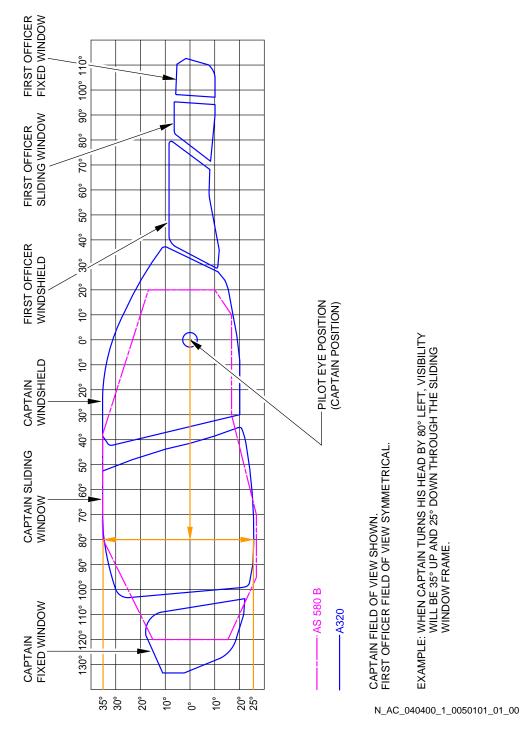



FIGURE-4-4-0-991-001-A01

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

**ON A/C A319-100 A319neo

Binocular Visibility Through Windows from Captain Eye Position FIGURE-4-4-0-991-005-A01

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

4-5-0 Runway and Taxiway Turn Paths

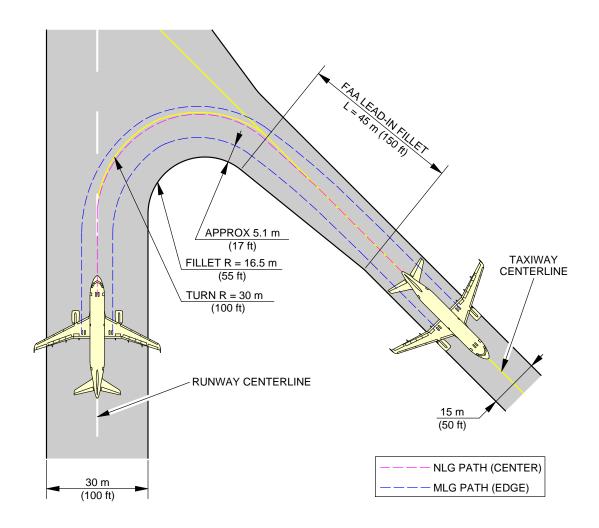
**ON A/C A319-100 A319neo

Runway and Taxiway Turn Paths

1. Runway and Taxiway Turn Paths.

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

4-5-1 135° Turn - Runway to Taxiway


**ON A/C A319-100 A319neo

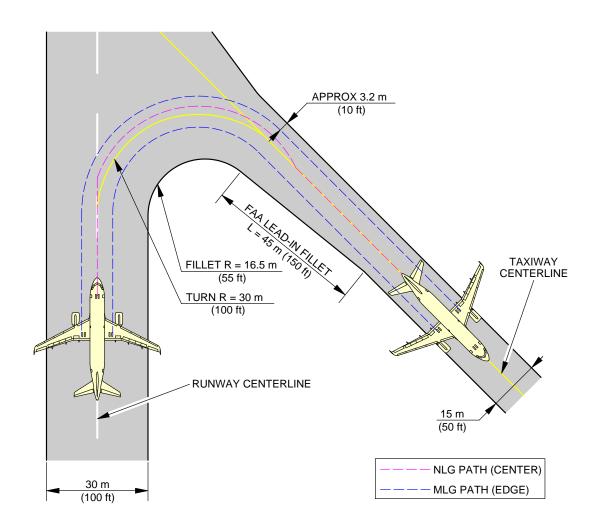
135° Turn - Runway to Taxiway

1. This section gives the 135° turn - runway to taxiway.

**ON A/C A319-100 A319neo

NOTE: FAA GROUP III FACILITIES.

N_AC_040501_1_0020101_01_03


135° Turn - Runway to Taxiway Cockpit Over Centerline Method FIGURE-4-5-1-991-002-A01

4-5-1

Page 2 Dec 01/23

**ON A/C A319-100 A319neo

NOTE: FAA GROUP III FACILITIES.

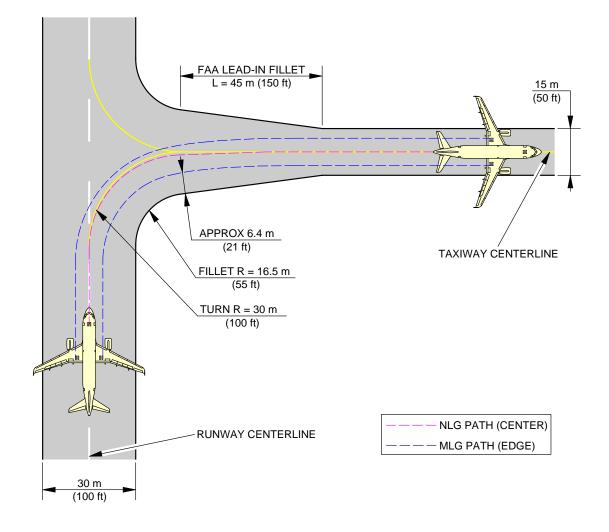
N_AC_040501_1_0030101_01_03

135° Turn - Runway to Taxiway Judgemental Oversteering Method FIGURE-4-5-1-991-003-A01

Page 3 Dec 01/23

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

4-5-2 90° Turn - Runway to Taxiway


**ON A/C A319-100 A319neo

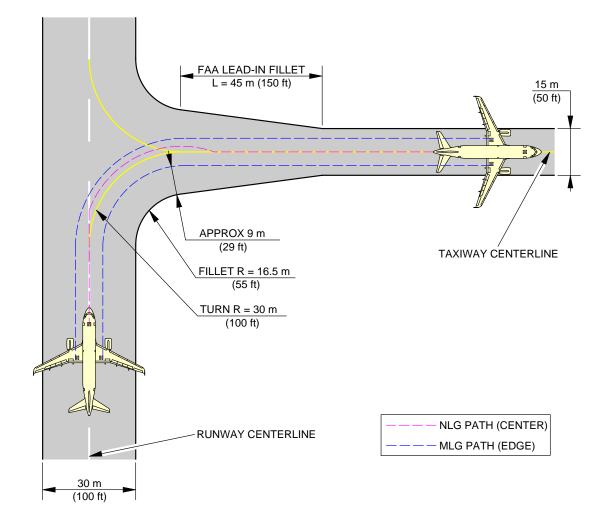
90° Turn - Runway to Taxiway

1. This section gives the 90° turn - runway to taxiway.

**ON A/C A319-100 A319neo

NOTE: FAA GROUP III FACILITIES.

N_AC_040502_1_0020101_01_02


90° Turn - Runway to Taxiway Cockpit Over Centerline Method FIGURE-4-5-2-991-002-A01

4-5-2

Page 2 Dec 01/23

**ON A/C A319-100 A319neo

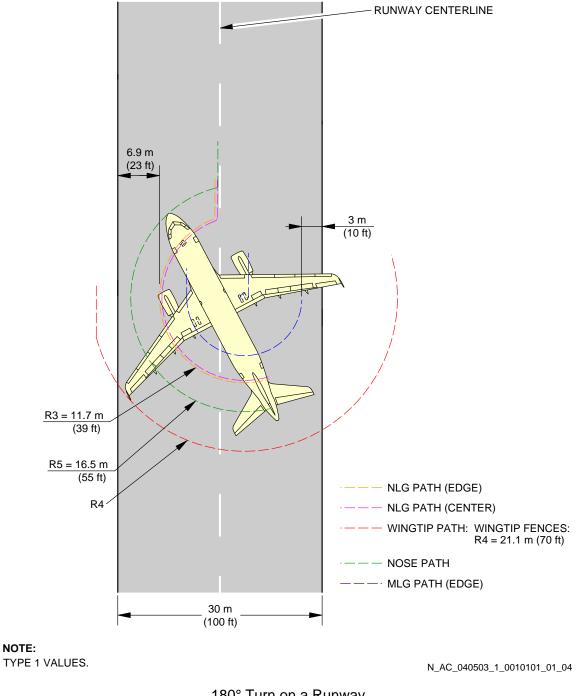
NOTE: FAA GROUP III FACILITIES.

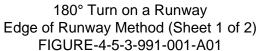
N_AC_040502_1_0030101_01_02

90° Turn - Runway to Taxiway Judgemental Oversteering Method FIGURE-4-5-2-991-003-A01

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

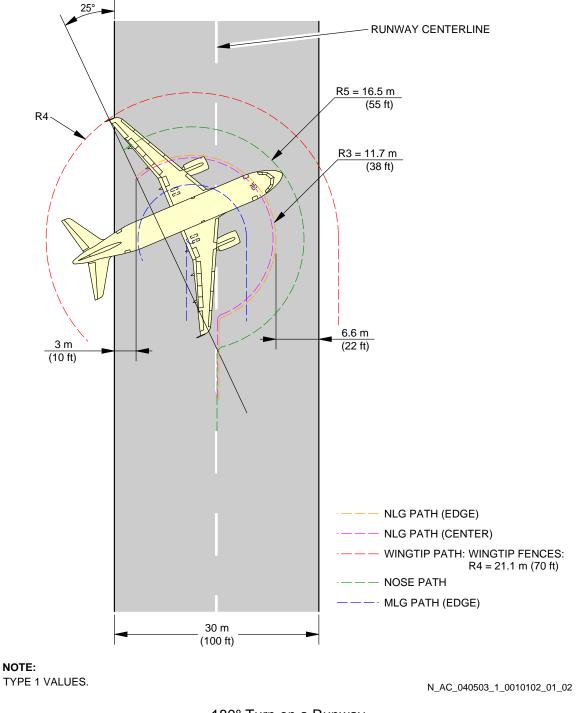
4-5-3 180° Turn on a Runway


**ON A/C A319-100 A319neo


180° Turn on a Runway

1. This section provides the 180° turn on a runway.

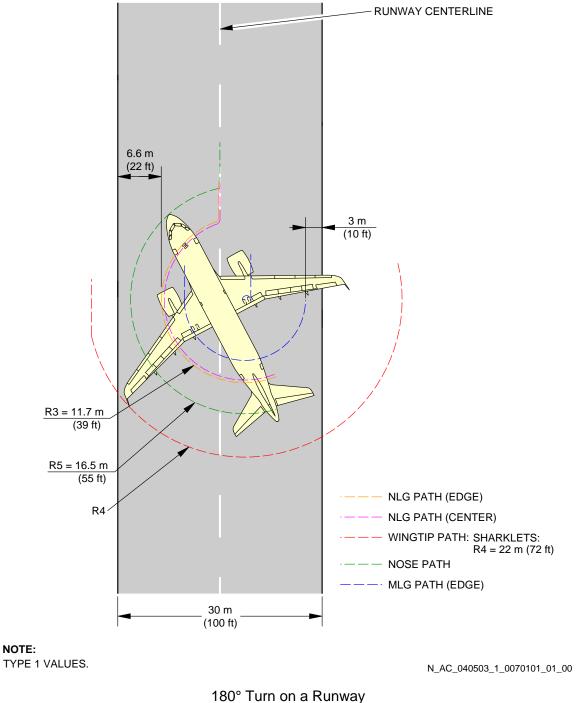
**ON A/C A319-100

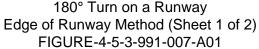


4-5-3

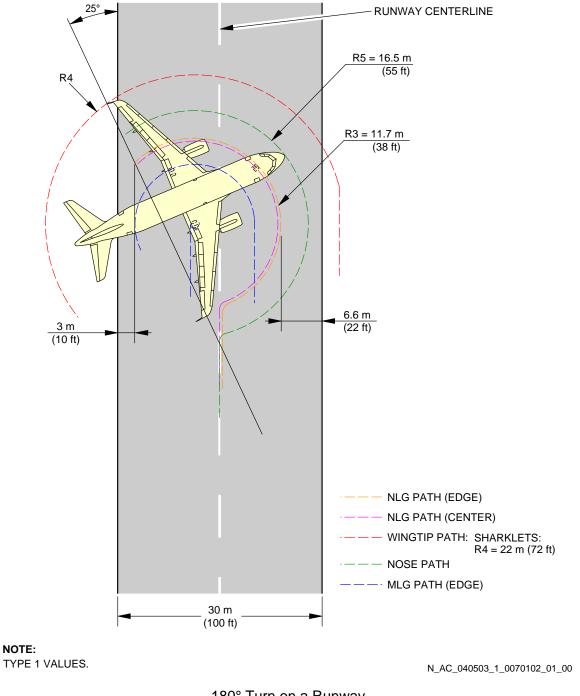
GA319

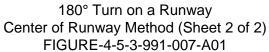
AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING


**ON A/C A319-100



180° Turn on a Runway Center of Runway Method (Sheet 2 of 2) FIGURE-4-5-3-991-001-A01


**ON A/C A319neo

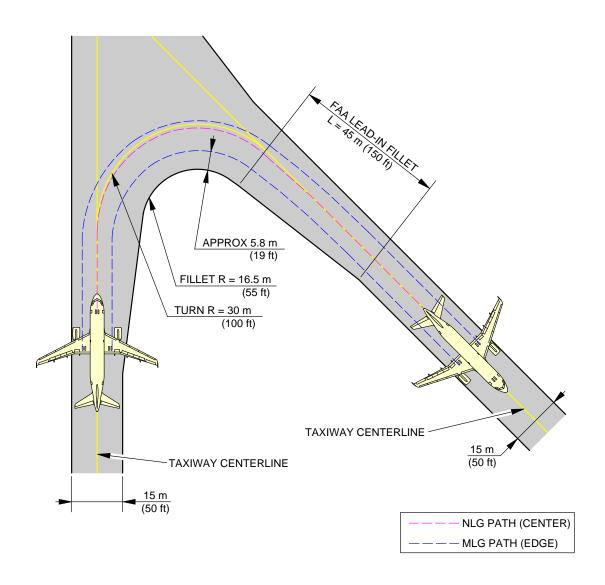


**ON A/C A319neo

GA319

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

4-5-4 135° Turn - Taxiway to Taxiway

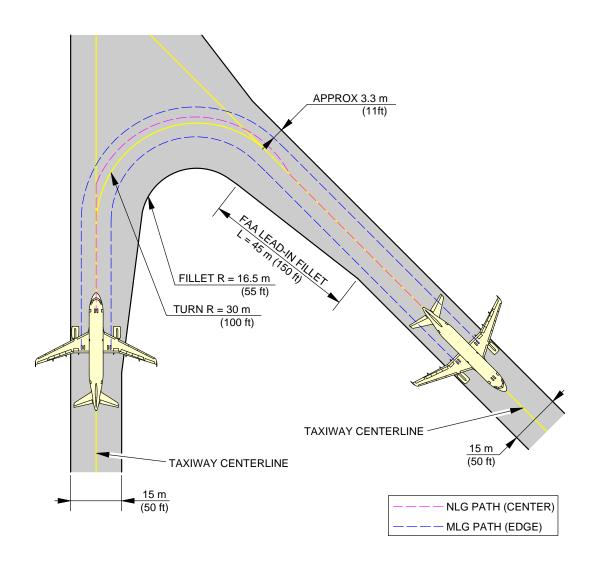

**ON A/C A319-100 A319neo

135° Turn - Taxiway to Taxiway

1. This section gives the 135° turn - taxiway to taxiway.

**ON A/C A319-100 A319neo

NOTE: FAA GROUP III FACILITIES.


N_AC_040504_1_0050101_01_01

135° Turn - Taxiway to Taxiway Cockpit Over Centerline Method (Sheet 1 of 2) FIGURE-4-5-4-991-005-A01

Page 2 Dec 01/23

**ON A/C A319-100 A319neo

NOTE: FAA GROUP III FACILITIES.

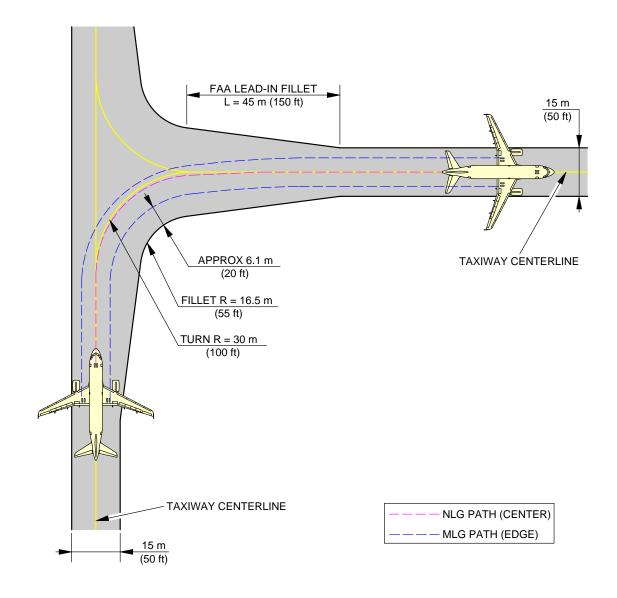
N_AC_040504_1_0050102_01_01

135° Turn - Taxiway to Taxiway Judgemental Oversteering Method (Sheet 2 of 2) FIGURE-4-5-4-991-005-A01

Page 3 Dec 01/23

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

4-5-5 90° Turn - Taxiway to Taxiway


**ON A/C A319-100 A319neo

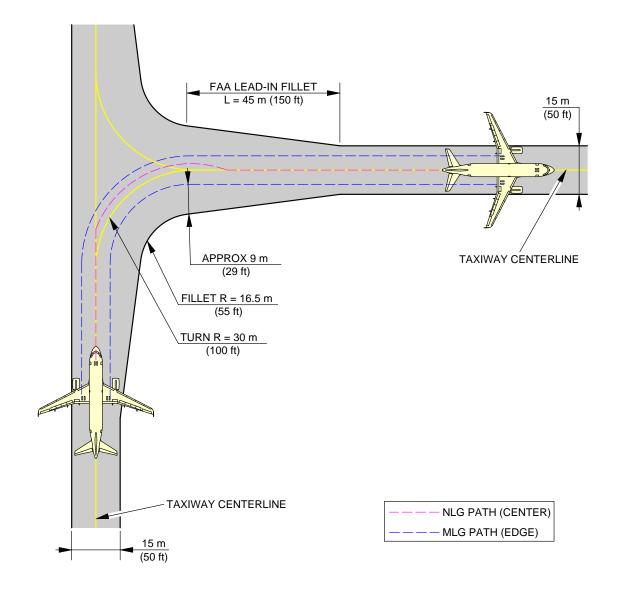
90° Turn - Taxiway to Taxiway

1. This section gives the 90° turn - taxiway to taxiway.

**ON A/C A319-100 A319neo

NOTE: FAA GROUP III FACILITIES.

N_AC_040505_1_0030101_01_01


90° Turn - Taxiway to Taxiway Cockpit Over Centerline Method (Sheet 1 of 2) FIGURE-4-5-5-991-003-A01

4-5-5

Page 2 Dec 01/23

**ON A/C A319-100 A319neo

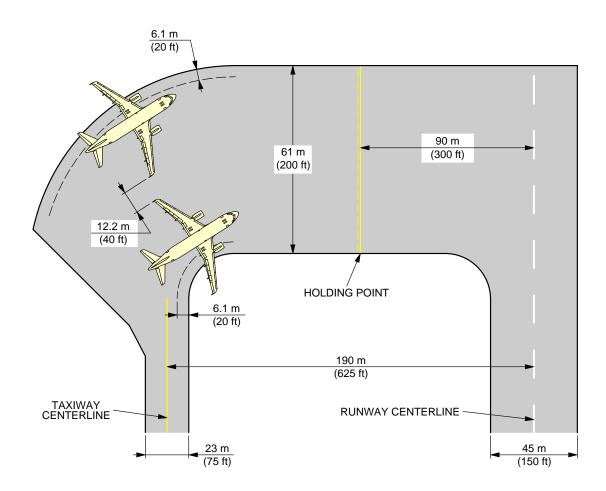
NOTE: FAA GROUP III FACILITIES.

N_AC_040505_1_0030102_01_01

90° Turn - Taxiway to Taxiway Judgemental Oversteering Method (Sheet 2 of 2) FIGURE-4-5-5-991-003-A01

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

4-6-0 Runway Holding Bay (Apron)


**ON A/C A319-100 A319neo

Runway Holding Bay (Apron)

1. This section gives the runway holding bay (Apron).

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

**ON A/C A319-100 A319neo

NOTE: LAYOUT IN ACCORDANCE WITH THE REQUIREMENTS OF NAS 3601, CHAPTER 4, AND AN/865, CHAPTER 3. OUTER PARKED AIRCRAFT TURNED THRU MIN. TURN RADIUS TO PARKED POSITION.

N_AC_040600_1_0020101_01_02

Runway Holding Bay (Apron) FIGURE-4-6-0-991-002-A01

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

4-7-0 Minimum Line-Up Distance Corrections

**ON A/C A319-100 A319neo

Minimum Line-Up Distance Corrections

1. The ground maneuvers were performed using asymmetric thrust and differential braking only to initiate the turn.

TODA: Take-Off Distance Available ASDA: Acceleration-Stop Distance Available

2. 90° Turn on Runway Entry

This section gives the minimum line-up distance correction for a 90° turn on runway entry. This maneuver consists in a 90° turn at minimum turn radius. It starts with the edge of the MLG at a distance of 3 m (10 ft) from the taxiway edge, and finishes with the aircraft aligned on the centerline of the runway, see FIGURE 4-7-0-991-017-A.

During the turn, all the clearances must meet the minimum value of 3 m (10 ft) for this category of aircraft as recommended in ICAO Annex 14.

3. 180° Turn on Runway Turn Pad

This section gives the minimum line-up distance correction for a 180° turn on the runway turn pad.

This maneuver consists in a 180° turn at minimum turn radius on a runway turn pad with standard ICAO geometry.

It starts with the edge of the MLG at a distance of 3 m (10 ft) from the pavement edge, and it finishes with the aircraft aligned on the centerline of the runway, see FIGURE 4-7-0-991-018-A. During the turn, all the clearances must meet the minimum value of 3 m (10 ft) for this category of aircraft as recommended in ICAO Annex 14.

4. 180° Turn on Runway Width

This section gives the minimum line-up distance correction for a 180° turn on the runway width. For this maneuver, the pavement width is considered to be the runway width, which is a frozen parameter (30 m (100 ft), 45 m (150 ft) and 60 m (200 ft)).

As per the standard operating procedures for the "180° turn on runway" (described in the Flight Crew Operating Manual), the aircraft is initially angled with respect to the runway centerline when starting the 180° turn, see FIGURE 4-7-0-991-019-A.

The value of this angle depends on the aircraft type and is mentioned in the FCOM.

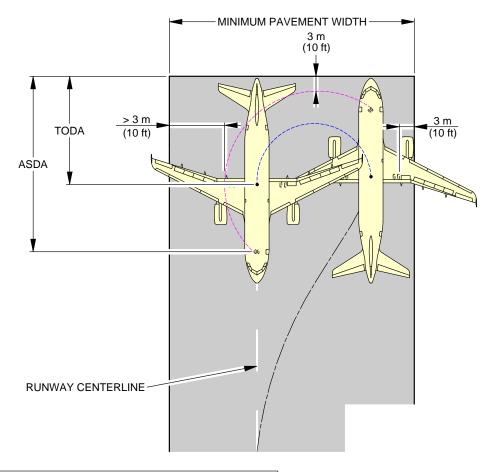
During the turn, all the clearances must meet the minimum value of 3 m (10 ft) for this category of aircraft as recommended in ICAO Annex 14.

GA319

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

**ON A/C A319-100 A319neo

--- ASDA: ACCELERATION-STOP DISTANCE AVAILABLE --- TODA: TAKE-OFF DISTANCE AVAILABLE

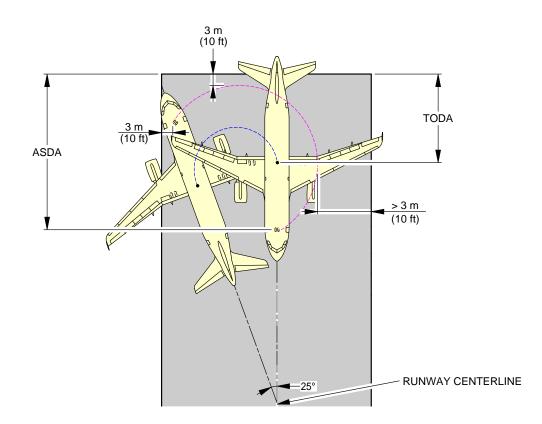

90° TURN ON RUNWAY ENTRY						
	MAX STEERING ANGLE	30 m (100 ft)/45 m (150 ft)/60 m (200 ft) WIDE RUNWAY				
AIRCRAFT TYPE		MINIMUM LINE-UP DISTANCE CORRECTION				
		ON TODA		ON ASDA		
A319	75°	11.1 m	36 ft	22.1 m	73 ft	

N_AC_040700_1_0170101_01_00

Minimum Line-Up Distance Corrections 90° Turn on Runway Entry FIGURE-4-7-0-991-017-A01

**ON A/C A319-100 A319neo

---- ASDA: ACCELERATION-STOP DISTANCE AVAILABLE --- TODA: TAKE-OFF DISTANCE AVAILABLE


180° TURN ON RUNWAY TURN PAD							
AIRCRAFT MAX TYPE ANGLE		30 m (100 ft)/45 m (150 ft)/60 m (200 ft) WIDE RUNWAY					00 ft)
	STEERING	MINIMUM LINE-UP DISTANCE CORRECTION			REQUIRED MINIMUM PAVEMENT		
		ON TODA		ON ASDA		WIDTH	
A319	75°	15.0 m	49 ft	26.0 m	85 ft	29.7 m	97 ft

N_AC_040700_1_0180101_01_00

Minimum Line-Up Distance Corrections 180° Turn on Runway Turn Pad FIGURE-4-7-0-991-018-A01

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

**ON A/C A319-100 A319neo

--- ASDA: ACCELERATION-STOP DISTANCE AVAILABLE --- TODA: TAKE-OFF DISTANCE AVAILABLE

180° TURN ON RUNWAY WIDTH						
	MAX STEERING ANGLE	30 m (100 ft)/45 m (150 ft)/60 m (200 ft) WIDE RUNWAY				
AIRCRAFT TYPE		MINIMUM LINE-UP DISTANCE CORRECTION				
		ON TODA		ON A	SDA	
A319	75°	15.0 m	49 ft	26.0 m	85 ft	

N_AC_040700_1_0190101_01_00

Minimum Line-Up Distance Corrections 180° Turn on Runway Width FIGURE-4-7-0-991-019-A01

Page 4 Dec 01/23

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

4-8-0 Aircraft Mooring

**ON A/C A319-100 A319neo

Aircraft Mooring

1. This section provides information on aircraft mooring.

**ON A/C A319-100 A319neo

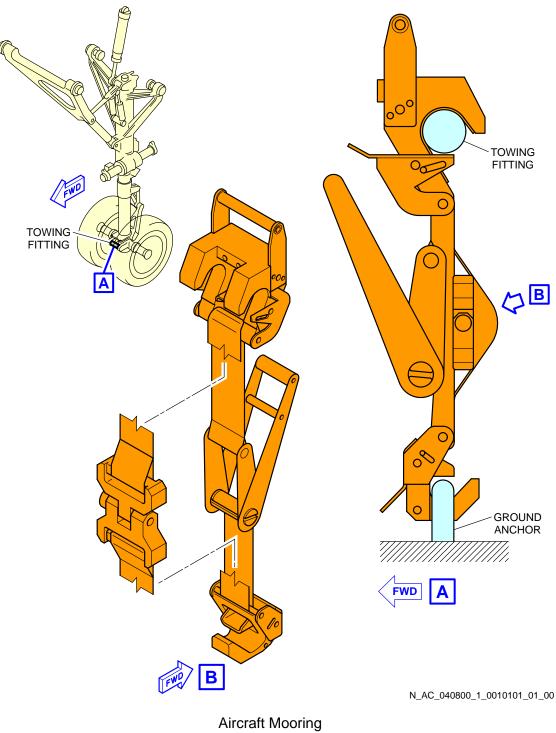


FIGURE-4-8-0-991-001-A01

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

TERMINAL SERVICING

5-1-1 Aircraft Servicing Arrangements

**ON A/C A319-100 A319neo

Aircraft Servicing Arrangements

1. This section provides typical ramp layouts, showing the various GSE items in position during typical turn-round scenarios.

These ramp layouts show typical arrangements only. Each operator will have its own specific requirements/regulations for positioning and operation on the ramp.

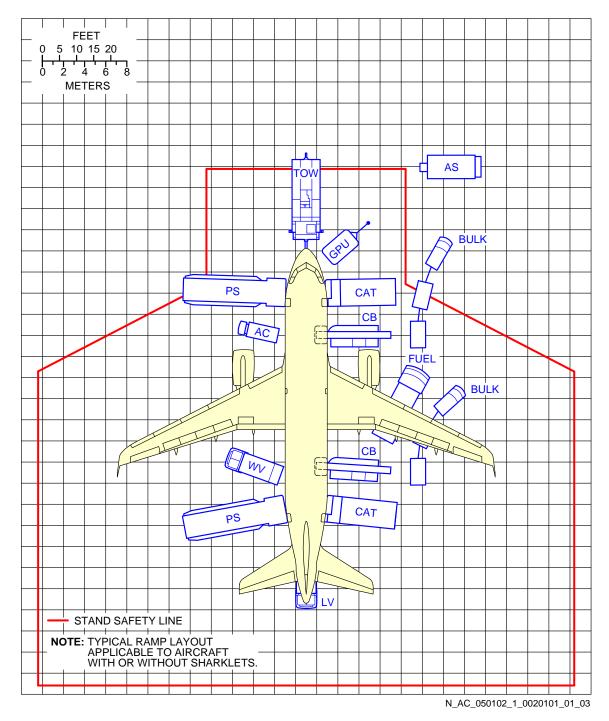
This table gives the symbols used on servicing diagrams.

	Ground Support Equipment
AC	AIR CONDITIONING UNIT
AS	AIR START UNIT
BULK	BULK TRAIN
CAT	CATERING TRUCK
СВ	CONVEYOR BELT
CLEAN	CLEANING TRUCK
FUEL	FUEL HYDRANT DISPENSER or TANKER
GPU	GROUND POWER UNIT
LDCL	LOWER DECK CARGO LOADER
LV	LAVATORY VEHICLE
PBB	PASSENGER BOARDING BRIDGE
PS	PASSENGER STAIRS
TOW	TOW TRACTOR
ULD	ULD TRAIN
WV	POTABLE WATER VEHICLE

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

5-1-2 Typical Ramp Layout - Open Apron

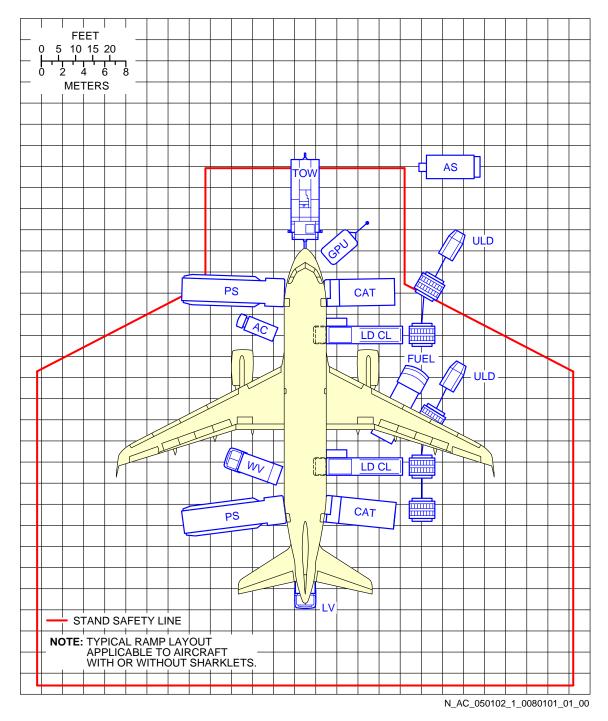
**ON A/C A319-100 A319neo


Typical Ramp Layout - Open Apron

1. This section gives the typical servicing arrangement for pax version (Open Apron).

The Stand Safety Line delimits the Aircraft Safety Area (minimum distance of 7.5 m from the aircraft). No vehicle must be parked in this area before complete stop of the aircraft (wheel chocks in position on landing gears).

**ON A/C A319-100 A319neo



Typical Ramp Layout Open Apron - Bulk Loading FIGURE-5-1-2-991-002-A01

Page 2 Dec 01/23

**ON A/C A319-100 A319neo

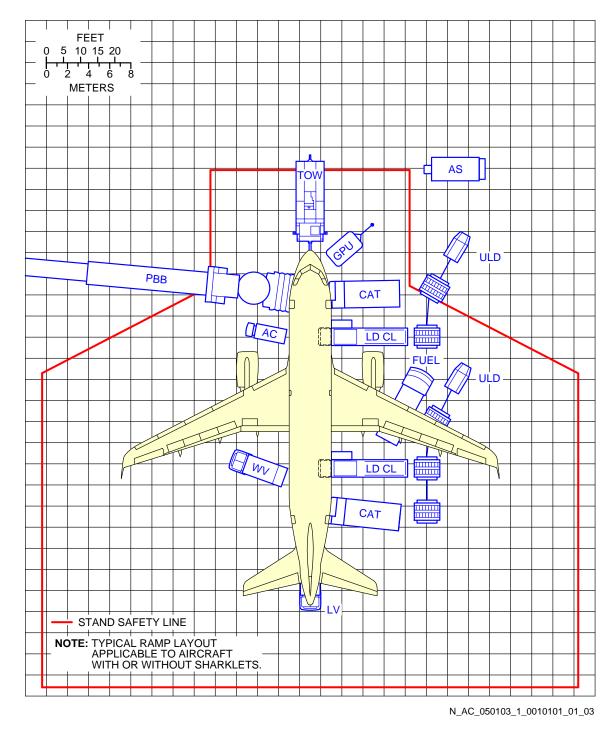
Typical Ramp Layout Open Apron - ULD Loading FIGURE-5-1-2-991-008-A01

Page 3 Dec 01/23

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

5-1-3 Typical Ramp Layout - Gate

**ON A/C A319-100 A319neo


Typical Ramp Layout - Gate

1. This section gives the typical servicing arrangement for pax version (Passenger Bridge).

The Stand Safety Line delimits the Aircraft Safety Area (minimum distance of 7.5 m from the aircraft). No vehicle must be parked in this area before complete stop of the aircraft (wheel chocks in position on landing gears).

**ON A/C A319-100 A319neo

Typical Ramp Layout Gate FIGURE-5-1-3-991-001-A01

Page 2 Dec 01/23

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

5-2-0 Terminal Operations - Full Servicing Turn Round Time Chart

**ON A/C A319-100 A319neo

Terminal Operations - Full Servicing Turn Round Time

1. This section provides a typical turn round time chart showing the typical time for ramp activities during aircraft turn round.

Actual times may vary due to each operator's specific practices, resources, equipment and operating conditions.

- 2. Assumptions used for full servicing turn round time chart
 - A. PASSENGER HANDLING

124 pax: 8 F/C + 116 Y/C.

All passengers deplane and board the aircraft. 1 Passenger Boarding Bridge (PBB) used at door 1L. Equipment positioning + opening door = +2 min. Closing door + equipment removal = +1.5 min. No Passenger with Reduced Mobility (PRM) on board.

Deplaning:

- 124 pax at door 1L
- Deplaning rate = 20 pax/min per door
- Priority deplaning for premium passengers.

Boarding:

- 124 pax at door 1L
- Boarding rate = 12 pax/min per door
- Last Pax Seating allowance (LPS) + headcounting = +2 min.
- B. CARGO

2 cargo loaders + 1 belt loader. Opening door + equipment positioning = +2 min. Equipment removal + closing door = +1.5 min.

100% cargo exchange:

- FWD cargo compartment: 2 containers
- AFT cargo compartment: 2 containers
- Bulk compartment: 500 kg (1 102 lb).

Container unloading/loading times:

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

- Unloading = 1.5 min/container
- Loading = 1.5 min/container.

Bulk unloading/loading times:

- Unloading = 150 kg/min (331 lb/min)
- Loading = 120 kg/min (265 lb/min).
- C. REFUELING

20 000 I (5 283 US gal) at 50 psig (3.45 bars-rel), one hose (right wing). Dispenser positioning/removal + connection/disconnection times = +2.5 min.

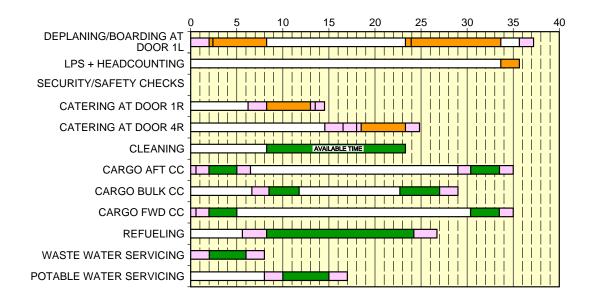
- D. CLEANING Cleaning is performed in available time.
- E. CATERING

1 catering truck for servicing galleys sequentially at doors 1R and 4R. Equipment positioning + opening door = +2 min. Closing door + equipment removal = +1.5 min. Time to drive from one door to the other = +2 min.

Full Size Trolley Equivalent (FSTE) to unload and load: 8 FSTE

- 4 FSTE at door 1R
- 4 FSTE at door 4R.

Time for trolley exchange = 1.2 min per FSTE.


- F. GROUND HANDLING/GENERAL SERVICING Start of operations:
 - Bridges/stairs: t0 = 0
 - Other equipment: t = t0.

Ground Power Unit (GPU): up to 90 kVA. Air conditioning: one hose. Potable water servicing: 100% uplift, 200 I (53 US gal). Toilet servicing: draining + rinsing.

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

**ON A/C A319-100 A319neo

TRT: 37 min

GSE POSITIONING/REMOVAL ACTIVITY CRITICAL PATH

N_AC_050200_1_0050101_01_04

Full Servicing Turn Round Time Chart FIGURE-5-2-0-991-005-A01

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

5-3-0 Terminal Operation - Outstation Turn Round Time Chart

**ON A/C A319-100 A319neo

Terminal Operations - Outstation Turn Round Time

1. This section provides a typical turn round time chart showing the typical time for ramp activities during aircraft turn round.

Actual times may vary due to each operator's specific practices, resources, equipment and operating conditions.

- 2. Assumptions used for outstation turn round time chart
 - A. PASSENGER HANDLING

156 pax (all Y/C).

All passengers deplane and board the aircraft. 2 stairways used at doors 1L and 4L. Equipment positioning + opening door = +2 min. Closing door + equipment removal = +1.5 min. No Passenger with Reduced Mobility (PRM) on board.

Deplaning:

- 78 pax at door 1L
- 78 pax at door 4L
- Deplaning rate = 18 pax/min per door.

Boarding:

- 78 pax at door 1L
- 78 pax at door 4L
- Boarding rate = 12 pax/min per door
- Last Pax Seating allowance (LPS) + headcounting = +2 min.

B. CARGO

2 cargo loaders.

Opening door + equipment positioning = +2 min. Equipment removal + closing door = +1.5 min.

100% cargo exchange:

- FWD cargo compartment: 2 containers
- AFT cargo compartment: 2 containers.

Container unloading/loading times:

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

- Unloading = 1.5 min/container
- Loading = 1.5 min/container.
- C. REFUELING

No refueling.

- D. CLEANING Cleaning is performed in available time.
- E. CATERING One catering truck for servicing the galleys as required.
- F. GROUND HANDLING/GENERAL SERVICING Start of operations:
 - Bridges/stairs: t0 = 0
 - Other equipment: t = t0.

Ground Power Unit (GPU): up to 90 kVA. Air conditioning: one hose. No potable water servicing. No toilet servicing.

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

**ON A/C A319-100 A319neo

15 20 25 0 5 10 DEPLANING/BOARDING AT DOOR 1L DEPLANING/BOARDING AT DOOR 4L HEADCOUNTING CATERING CLEANING CARGO FWD CC CARGO AFT CC REFUELING POTABLE WATER SERVICING TOILET SERVICING

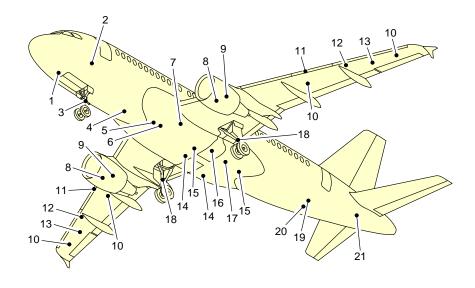
GSE POSITIONING/REMOVAL ACTIVITY CRITICAL PATH

N_AC_050300_1_0020101_01_05

Outstation Turn Round Time Chart FIGURE-5-3-0-991-002-A01

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

5-4-1 Ground Service Connections


**ON A/C A319-100 A319neo

Ground Service Connections Layout

1. This section provides the ground service connections layout.

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

**ON A/C A319-100 A319neo

- 1 GROUND ELECTRICAL POWER CONNECTOR
- 2 OXYGEN SYSTEM
- 3 NLG GROUNDING (EARTHING) POINT
- 4 POTABLE WATER DRAIN PANEL
- 5 LOW PRESSURE AIR PRE-CONDITIONING
- 6 HIGH PRESSURE AIR PRE-CONDITIONING
- 7 REFUEL/DEFUEL INTEGRATED PANEL
- 8 IDG/STARTER OIL SERVICING
- 9 ENGINE OIL SERVICING
- 10 OVERPRESSURE PROTECTOR
- 11 REFUEL/DEFUEL COUPLINGS (OPTIONAL-LH WING)

- 12 OVERWING REFUEL (IF INSTALLED)
- 13 NACA VENT INTAKE
- 14 YELLOW HYDRAULIC-SYSTEM SERVICE PANEL
- 15 BLUE HYDRAULIC-SYSTEM SERVICE PANEL
- 16 ACCUMULATOR CHARGING (GREEN SYSTEM) AND RESERVOIR DRAIN (GREEN SYSTEM)
- 17 GREEN HYDRAULIC-SYSTEM SERVICE PANEL
- 18 MLG GROUNDING (EARTHING) POINT
- 19 WASTE WATER SERVICE PANEL
- 20 POTABLE WATER SERVICE PANEL
- 21 APU OIL SERVICING

N_AC_050401_1_0020101_01_02

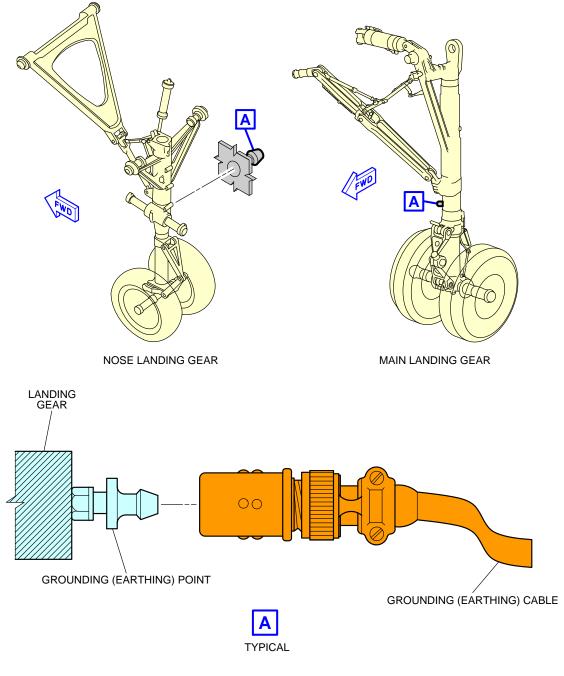
Ground Service Connections Layout FIGURE-5-4-1-991-002-A01

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

5-4-2 Grounding Points

**ON A/C A319-100 A319neo

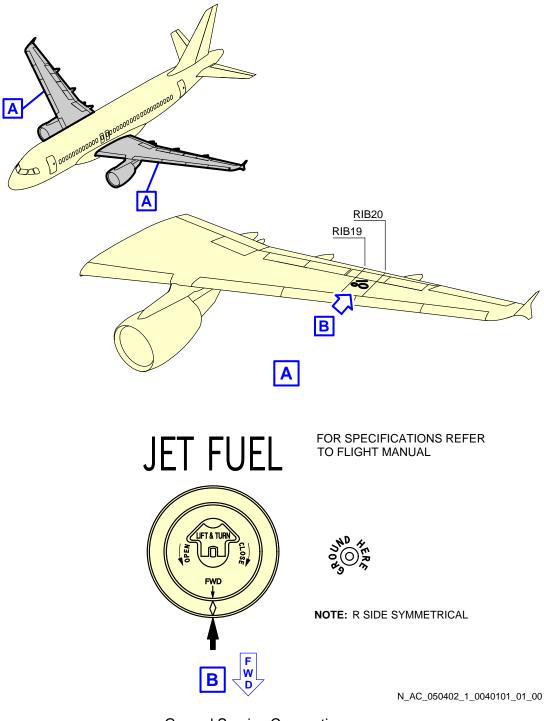
Grounding (Earthing) Points


1. Grounding (Earthing) Points

	DISTANCE				
		FROM AIRCRAF	MEAN HEIGHT		
	AFT OF NOSE	LH SIDE	RH SIDE	FROM GROUND	
On Nose Landing Gear	5.07 m	On Centerline	0.94 m		
leg:	(16.63 ft)	On Centenine	(3.08 ft)		
On left Main Landing	16.11 m	3.79 m		1.07 m	
Gear leg:	(52.85 ft)	(12.43 ft)	-	(3.51 ft)	
On right Main Landing	16.11 m		3.79 m	1.07 m	
Gear leg:	(52.85 ft)	-	(12.43 ft)	(3.51 ft)	

- A. The grounding (earthing) stud on each landing gear leg is designed for use with a clip-on connector (such as Appleton TGR).
- B. The grounding (earthing) studs are used to connect the aircraft to an approved ground (earth) connection on the ramp or in the hangar for:
 - Refuel/defuel operations,
 - Maintenance operations,
 - Bad weather conditions.
 - <u>NOTE</u>: In all other conditions, the electrostatic discharge through the tire is sufficient. If the aircraft is on jacks for retraction and extension checks or for the removal/ installation of the landing gear, the grounding (earthing) alternative points (if installed) are:
 - In the hole on the avionics-compartment lateral right door-frame (on FR14),
 - On the engine nacelles,
 - Adjacent to the high-pressure connector,
 - On the wing upper surfaces.

**ON A/C A319-100 A319neo

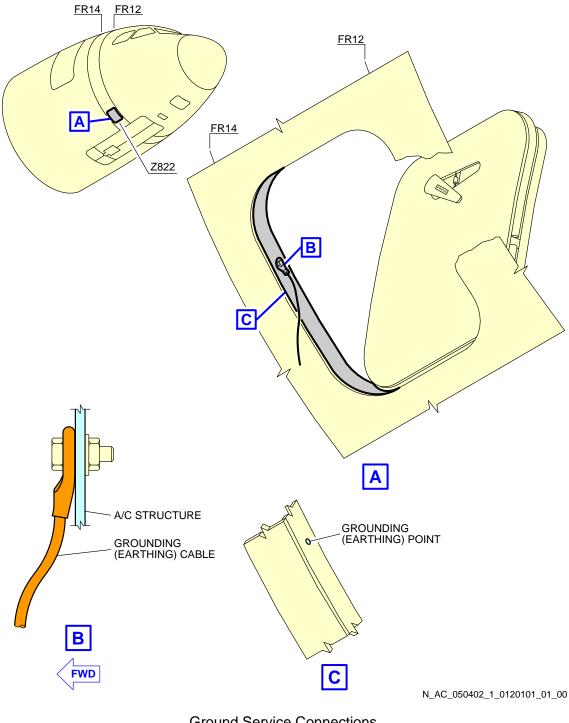


N_AC_050402_1_0030101_01_01

Ground Service Connections Grounding (Earthing) Points - Landing Gear FIGURE-5-4-2-991-003-A01

**ON A/C A319-100 A319neo

Ground Service Connections Grounding (Earthing) Points - Wing (If Installed) FIGURE-5-4-2-991-004-A01


5-4-2

Page 3 Dec 01/23

SA319

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

**ON A/C A319-100 A319neo

Ground Service Connections Grounding (Earthing) Point - Avionics Compartment Door-Frame FIGURE-5-4-2-991-012-A01

**ON A/C A319-100 A319neo

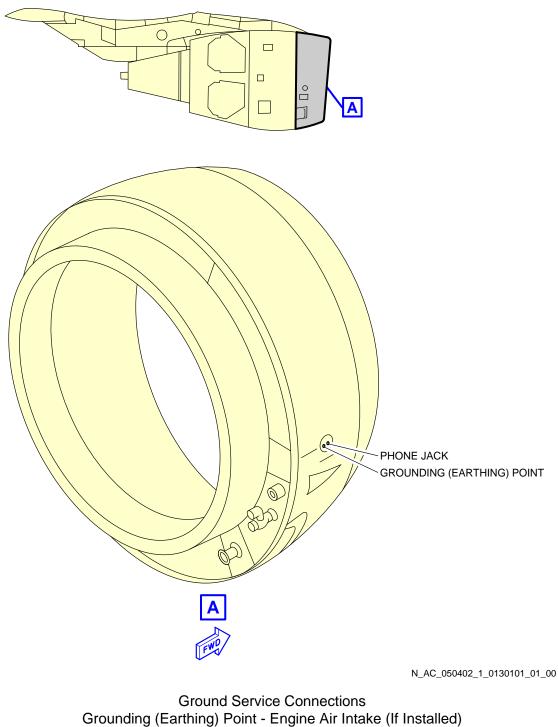


FIGURE-5-4-2-991-013-A01

5-4-2

Page 5 Dec 01/23

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

5-4-3 Hydraulic System

**ON A/C A319-100 A319neo

Hydraulic Servicing

1. Access

		DISTANCE			
ACCESS		FROM AIRCRAF	T CENTERLINE	MEAN HEIGHT	
ACCESS	AFT OF NOSE	LH SIDE	RH SIDE	FROM GROUND	
Green System:	17.57 m	1.27 m		1.76 m	
Access Door 197CB	(57.64 ft)	(4.17 ft)		(5.77 ft)	
Yellow System:	17.57 m		1.27 m	1.76 m	
Access Door 198CB	(57.64 ft)		(4.17 ft)	(5.77 ft)	
Blue System:	18.92 m	1.27 m		1.76 m	
Access Door 197EB	(60.07 ft)	(4.17 ft)		(5.77 ft)	

2. Reservoir Pressurization

ACCESS		DISTANCE				
		FROM AIRCRAF	T CENTERLINE	MEAN HEIGHT		
	AFT OF NOSE	LH SIDE	RH SIDE	FROM GROUND		
Access Door 105BB	14.05 m	0.25 m		1.74 m		
Access Door 195BB	(46.10 ft)	(0.82 ft)		(5.71 ft)		

3. Accumulator Charging

Four MIL-PRF-6164 connections:

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

		DISTA	NCE	
ACCESS		FROM AIRCRAF	T CENTERLINE	MEAN HEIGHT
	AFT OF NOSE	LH SIDE	RH SIDE	FROM GROUND
Yellow System Accumulator: Access Door 196BB	14.05 m (46.10 ft)		0.25 m (0.82 ft)	1.74 m (5.71 ft)
Green System Accumulator: Left MLG Door		0.25 m (0.82 ft)		3.20 m (10.50 ft)
Blue System Accumulator: Access Door 195BB		0.25 m (0.82 ft)		1.74 m (5.71 ft)
Yellow System Braking Accumulator: Access Door 196BB	14.05 m (46.10 ft)		0.25 m (0.82 ft)	1.74 m (5.71 ft)

4. Reservoir Filling

Centralized filling capability on the Green System ground service panel:

ACCESS		DISTANCE				
		FROM AIRCRAFT CENTERLINE		MEAN HEIGHT		
	AFT OF NOSE	LH SIDE	RH SIDE	FROM GROUND		
Access Door 107CB	17.57 m	1.27 m		1.76 m		
Access Door 197CB	(57.64 ft)	(4.17 ft)		(5.77 ft)		

Filling: Ground pressurized supply or hand pump.

5. Reservoir Drain

Three 3/8 in. self-sealing connections:

	DISTANCE			
ACCESS		FROM AIRCRAFT CENTERLINE		MEAN HEIGHT
	AFT OF NOSE	LH SIDE	RH SIDE	FROM GROUND
Yellow System:	14.05 m		0.25 m	1.74 m

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

	DISTANCE			
ACCESS		FROM AIRCRAF	T CENTERLINE	MEAN HEIGHT
	AFT OF NOSE	LH SIDE	RH SIDE	FROM GROUND
Access Door 196BB	(46.10 ft)		(0.82 ft)	(5.71 ft)
Green System:	15.67 m	0.25 m		3.20 m
Left MLG Door	(51.41 ft)	(0.82 ft)		(10.50 ft)
Blue System:	18.92 m	1.27 m		1.76 m
Access Door 197EB	(62.07 ft)	(4.17 ft)		(5.77 ft)

<u>NOTE</u>: The drain valve is on the Blue System ground service panel for the reservoir of the Blue hydraulic system. The drain valve is on the reservoir for the Green and Yellow Hydraulic Systems.

6. Ground Test

On each ground service panel:

- One self-sealing connector (suction).
- One self-sealing connector (delivery).

**ON A/C A319-100 A319neo

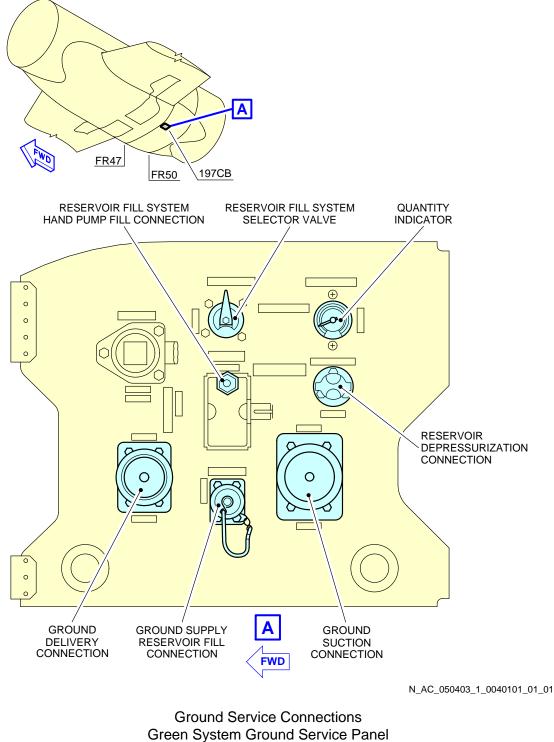
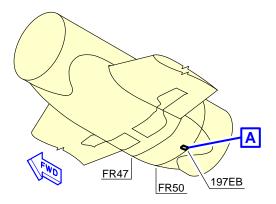
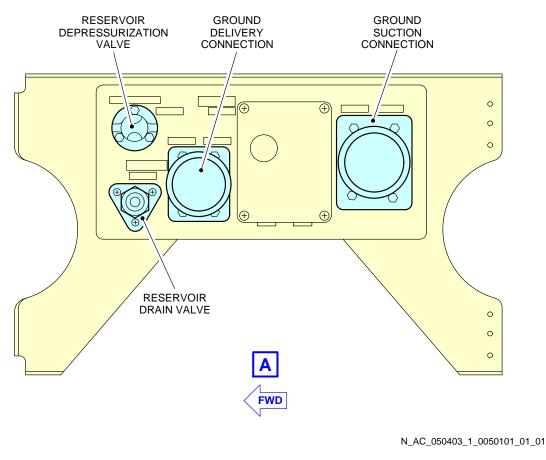
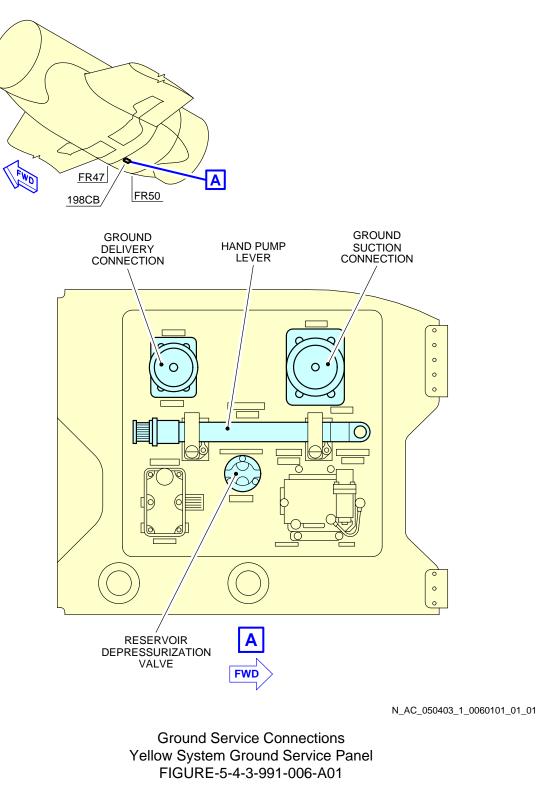
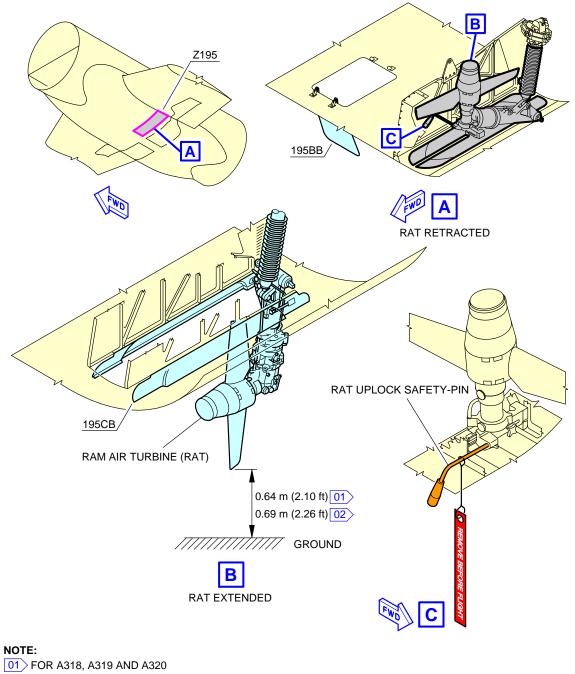




FIGURE-5-4-3-991-004-A01

**ON A/C A319-100 A319neo



Ground Service Connections Blue System Ground Service Panel FIGURE-5-4-3-991-005-A01



**ON A/C A319-100 A319neo

**ON A/C A319-100 A319neo

02 FOR A321

 $N_AC_050403_1_0070101_01_00$

Ground Service Connections RAT FIGURE-5-4-3-991-007-A01

5-4-3

Page 7 Dec 01/23

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

5-4-4 Electrical System

**ON A/C A319-100 A319neo

Electrical System

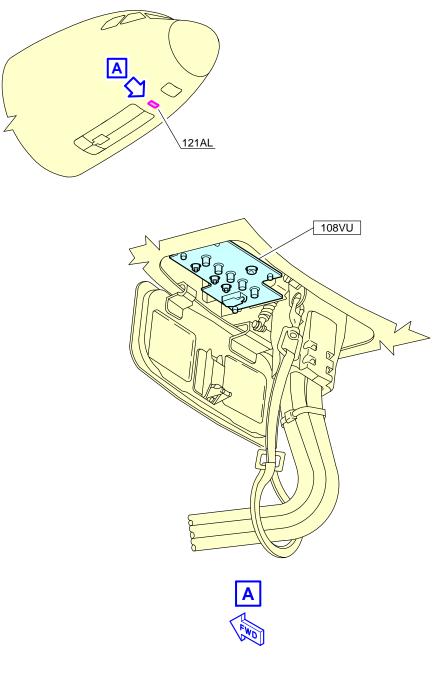
1. Electrical System

This chapter provides data related to the location of the ground service connections.

		DISTANCE		
ACCESS	AFT OF NOSE	FROM AIRCRAFT CENTERLINE		MEAN HEIGHT
	ALL OL NOSE	LH SIDE	RH SIDE	FROM GROUND
A/C External Power: Access Door 121AL	2.55 m (8.37 ft)	On cer	nterline	2.00 m (6.56 ft)

<u>NOTE</u> : Distances are approximate.

- 2. Technical Specifications
 - A. External Power Receptacle:
 - One receptacle according to MS 90362-3 (without shield MS 17845-1) 90 kVA.


B. Power Supply:

- Three-phase, 115/200V, 400 Hz.
- C. Electrical Connectors for Servicing:
 - AC outlets: HUBBELL 5258
 - DC outlets: HUBBELL 7472.

<u>NOTE</u>: Make sure that for connectors featuring micro switches, the connector is chamfered to properly engage in the receptacle.

**ON A/C A319-100 A319neo

N_AC_050404_1_0010101_01_01

Ground Service Connections External Power Receptacles FIGURE-5-4-4-991-001-A01

5-4-4

Page 2 Dec 01/23

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

5-4-5 Oxygen System

**ON A/C A319-100 A319neo

Oxygen System

1. Oxygen System

	DISTANCE				
ACCESS		FROM AIRCRAF	T CENTERLINE	MEAN HEIGHT	
	AFT OF NOSE	LH SIDE	RH SIDE	FROM GROUND	
Oxygen Replenishment:	3.45 m	1.15 m		2.60 m	
Access Door 812	(11.32 ft)	(3.77 ft)	-	(8.53 ft)	

2. Technical Specifications

- One 3/8 in. MIL-DTL 7891 standard service connection.

<u>NOTE</u> : External charging in the avionics compartment.

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

**ON A/C A319-100 A319neo

Ground Service Connections Oxygen System FIGURE-5-4-5-991-001-A01

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

5-4-6 Fuel System

**ON A/C A319-100 A319neo

Fuel System

1. Refuel/Defuel Control Panel

		DISTANCE			
ACCESS	AFT OF NOSE	POSITION FROM AIRCRAFT CENTERLINE		MEAN HEIGHT	
		LH SIDE	RH SIDE		
Refuel/Defuel Integrated Panel: Access Door 192MB	14.8 m (48.56 ft)	-	1.8 m (5.91 ft)	1.8 m (5.91 ft)	

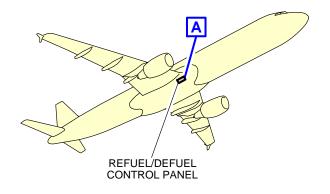
2. Refuel/Defuel Connectors

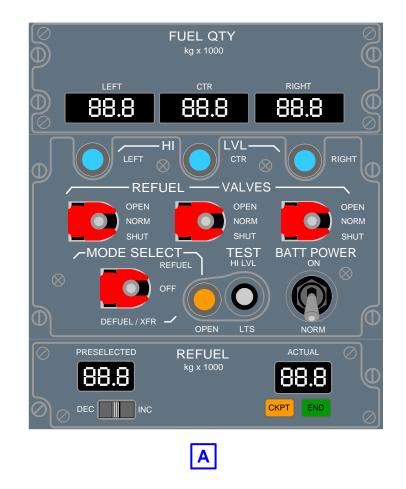
		DISTANCE				
ACCESS	AFT OF NOSE AIRCRAFT CENTERLINE		MEAN HEIGHT			
		LH SIDE	RH SIDE			
Refuel/Defuel Coupling, Left: Access Panel 522HB (Optional)	15.99 m (52.46 ft)	9.83 m (32.25 ft)	-	3.65 m (11.98 ft)		
Refuel/Defuel Coupling, Right: Access Panel 622HB	15.99 m (52.46 ft)	-	9.83 m (32.25 ft)	3.65 m (11.98 ft)		
Overwing Gravity- Refuel Cap	17.5 m (57.41 ft)	12.4 m (40.68 ft)	12.4 m (40.68 ft)	3.7 m (12.14 ft)		

- A. Refuel/Defuel Couplings:
 - Right wing: one standard ISO 45, 2.5 in.
 - Left wing: one optional standard ISO 45, 2.5 in.

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

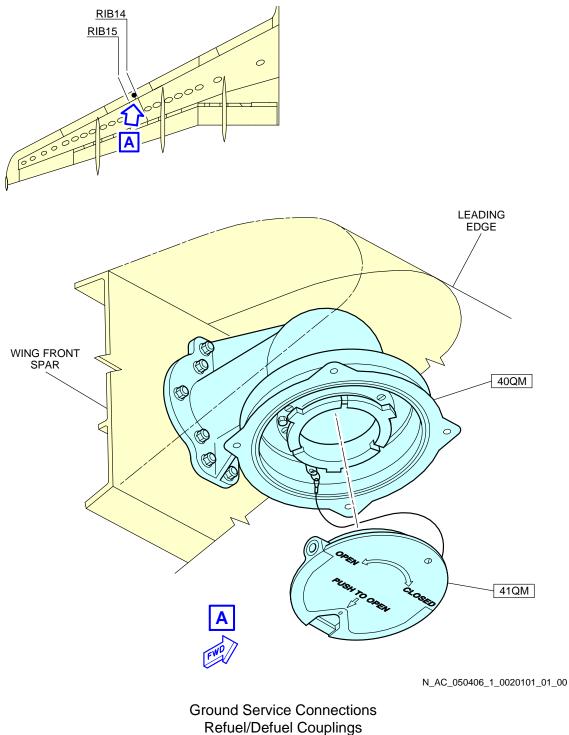
- B. Refuel Pressure:
 - Maximum pressure: 3.45 bar (50 psi).
- C. Average Flow Rate:
 - 1250 l/min (330 US gal/min).


3. Overpressure Protectors and NACA Vent Intake


		DIST	ANCE	
ACCESS	AFT OF NOSE	POSITION FROM SE AIRCRAFT CENTERLINE		MEAN HEIGHT
		LH SIDE	RH SIDE	
Surge Tank Overpressure- Protector: Access Panel 550CB (650CB)	18.76 m (61.55 ft)	14.9 m (48.88 ft)	14.9 m (48.88 ft)	4.32 m (14.17 ft)
Inner Cell Overpressure- Protector: Access Panel 540HB (640HB)	17.5 m (57.41 ft)	9.19 m (30.15 ft)	9.19 m (30.15 ft)	4.1 m (13.45 ft)
NACA Vent Intake: Access Panel 550AB (650AB)	18.2 m (59.71 ft)	13.7 m (44.95 ft)	13.7 m (44.95 ft)	4.02 m (13.19 ft)

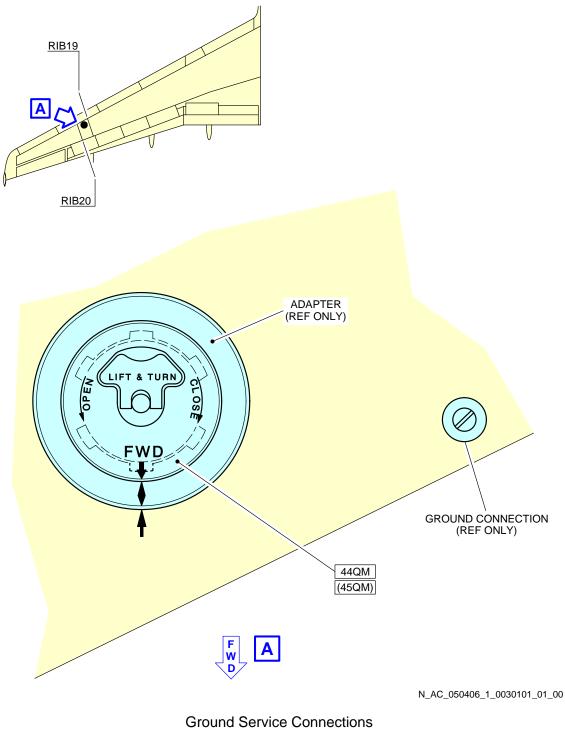
<u>NOTE</u> : Distances are approximate.

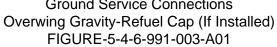
**ON A/C A319-100 A319neo


NOTE: STANDARD CONFIGURATION OF REFUEL/DEFUEL PANEL.

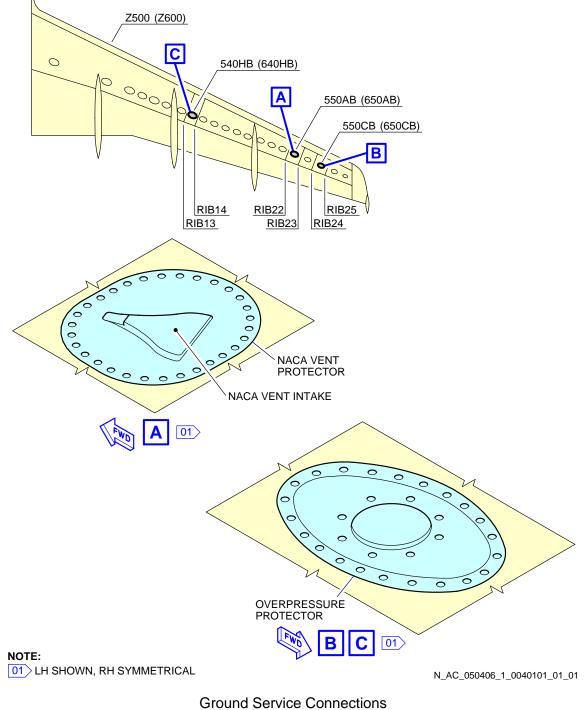
N_AC_050406_1_0010101_01_00

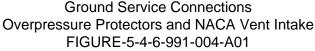
Ground Service Connections Refuel/Defuel Control Panel FIGURE-5-4-6-991-001-A01


**ON A/C A319-100 A319neo



Refuel/Defuel Couplings FIGURE-5-4-6-991-002-A01


**ON A/C A319-100 A319neo



**ON A/C A319-100 A319neo

5-4-6

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

5-4-7 Pneumatic System

**ON A/C A319-100 A319neo

Pneumatic System

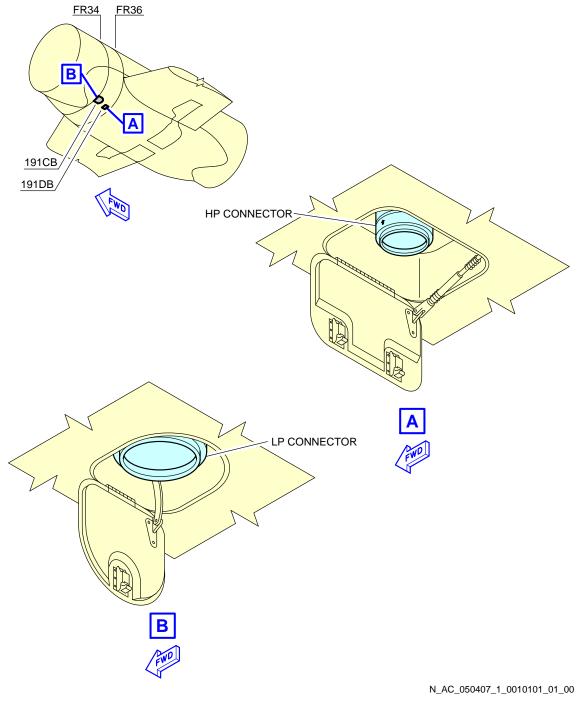
1. High Pressure Air Connector

		DIST	ANCE	
ACCESS AFT OF NOSE		FROM AIRCRAFT CENTERLINE		MEAN HEIGHT
	ALL OL NOSE	LH SIDE	RH SIDE	FROM GROUND
HP Connector: Access Door 191DB	11.38 m (37.34 ft)	0.84 m (2.76 ft)	-	1.76 m (5.77 ft)

A. Connector:

- One standard 3 in. ISO 2026 connection.

2. Low Pressure Air Connector


		DIST	ANCE	
ACCESS AFT OF NOSE		FROM AIRCRAFT CENTERLINE		MEAN HEIGHT
AFTOFNOSE		LH SIDE	RH SIDE	FROM GROUND
LP Connector: Access Door 191CB	10.85 m (35.6 ft)	1.11 m (3.64 ft)	-	1.73 m (5.68 ft)

A. Connector:

- One standard 8 in. SAE AS4262 connection.

**ON A/C A319-100 A319neo

Ground Service Connections LP and HP Ground Connectors FIGURE-5-4-7-991-001-A01

5-4-7

Page 2 Dec 01/23

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

5-4-8 Oil System

**ON A/C A319-100 A319neo

Oil System

**ON A/C A319-100

1. Engine Oil Replenishment for CFM56 Series Engine (See FIGURE 5-4-8-991-003-A): One gravity filling cap and one pressure filling connection per engine.

		DISTANCE				
ACCESS		FROM AIRCRAF	T CENTERLINE	MEAN HEIGHT		
ACCESS	AFT OF NOSE	ENGINE 1 (LH)	ENGINE 2 (RH)	FROM GROUND		
Access door 43/RI	11.56 m (37.93 ft)	6.63 m (21.75 ft)	4.82 m (15.81 ft)	1.46 m (4.79 ft)		
5 1	11.40 m (37.40 ft)	6.49 m (21.29 ft)	4.74 m (15.55 ft)	1.42 m (4.66 ft)		

<u>NOTE</u> : Distances are approximate.

- A. Tank capacity:
 - Full level: 19.6 I (5 US gal),
 - Usable: 9.46 I (3 US gal).
- B. Maximum delivery pressure required: 1.72 bar (25 psi). Maximum delivery flow required: 180 l/h (48 US gal/h).
- IDG Oil Replenishment for CFM56 Series Engine (See FIGURE 5-4-8-991-004-A): One pressure filling connection per engine: OMP 2506-18 plus one connection overflow: OMP 2505-18.

	DISTANCE				
ACCESS		FROM AIRCRAF	T CENTERLINE	MEAN HEIGHT	
	AFT OF NOSE	ENGINE 1 (LH)	ENGINE 2 (RH)	FROM GROUND	
IDG oil-pressure-filling connection: Access door: 438AR (LH),				0.68 m (2.23 ft)	

Page 1 Dec 01/23

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

ACCESS	DISTANCE				
		FROM AIRCRAFT CENTERLINE		MEAN HEIGHT	
	AFT OF NOSE	ENGINE 1 (LH)	ENGINE 2 (RH)	FROM GROUND	
448AR (RH)					

<u>NOTE</u> : Distances are approximate.

- A. Tank capacity: 5 I (1 US gal).
- B. Delivery pressure required: 0.34 bar (5 psi) to 2.76 bar (40 psi) at the IDG inlet.
- 3. Starter Oil Replenishment for CFM56 Series Engine (See FIGURE 5-4-8-991-005-A): One gravity filling cap per engine.

	DISTANCE			
ACCESS	AFT OF NOSE	FROM AIRCRAFT CENTERLINE		MEAN HEIGHT
		ENGINE 1 (LH)	ENGINE 2 (RH)	FROM GROUND
Starter-oil filling	11.40 m	5.30 m	6.20 m	0.76 m
connection:	(37.40 ft)	(17.39 ft)	(20.34 ft)	(2.49 ft)

<u>NOTE</u> : Distances are approximate.

- A. Tank capacity: 0.8 I (0.21 US gal).
- 4. Engine Oil Replenishment for IAE V2500 Series Engine (See FIGURE 5-4-8-991-006-B): One gravity filling cap per engine.

		DISTANCE				
ACCESS		FROM AIRCRAF	T CENTERLINE	MEAN HEIGHT		
ACCESS	AFT OF NOSE	ENGINE 1 (LH)	ENGINE 2 (RH)	FROM GROUND		
ACCASS MOOP 43/BI			4.92 m (16.14 ft)	1.22 m (4.00 ft)		

<u>NOTE</u> : Distances are approximate.

- A. Tank capacity:
 - Full level: 28 I (7 US gal),

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

- Usable: 23.50 I (6 US gal).
- IDG Oil Replenishment for IAE V2500 Series Engine (See FIGURE 5-4-8-991-007-B): One pressure filling connection per engine: OMP 2506-2 plus one overflow connection: OMP 2505-2.

		DISTANCE			
ACCESS		FROM AIRCRAFT CENTERLINE		MEAN HEIGHT	
	AFT OF NOSE	ENGINE 1 (LH)	ENGINE 2 (RH)	FROM GROUND	
IDG oil-pressure-filling	11.04 m	5.30 m	6.14 m	0.75 m	
connection:	(36.22 ft)	(17.39 ft)	(20.14 ft)	(2.46 ft)	

<u>NOTE</u> : Distances are approximate.

- A. Tank capacity: 4.10 I (1 US gal).
- 6. Starter Oil Replenishment for IAE V2500 Series Engine (See FIGURE 5-4-8-991-008-B): One gravity filling cap per engine.

	DISTANCE			
ACCESS		FROM AIRCRAFT CENTERLINE		MEAN HEIGHT
	AFT OF NOSE	ENGINE 1 (LH)	ENGINE 2 (RH)	FROM GROUND
Starter-oil filling	11.04 m	5.30 m	6.14 m	0.75 m
connection:	(36.22 ft)	(17.39 ft)	(20.14 ft)	(2.46 ft)

<u>NOTE</u> : Distances are approximate.

A. Tank capacity: 0.35 I (0.09 US gal).

**ON A/C A319neo

7. Engine Oil Replenishment for CFM LEAP-1A Series Engine (See FIGURE 5-4-8-991-010-A): One gravity filling cap and one pressure filling connection per engine.

	DISTANCE				
ACCESS		FROM AIRCRAF	T CENTERLINE	MEAN HEIGHT	
	AFT OF NOSE	ENGINE 1 (LH)	ENGINE 2 (RH)	FROM GROUND	
Engine oil gravity-filling- cap: Access doors: 438BR and 448BR.	TBD	TBD	TBD	TBD	

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

ACCESS	DISTANCE				
	AFT OF NOSE	FROM AIRCRAFT CENTERLINE		MEAN HEIGHT	
		ENGINE 1 (LH)	ENGINE 2 (RH)	FROM GROUND	
Engine oil pressure- filling-port: Access doors: 438BR and 448BR.	TBD	TBD	TBD	TBD	

<u>NOTE</u> : Distances are approximate.

- A. Tank capacity:
 - Full level: 23.45 I (6 US gal)
 - Usable: 18.7 I (5 US gal)
 - Consumable level: 7.7 I (2 US gal).

8. IDG Oil Replenishment for CFM LEAP-1A Series Engine (See FIGURE 5-4-8-991-011-A):

	DISTANCE			
ACCESS		FROM AIRCRAF	T CENTERLINE	MEAN HEIGHT
ACCESS	AFT OF NOSE	ENGINE 1 (LH)	ENGINE 2 (RH)	FROM GROUND
IDG oil-pressure-filling connection: Access doors: 437AL (LH), 438AR (LH), 447AL (RH) and 448AR (RH).	TBD	TBD	TBD	TBD

<u>NOTE</u> : Distances are approximate.

- A. IDG oil tank capacity: 5.7 I (2 US gal) (additional amount of 0.9 I (0.2 US gal) is necessary to ensure a complete filling).
- B. Maximum servicing pressure:
 - 0.5 bar (7 psi), when "DESHONS" tool is used.
 - 2.41 bar (35 psi), when other tools are used.
- 9. Starter Oil Replenishment for CFM LEAP-1A Series Engine (See FIGURE 5-4-8-991-012-A): One gravity filling cap per engine.

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

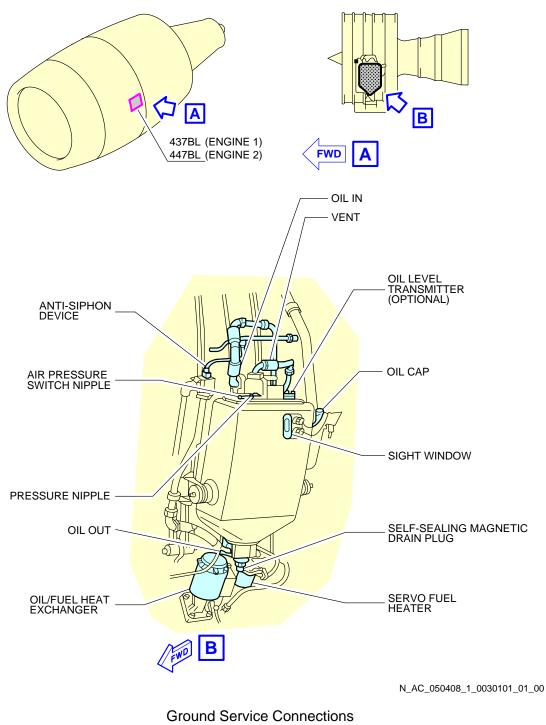
ACCESS	DISTANCE				
	AFT OF NOSE	FROM AIRCRAFT CENTERLINE		MEAN HEIGHT	
		ENGINE 1 (LH)	ENGINE 2 (RH)	FROM GROUND	
Starter-oil filling connection: Access doors: 438BR and 448BR.	TBD	TBD	TBD	TBD	

<u>NOTE</u> : Distances are approximate.

A. Tank capacity: 0.5 I (0.1 US gal).

**ON A/C A319-100 A319neo

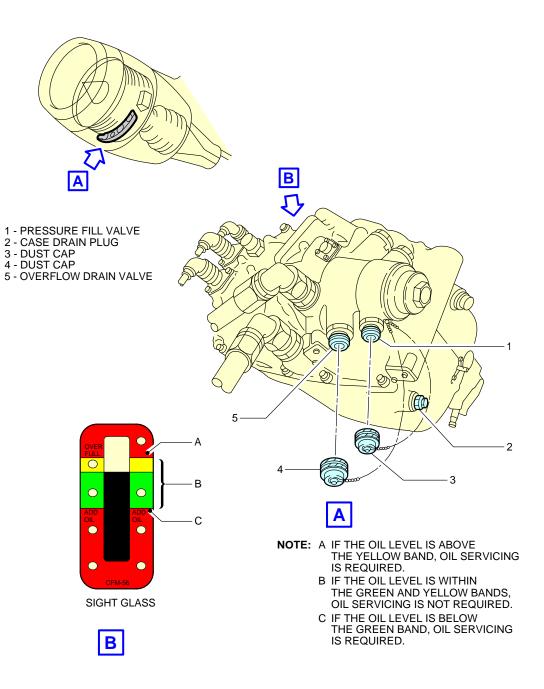
10. APU Oil System (See FIGURE 5-4-8-991-009-A): APU oil gravity-filling-cap.


	DISTANCE				
ACCESS	AFT OF NOSE	FROM AIRCRAFT CENTERLINE		MEAN HEIGHT	
		ENGINE 1 (LH)	ENGINE 2 (RH)	FROM GROUND	
IGTCP 36-300	31.76 m	0.30 m	_	4.83 m	
	(104.20 ft)	(0.98 ft)	-	(15.85 ft)	
	31.76 m	0.30 m	_	4.78 m	
	(104.20 ft)	(0.98 ft)	-	(15.68 ft)	
11:31-9	31.66 m	0.35 m	_	4.32 m	
	(103.87 ft)	(1.15 ft)		(14.17 ft)	

<u>NOTE</u> : Distances are approximate.

- A. Tank capacity (usable):
 - APU type GTCP 36-300: 6.20 I (2 US gal),
 - APU type APS 3200: 5.40 I (1 US gal),
 - APU type 131-9: 6.25 I (2 US gal).

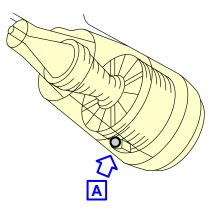
**ON A/C A319-100

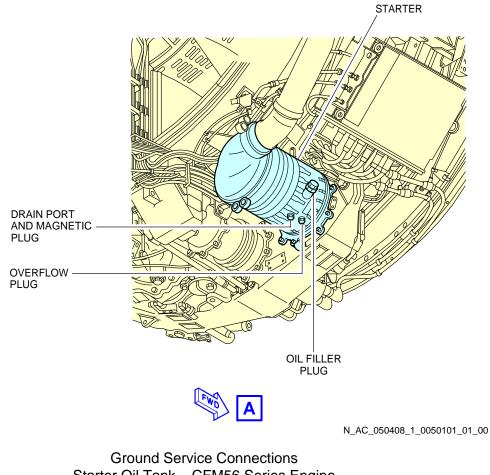


5-4-8

Page 6 Dec 01/23

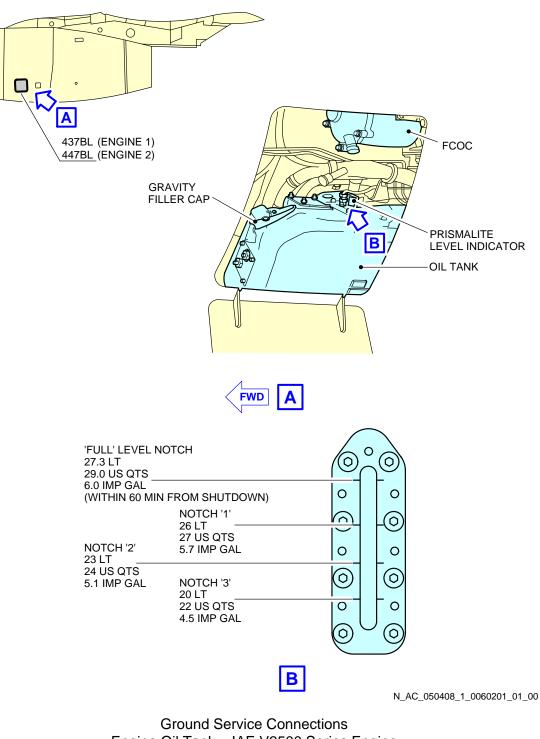
**ON A/C A319-100


N_AC_050408_1_0040101_01_00

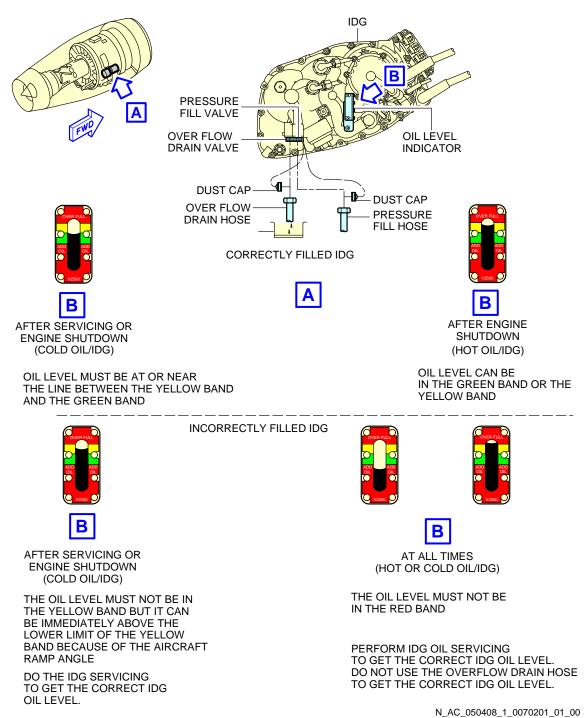

Ground Service Connections IDG Oil Tank – CFM56 Series Engine FIGURE-5-4-8-991-004-A01

5-4-8

**ON A/C A319-100



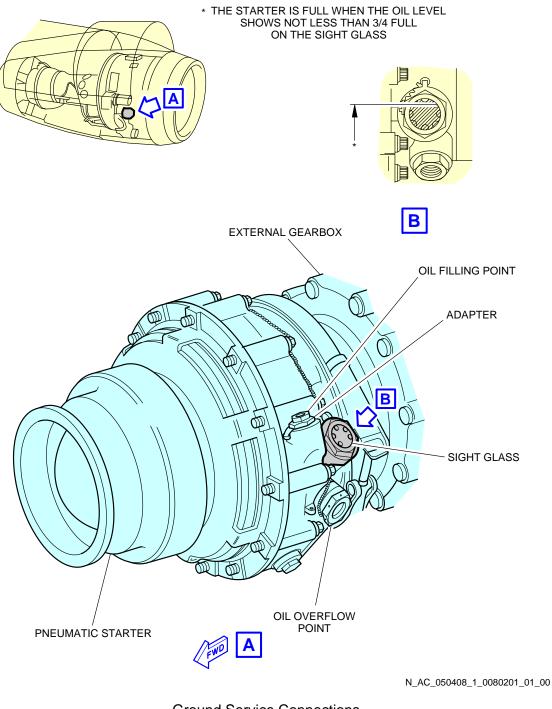
Starter Oil Tank – CFM56 Series Engine FIGURE-5-4-8-991-005-A01


**ON A/C A319-100

Engine Oil Tank – IAE V2500 Series Engine FIGURE-5-4-8-991-006-B01

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

**ON A/C A319-100


Ground Service Connections IDG Oil Tank – IAE V2500 Series Engine FIGURE-5-4-8-991-007-B01

5-4-8

Page 10 Dec 01/23

**ON A/C A319-100

Ground Service Connections Starter Oil Tank – IAE V2500 Series Engine FIGURE-5-4-8-991-008-B01

Page 11 Dec 01/23

**ON A/C A319-100 A319neo

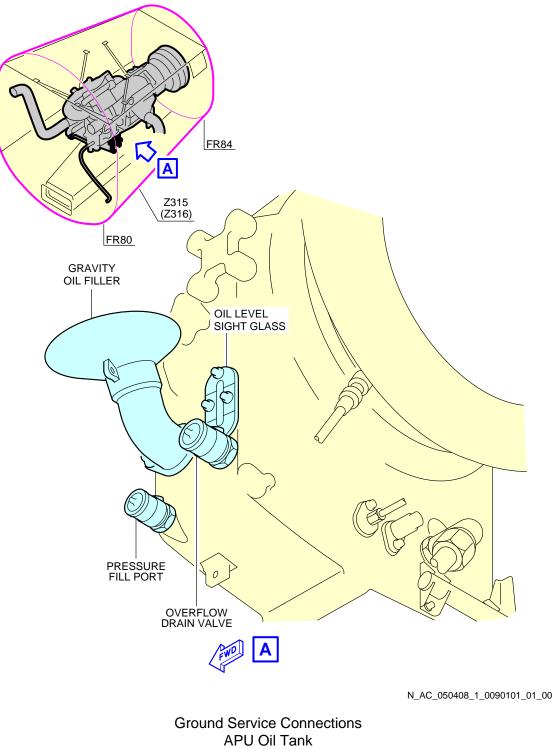
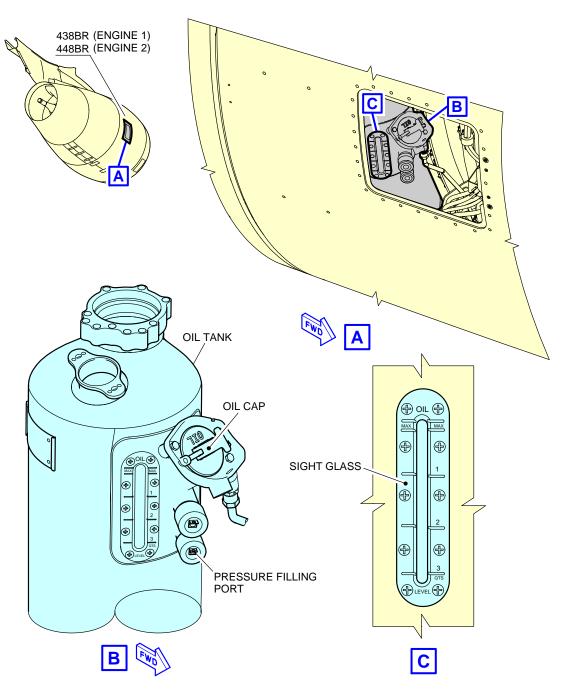
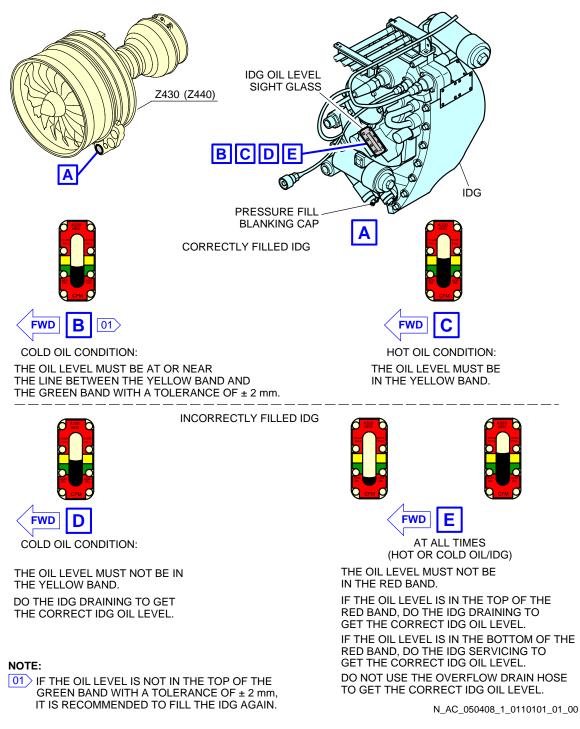



FIGURE-5-4-8-991-009-A01

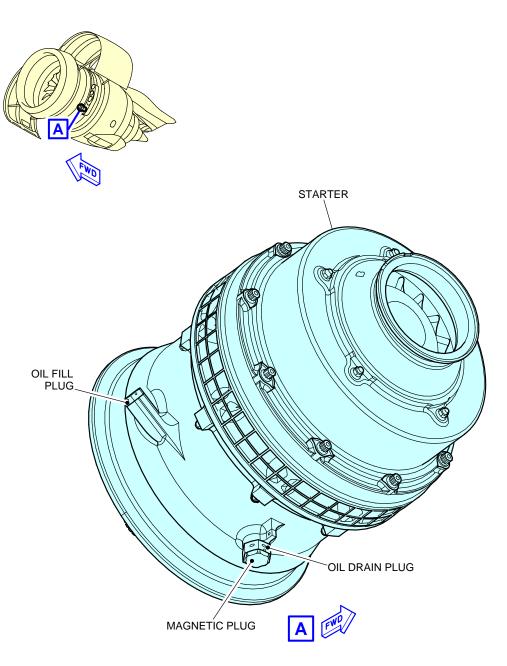
**ON A/C A319neo


N_AC_050408_1_0100101_01_00

Ground Service Connections Engine Oil Tank – CFM LEAP-1A Series Engine FIGURE-5-4-8-991-010-A01

Page 13 Dec 01/23

**ON A/C A319neo


Ground Service Connections IDG Oil Tank – CFM LEAP-1A Series Engine FIGURE-5-4-8-991-011-A01

5-4-8

Page 14 Dec 01/23

**ON A/C A319neo

N_AC_050408_1_0120101_01_00

Ground Service Connections Starter Oil Tank – CFM LEAP-1A Series Engine FIGURE-5-4-8-991-012-A01

5-4-8

Page 15 Dec 01/23

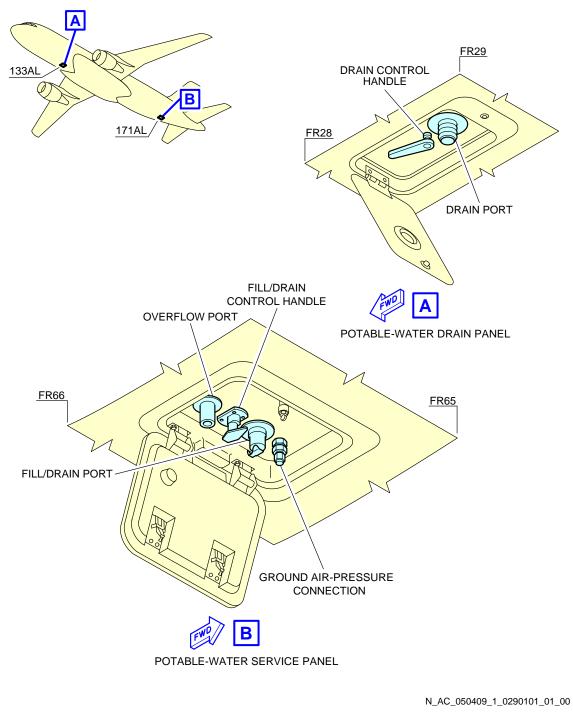
AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

5-4-9 Potable Water System

**ON A/C A319-100 A319neo

Potable Water System

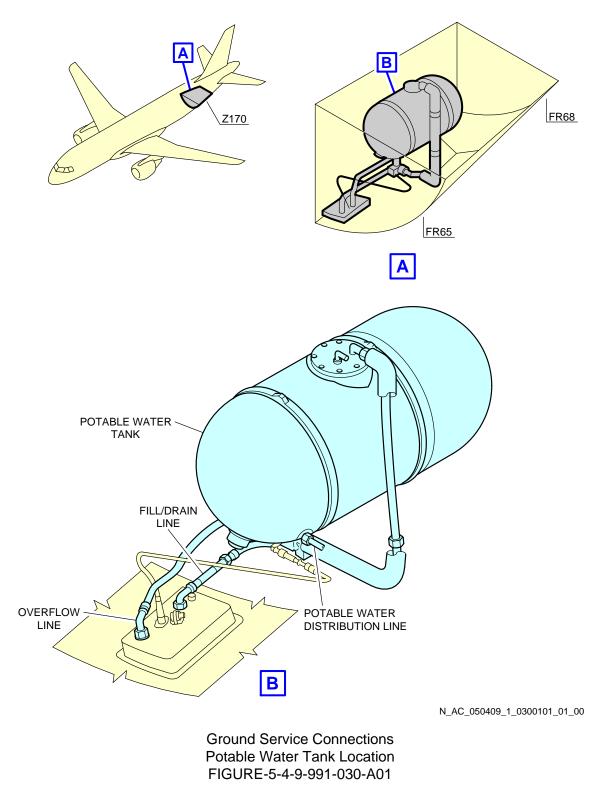
1. Potable Water Ground Service Panels


	DISTANCE				
ACCESS	AFT OF NOSE	POSITION FROM AIRCRAFT CENTERLINE		MEAN HEIGHT	
		LH SIDE	RH SIDE		
Service Panel		0.3 m (0.98 ft)	-	2.6 m (8.53 ft)	
Potable-Water Drain Panel: Access Door 133AL		0.15 m (0.49 ft)	-	1.75 m (5.74 ft)	

<u>NOTE</u> : Distances are approximate.

- 2. Technical Specifications
 - A. Connectors:
 - (1) On the potable-water service panel (Access Door 171AL)
 - Fill/Drain Nipple 3/4 in. (ISO 17775).
 - One ground air-pressure connector.
 - (2) On the potable-water drain panel (Access Door 133AL)
 - Drain Nipple 3/4 in. (ISO 17775).
 - B. Usable capacity:
 - Standard configuration one tank: 200 I (53 US gal).
 - C. Filling pressure:
 - 3.45 bar (50 psi).
 - D. Typical flow rate:
 - 50 l/min (13 US gal/min).

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING


**ON A/C A319-100 A319neo

Ground Service Connections Potable Water Ground Service Panels FIGURE-5-4-9-991-029-A01

**ON A/C A319-100 A319neo

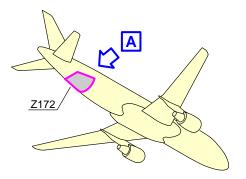
AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

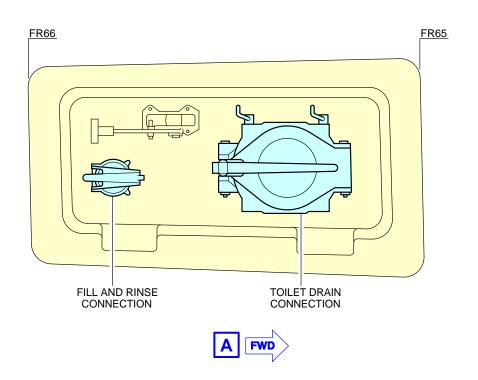
5-4-10 Waste Water System

**ON A/C A319-100 A319neo

Waste Water System

1. Waste Water System

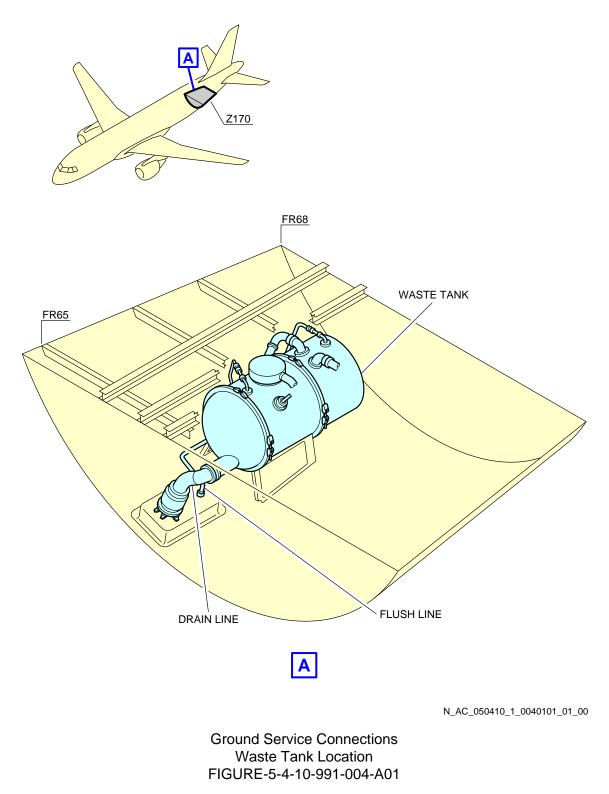

	DISTANCE				
ACCESS	AFT OF NOSE AIRCRAFT CENTERLINE		MEAN HEIGHT		
		LH SIDE	RH SIDE		
Waste-Water					
Ground Service	27.5 m		0.8 m	2.8 m	
Panel:	(90.22 ft)	-	(2.62 ft)	(9.19 ft)	
Access door 172AR					


<u>NOTE</u> : Distances are approximate.

- 2. Technical Specifications
 - A. Connectors:
 - Draining: 4 in. (ISO 17775).
 - Flushing and filling: 1 in. (ISO 17775).
 - B. Usable waste tank capacity:
 - Standard configuration one tank: 177 I (47 US gal).
 - C. Waste tank Rinsing:
 - Operating pressure: 3.45 bar (50 psi).
 - D. Waste tank Precharge:
 - 10 I (3 US gal).

**ON A/C A319-100 A319neo

N_AC_050410_1_0010101_01_00


Ground Service Connections Waste Water Ground Service Panel FIGURE-5-4-10-991-001-A01

5-4-10

Page 2 Dec 01/23

**ON A/C A319-100 A319neo

5-4-10

Page 3 Dec 01/23

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

5-5-0 Engine Starting Pneumatic Requirements

**ON A/C A319-100 A319neo

Engine Starting Pneumatic Requirements

1. The function of this section gives the minimum air-data requirements at the aircraft.

Abbreviation	Definition	
ASU	Air Start Unit	
	High Pressure Ground Connection	
OAT	Outside Air Temperature	

- A. The pressure at HPGC must not be more than 60 psig (75 psia) and less than 33 psig (48 psia). The temperature must be less than 220 °C (428 °F).
- B. The recommended pressure at HPGC is 40 psig (55 psia).
- C. The OAT and the ASU performances (see the technical data from the ASU manufacturer) effect the ASU output temperature.

**ON A/C A319-100

2. CFM56 Engines for an OAT between -40 °C (-40 °F) and 55 °C (131 °F) at Sea Level

ASU Output Temperature Range	Pressure at HPGC	Mass Flow at HPGC
100 °C (212 °F) - 125 °C (257 °F)	40 psig (55 psia)	186 ppm (84 kg/min)
125 °C (257 °F) - 175 °C (347 °F)	40 psig (55 psia)	180 ppm (82 kg/min)
175 °C (347 °F) - 220 °C (428 °F)	40 psig (55 psia)	169 ppm (77 kg/min)

ASU Output Temperature Range	Pressure at HPGC	Mass Flow at HPGC
TBD	40 psig (55 psia)	TBD

3. IAE V2500 Engines for an OAT between -40 °C (-40 °F) and 55 °C (131 °F)

ASU Output Temperature Range	Pressure at HPGC	Mass Flow at HPGC
100 °C (212 °F) - 125 °C (257 °F)	40 psig (55 psia)	167 ppm (76 kg/min)
125 °C (257 °F) - 175 °C (347 °F)	40 psig (55 psia)	162 ppm (73 kg/min)
175 °C (347 °F) - 220 °C (428 °F)	40 psig (55 psia)	152 ppm (69 kg/min)

GA319

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

ASU Output Temperature Range	Pressure at HPGC	Mass Flow at HPGC		
TBD	40 psig (55 psia)	TBD		

**ON A/C A319neo

4. CFM Leap Engines for an OAT between -40° C (-40 °F) and 55 °C (131 °F)

ASU Output Temperature Range	Pressure at HPGC	Mass Flow at HPGC
100 °C (212 °F) - 125 °C (257 °F)	40 psig (55 psia)	196 ppm (89 kg/min)
125 °C (257 °F) - 175 °C (347 °F)	40 psig (55 psia)	189 ppm (86 kg/min)
175 °C (347 °F) - 220 °C (428 °F)	40 psig (55 psia)	179 ppm (81 kg/min)

ASU Output Temperature Range	Pressure at HPGC	Mass Flow at HPGC
TBD	40 Psig (55 Psia)	TBD

5. PW1100G Engines for an OAT between -40 °C (-40 °F) and 55 °C (131 °F)

ASU Output Temperature Range	Pressure at HPGC	Mass Flow at HPGC
100 °C (212 °F) - 125 °C (257 °F)	40 psig (55 psia)	194 ppm (88 kg/min)
125 °C (257 °F) - 175 °C (347 °F)	40 psig (55 psia)	188 ppm (85 kg/min)
175 °C (347 °F) - 220 °C (428 °F)	40 psig (55 psia)	177 ppm (80 kg/min)

ASU Output Temperature Range	Pressure at HPGC	Mass Flow at HPGC
TBD	40 psig (55 psia)	TBD

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

5-6-0 Ground Pneumatic Power Requirements

**ON A/C A319-100 A319neo

Ground Pneumatic Power Requirements

1. General

This section describes the required performance for the ground equipment to maintain the cabin temperature at 27 °C (80.6 °F) for the cooling or 21 °C (69.8 °F) for heating cases after boarding (Section 5.7 - steady state), and provides the time needed to cool down or heat up the aircraft cabin to the required temperature (Section 5.6 - dynamic cases with aircraft empty).

ABI	BREVIATION	DEFINITION
A/C		Aircraft
АНМ		Aircraft Handling Manual
AMM		Aircraft Maintenance Manual
GC		Ground Connection
GSE		Ground Service Equipment
IFE		In-Flight Entertainment
ΟΑΤ		Outside Air Temperature
PCA		Pre-Conditioned Air

- A. The air flow rates and temperature requirements for the GSE, provided in Sections 5.6 and 5.7, are given at A/C ground connection.
 - <u>NOTE</u>: The cooling capacity of the equipment (kW) is only indicative and is not sufficient by itself to ensure the performance (outlet temperature and flow rate combinations are the requirements needed for ground power). An example of cooling capacity calculation is given in Section 5.7.

<u>NOTE</u> : The maximum air flow is driven by pressure limitation at the ground connection.

- B. For temperatures at ground connection below 2 °C (35.6 °F) (Subfreezing), the ground equipment shall be compliant with the Airbus document "Subfreezing PCA Carts Compliance Document for Suppliers" (contact Airbus to obtain this document) defining all the requirements with which Subfreezing Pre-Conditioning Air equipment must comply to allow its use on Airbus aircraft. These requirements are in addition to the functional specifications included in the IATA AHM997.
- 2. Ground Pneumatic Power Requirements

This section provides the ground pneumatic power requirements for:


AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

- Heating (pull up) the cabin, initially at OAT, up to 21 °C (69.8 °F) (see FIGURE 5-6-0-991-001-A)
- Cooling (pull down) the cabin, initially at OAT, down to 27 °C (80.6 °F) (see FIGURE 5-6-0-991-002-A).

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

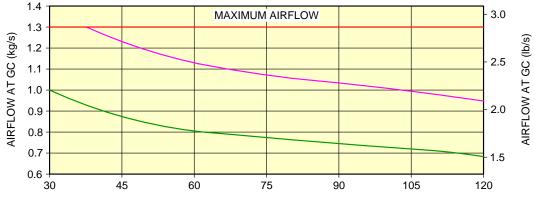
**ON A/C A319-100 A319neo

TIME TO HEAT CABIN TO +21° C (+69.8° F) ON GROUND (min)

 OAT ISA -38° C (-36.4° F); GC INLET +70° C (+158° F); EMPTY CABIN; IFE OFF; NO SOLAR LOAD; LIGHTS ON; GALLEYS OFF; RECIRCULATION FANS ON

N_AC_050600_1_0010101_01_00

Ground Pneumatic Power Requirements Heating FIGURE-5-6-0-991-001-A01


5-6-0

Page 3 Dec 01/23

**ON A/C A319-100 A319neo

PULL DOWN PERFORMANCE

TIME TO COOL CABIN TO +27° C (+80.6° F) ON GROUND (min)

 OAT ISA +23° C (+73.4° F); GC INLET +2° C (+35.6° F); EMPTY CABIN; IFE OFF; NO SOLAR LOAD; LIGHTS ON; GALLEYS OFF; RECIRCULATION FANS ON

OAT ISA +23° C (+73.4° F); GC INLET -10° C (+14° F); EMPTY CABIN; IFE OFF; NO SOLAR LOAD; LIGHTS ON; GALLEYS OFF; RECIRCULATION FANS ON

N_AC_050600_1_0020101_01_00

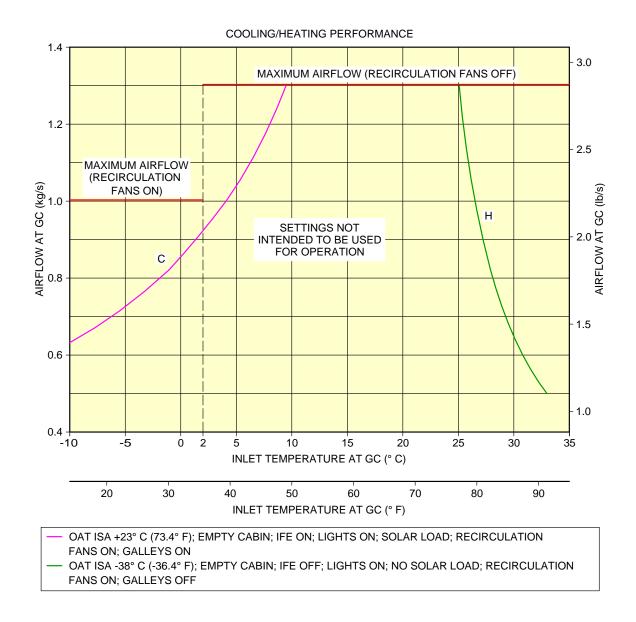
Ground Pneumatic Power Requirements Cooling FIGURE-5-6-0-991-002-A01

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

5-7-0 Preconditioned Airflow Requirements

**ON A/C A319-100 A319neo

Preconditioned Airflow Requirements


1. This section provides the preconditioned airflow rate and temperature needed to maintain the cabin temperature at 27 °C (80.6 °F) for the cooling or 21 °C (69.8 °F) for the heating cases.

These settings are not intended to be used for operation (they are not a substitute for the settings given in the AMM). They are based on theoretical simulations and give the picture of a real steady state.

The purpose of the air conditioning (cooling) operation (described in the AMM) is to maintain the cabin temperature below 27 °C (80.6 °F) during boarding (therefore it is not a steady state).

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

**ON A/C A319-100 A319neo

N_AC_050700_1_0010101_01_04

Preconditioned Airflow Requirements FIGURE-5-7-0-991-001-A01

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

5-8-0 Ground Towing Requirements

**ON A/C A319-100

Ground Towing Requirements

1. This section gives information on aircraft towing.

This aircraft is designed with means for standard or towbarless towing. Information/procedures can be found for both in AMM 09.

Status on towbarless towing equipment qualification can be found in ISI 09.11.00001.

<u>NOTE</u> : The NLG steering deactivation pin has the same design for all Airbus programs.

One towbar fitting is installed at the front of the leg.

The main landing gears have attachment points for towing or debogging (for details, refer ARM 07).

This section shows the chart to determine the drawbar pull and tow tractor mass requirements as a function of the following physical characteristics:

- Aircraft weight,
- Number of engines at idle,
- Slope.

The chart is based on the engine type with the highest idle thrust level.

2. Towbar design guidelines

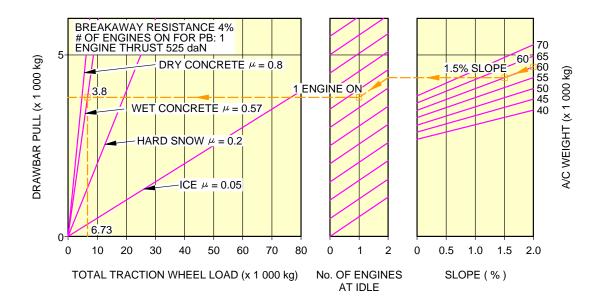
The aircraft towbar shall comply with the following standards:

- ISO 8267-1, "Aircraft Towbar Attachment Fitting Interface Requirements Part 1: Main Line Aircraft",
- SAE AS 1614, "Main Line Aircraft Towbar Attach Fitting Interface",
- SAE ARP 1915, "Aircraft Towbar",
- ISO 9667, "Aircraft Ground Support Equipment Towbar Connection to Aircraft and Tractor",
- EN 12312-7, "Aircraft Ground Support Equipment Specific Requirements Part 7: Aircraft Movement Equipment",
- IATA Airport Handling Manual AHM 958, "Functional Specification for an Aircraft Towbar".

A standard type towbar is required which should be equipped with a damping system (to protect the nose gear against jerks) and with towing shear pins:

- A traction shear pin calibrated at 9 425 daN (21 188 lbf),
- A torsion pin calibrated at 826 m.daN (6 092 lbf.ft).

GA319


AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

The towing head is designed according to ISO 8267-1, cat. I.

@Δ319

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

**ON A/C A319-100

EXAMPLE HOW TO DETERMINE THE TRACTION WHEEL LOAD REQUIREMENT TO TOW A A319 AT 60 000 kg, AT 1.5% SLOPE, 1 ENGINE AT IDLE AND FOR WET TARMAC CONDITIONS:

- ON THE RIGHT HAND SIDE OF THE GRAPH, CHOOSE THE RELEVANT AIRCRAFT WEIGHT (60 000 kg),
 FROM THIS POINT DRAW A PARALLEL LINE TO THE REQUIRED SLOPE PERCENTAGE (1.5%),
- FROM THE POINT OBTAINED DRAW A STRAIGHT HORIZONTAL LINE UNTIL No. OF ENGINES AT IDLE = 2,
- FROM THIS POINT DRAW A PARALLEL LINE TO THE REQUESTED No. OF ENGINES (1),
- FROM THIS POINT DRAW A STRAIGHT HORIZONTAL LINE TO THE DRAWBAR PULL AXIS
- THE Y-COORDINATE OBTAINED IS THE NECESSARY DRAWBAR PULL FOR THE TRACTOR (3 800 kg),
- SEARCH THE INTERSECTION WITH THE "WET CONCRETE" LINE THE OBTAINED X-COORDINATE IS THE TOTAL TRACTION WHEEL LOAD (6 730 kg).

NOTE:

USE A TRACTOR WITH A LIMITED DRAWBAR PULL TO PREVENT LOADS ABOVE THE TOW-BAR SHEAR-PIN CAPACITY. FOR ALL WHEEL-DRIVEN VEHICLES, THE TOTAL TRACTION WHEEL LOAD IS THE TRACTOR WEIGHT.

N_AC_050800_1_0010902_01_00

Ground Towing Requirements 5-8-0-991-001-001

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

5-9-0 De-Icing and External Cleaning

**ON A/C A319-100 A319neo

De-Icing and External Cleaning

1. De-Icing and External Cleaning on Ground

The mobile equipment for aircraft de-icing and external cleaning must be capable of reaching heights up to approximately 13 m (43 ft).

2. De-Icing

AIRCRAFT TYPE		Wing Top Surface (Both Sides)		Wingtip Devices (Both Inside and Outside Surfaces) (Both Sides)		HTP Top Surface (Both Sides)		VTP (Both Sides)	
m² ft²		m²	ft²	m²	ft ²	m²	ft²		
A319	100	1 076	2	22	27	291	43	463	
A319 Sharklet/neo	100	1 076	10	108	27	291	43	463	

AIRCRAFT TYPE	Fuselage Top Surface (Top Third - 120° Arc)			nd Pylon - 120° Arc) igines)	Total De-Iced Area		
	m²	ft²	m²	ft ²	m²	ft²	
A319	122	1 313	24	258	317	3 412	
A319 Sharklet/neo	122	1 313	24	258	325	3 498	

<u>NOTE</u> : Dimensions are approximate.

3. External Cleaning

AIRCRAFT TYPE	Wing Top Surface (Both Sides)		Wing Lower Surface (Including Flap Track Fairing) (Both Sides)		Wingtip Devices (Both Inside and Outside Surfaces) (Both Sides)	
	m²	ft²	m²	ft²	m²	ft²
A319	100	1 076	103	1 109	2	22
A319 Sharklet/neo	100	1 076	103	1 109	10	108

GA319

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

AIRCRAFT TYPE	HTP Top Surface (Both Sides)		HTP Lower Surface (Both Sides)		VTP (Both Sides)	
	m²	ft ²	m²	ft²	m²	ft²
A319	27	291	27	291	43	463
A319 Sharklet/neo	27	291	27	291	43	463

AIRCRAFT TYPE	Fuselage and Belly Fairing			and Pylon ngines)	Total Cleaned Area	
	m²	ft²	m²	ft²	m²	ft²
A319	374	4 026	73	786	750	8 073
A319 Sharklet/neo	374	4 026	73	786	758	8 159

<u>NOTE</u> : Dimensions are approximate.

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

OPERATING CONDITIONS

6-1-0 Engine Exhaust Velocities and Temperatures

**ON A/C A319-100 A319neo

Engine Exhaust Velocities and Temperatures

**ON A/C A319-100

1. General

This section provides the estimated engine exhaust efflux velocities and temperatures contours for Ground Idle, Breakaway and Maximum Take-Off (MTO) conditions.

**ON A/C A319neo

2. General

This section provides the estimated engine exhaust velocity and temperature contours for MTO, Breakaway 12% MTO, Breakaway 24% MTO and Ground Idle conditions for the CFM LEAP-1A and PW 1100G engines.

The MTO data are presented at the maximum thrust rating. The Breakaway data are presented at a rating that corresponds to the minimum thrust level necessary to start the movement of the A/C from a static position at its maximum ramp weight. Breakaway thrust corresponds to 12% MTO if applied on both engines and 24% MTO when applied on a single engine (Idle thrust on the other engine).

The Idle data, provided by the engine manufacturer, are calculated for operational conditions ISA +15K (+15°C), Sea Level, Static and no headwind. In the charts, the longitudinal distances are measured from the inboard engine core-nozzle exit section. The lateral distances are measured from the aircraft fuselage centerline.

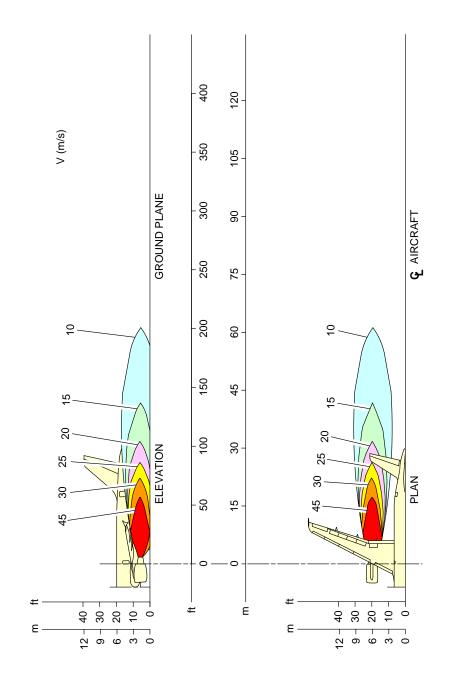
The effects of on-wing installation are not taken into account. The effects of ground proximity are not taken into account for PW 1100G engines, but they are taken into account for the CFM LEAP-1A engines.

The velocity contours are presented at 50 ft/s (15 m/s), 100 ft/s (30 m/s) and 150 ft/s (46 m/s).

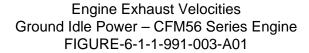
AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

The temperature contours are shown at 313K (+40°C), 323K (+50°C) and 333K (+60°C). The velocity and temperature contours do not take into account possible variations affecting performance, such as ambient temperature, field elevation or failure cases leading to an abnormal bleed configuration. To evaluate the impact of these specific variables on the exhaust contours, a specific study of the airport where the aircraft is intended to operate should be carried out.

6-1-1 Engine Exhaust Velocities Contours - Ground Idle Power


**ON A/C A319-100 A319neo

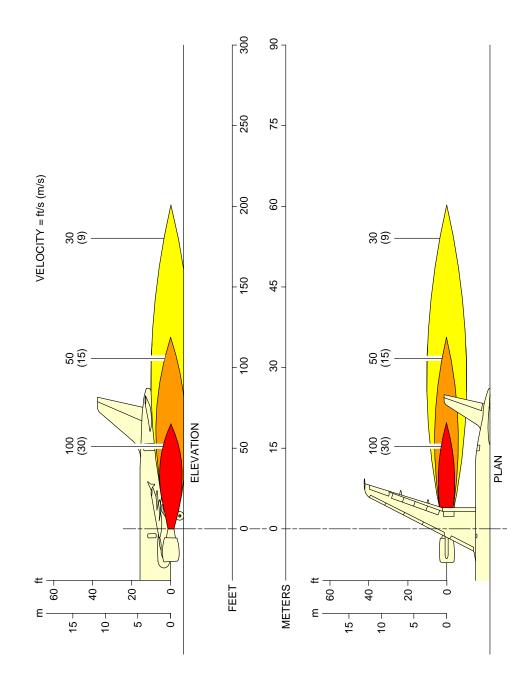
Engine Exhaust Velocities Contours - Ground Idle Power


1. This section provides engine exhaust velocities contours at ground idle power.

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

**ON A/C A319-100

N_AC_060101_1_0030101_01_01

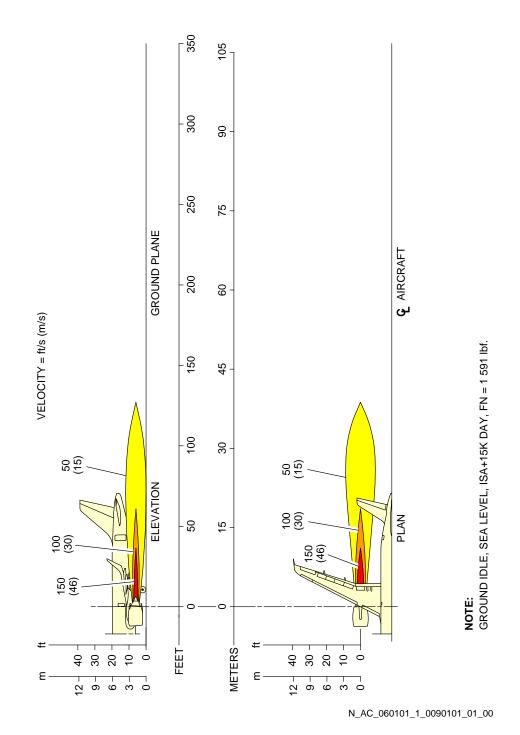


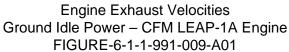
6-1-1

Page 2 Dec 01/23

**ON A/C A319-100

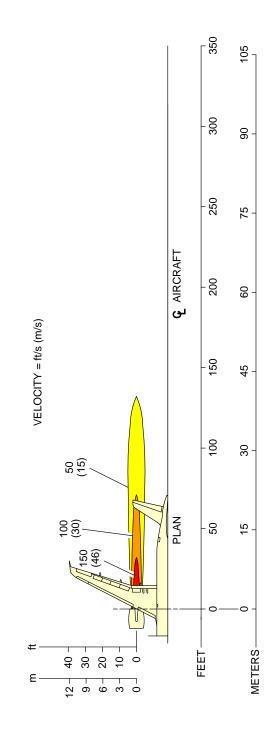
N_AC_060101_1_0040101_01_00

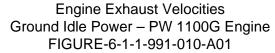

Engine Exhaust Velocities Ground Idle Power – IAE V2500 Series Engine FIGURE-6-1-1-991-004-A01


6-1-1

Page 3 Dec 01/23

**ON A/C A319neo




Page 4 Dec 01/23

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

**ON A/C A319neo

N_AC_060101_1_0100101_01_00

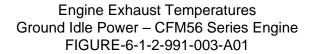
6-1-1

Page 5 Dec 01/23

6-1-2 Engine Exhaust Temperatures Contours - Ground Idle Power

**ON A/C A319-100 A319neo

Engine Exhaust Temperatures Contours - Ground Idle Power

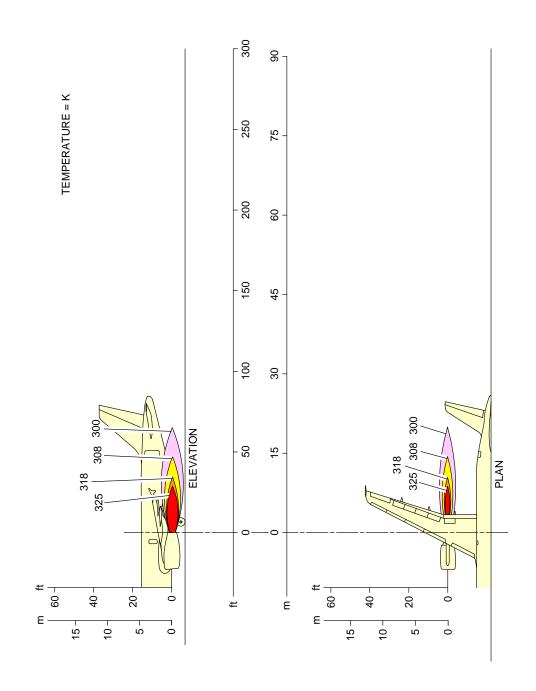

1. This section provides engine exhaust temperatures contours at ground idle power.

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

**ON A/C A319-100

TEMPERATURE = K

N_AC_060102_1_0030101_01_01



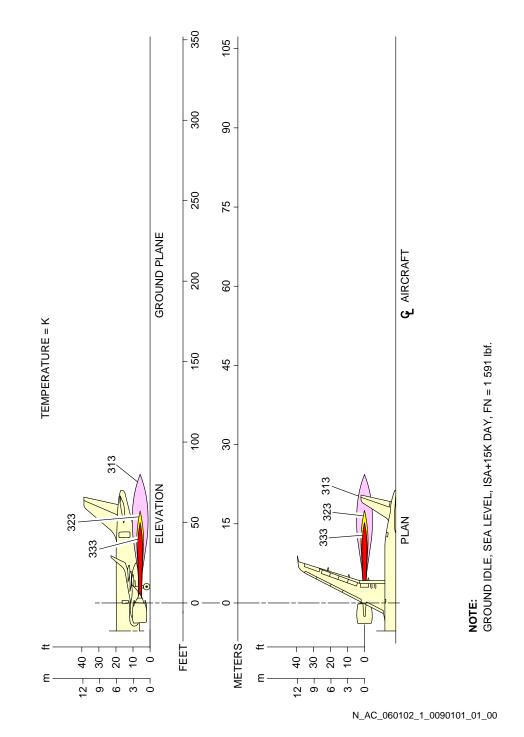
6-1-2

Page 2 Dec 01/23

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

**ON A/C A319-100

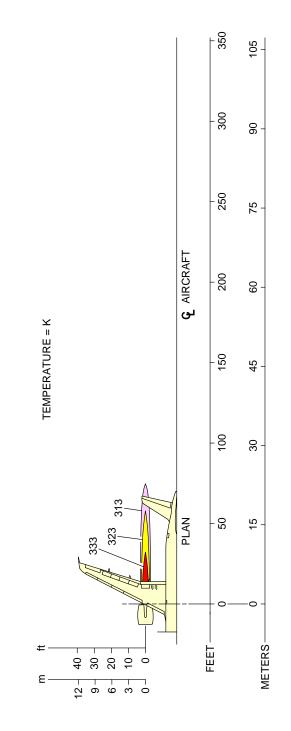
N_AC_060102_1_0040101_01_01


Engine Exhaust Temperatures Ground Idle Power – IAE V2500 Series Engine FIGURE-6-1-2-991-004-A01

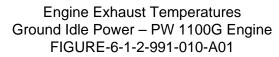
6-1-2

Page 3 Dec 01/23

**ON A/C A319neo


Engine Exhaust Temperatures Ground Idle Power – CFM LEAP-1A Engine FIGURE-6-1-2-991-009-A01

6-1-2


Page 4 Dec 01/23

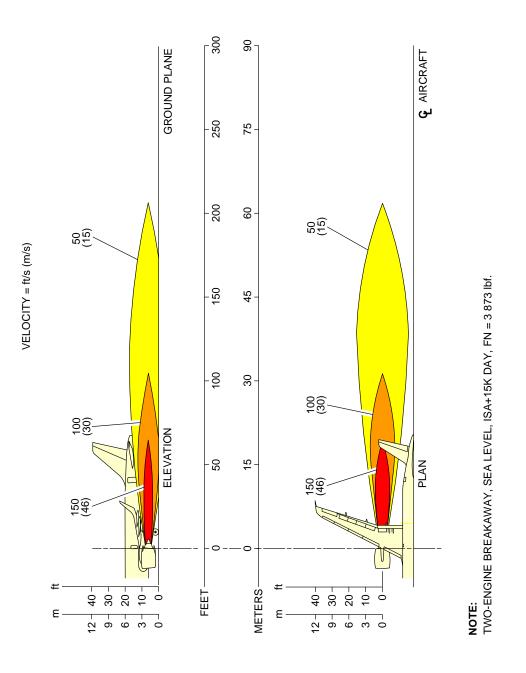
AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

**ON A/C A319neo

N_AC_060102_1_0100101_01_00

Page 5 Dec 01/23

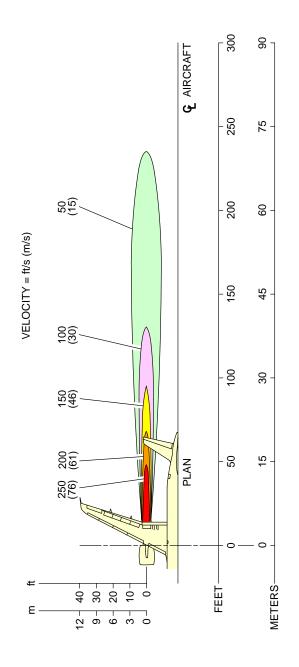
6-1-3 Engine Exhaust Velocities Contours - Breakaway Power


**ON A/C A319-100 A319neo

Engine Exhaust Velocities Contours - Breakaway Power

1. This section provides engine exhaust velocities contours at breakaway power.

**ON A/C A319neo

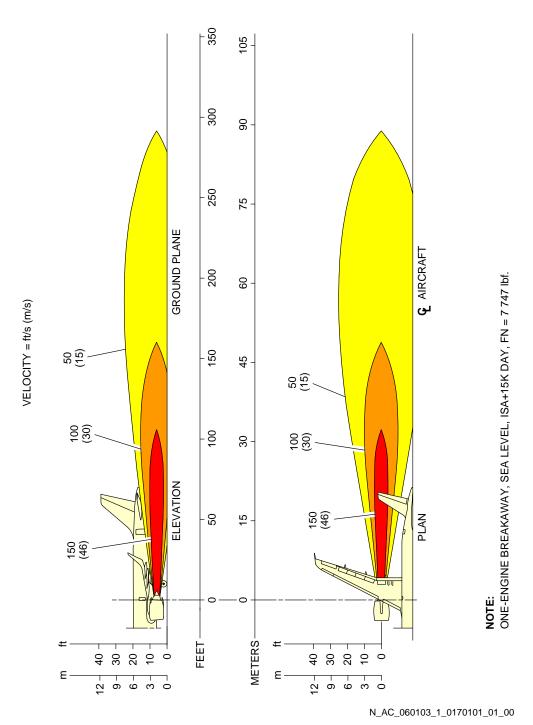

N_AC_060103_1_0090101_01_00

Engine Exhaust Velocities Breakaway Power 12% MTO – CFM LEAP-1A Engine FIGURE-6-1-3-991-009-A01

Page 2 Dec 01/23

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

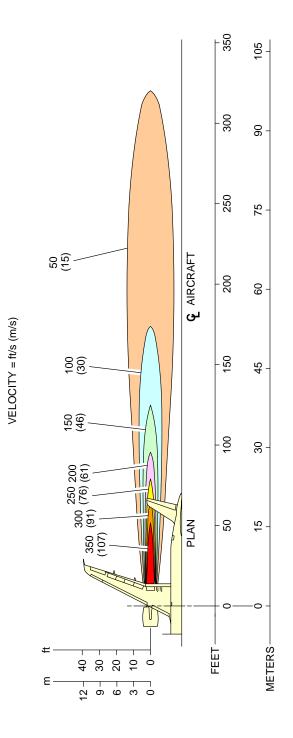
**ON A/C A319neo


N_AC_060103_1_0100101_01_00

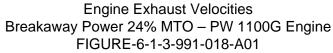
Engine Exhaust Velocities Breakaway Power 12% MTO – PW 1100G Engine FIGURE-6-1-3-991-010-A01

Page 3 Dec 01/23

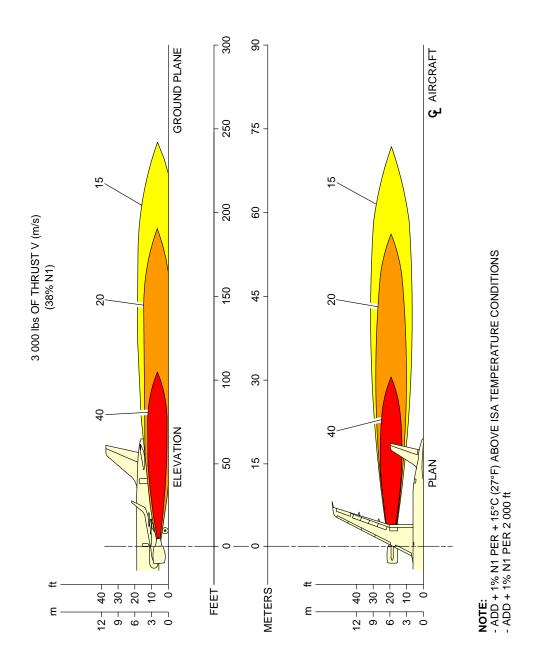
**ON A/C A319neo

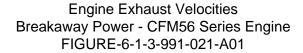


Engine Exhaust Velocities Breakaway Power 24% MTO – CFM LEAP-1A Engine FIGURE-6-1-3-991-017-A01


Page 4 Dec 01/23

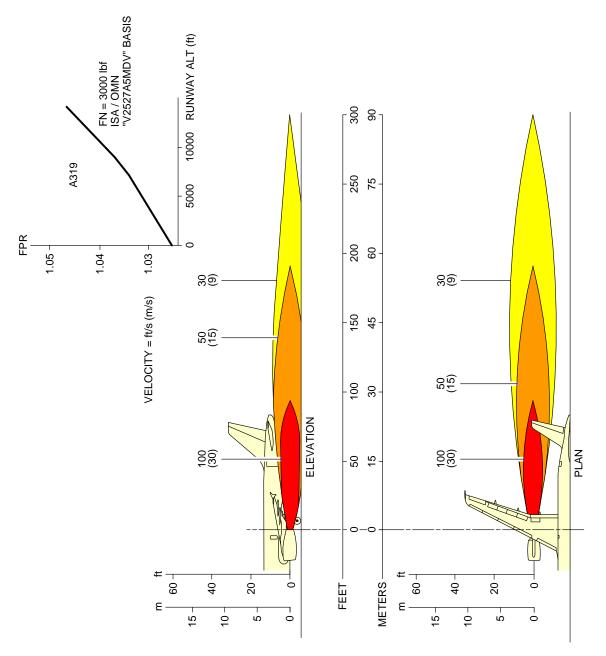
**ON A/C A319neo


N_AC_060103_1_0180101_01_00


Page 5 Dec 01/23

**ON A/C A319-100

N_AC_060103_1_0210101_01_00



6-1-3

Page 6 Dec 01/23

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

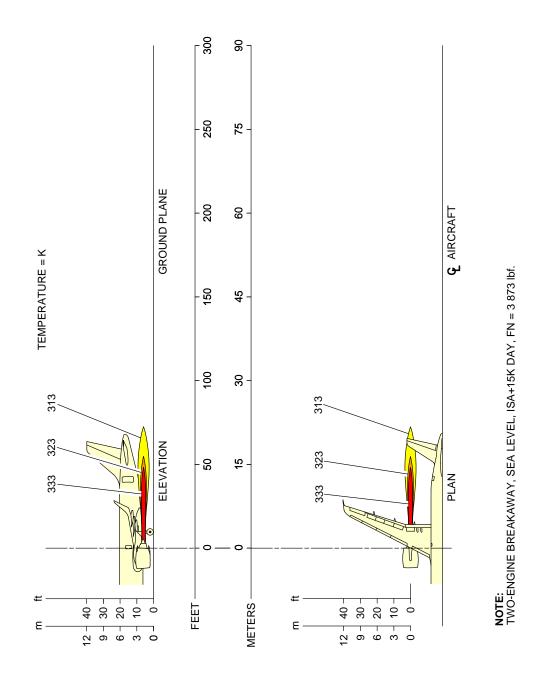
**ON A/C A319-100

N_AC_060103_1_0220101_01_00

Engine Exhaust Velocities Breakaway Power - IAE V2500 Series Engine FIGURE-6-1-3-991-022-A01

Page 7 Dec 01/23

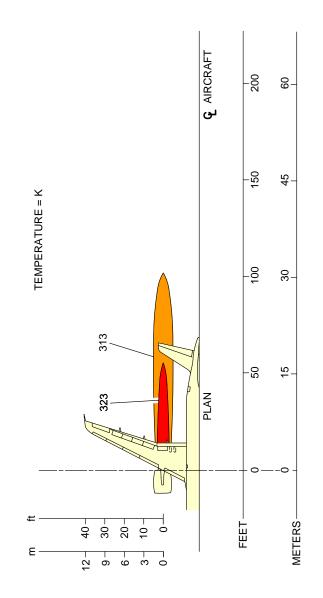
6-1-4 Engine Exhaust Temperatures Contours - Breakaway Power


**ON A/C A319-100 A319neo

Engine Exhaust Temperatures Contours - Breakaway Power

1. This section provides engine exhaust temperatures contours at breakaway power.

**ON A/C A319neo

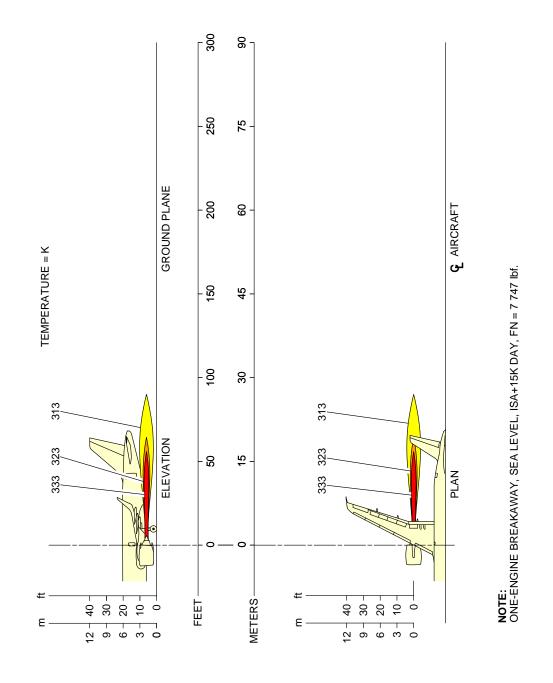

N_AC_060104_1_0130101_01_00

Engine Exhaust Temperatures Breakaway Power 12% MTO - CFM LEAP-1A Engine FIGURE-6-1-4-991-013-A01

Page 2 Dec 01/23

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

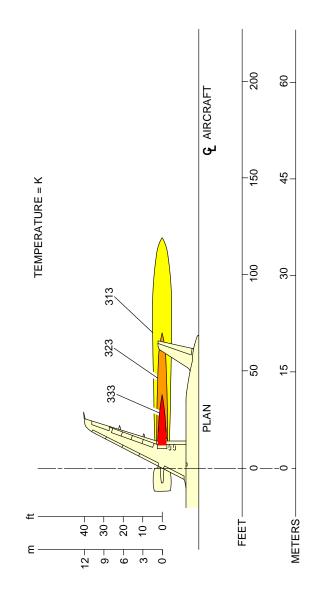
**ON A/C A319neo


N_AC_060104_1_0140101_01_00

Engine Exhaust Temperatures Breakaway Power 12% MTO - PW 1100G Engine FIGURE-6-1-4-991-014-A01

Page 3 Dec 01/23

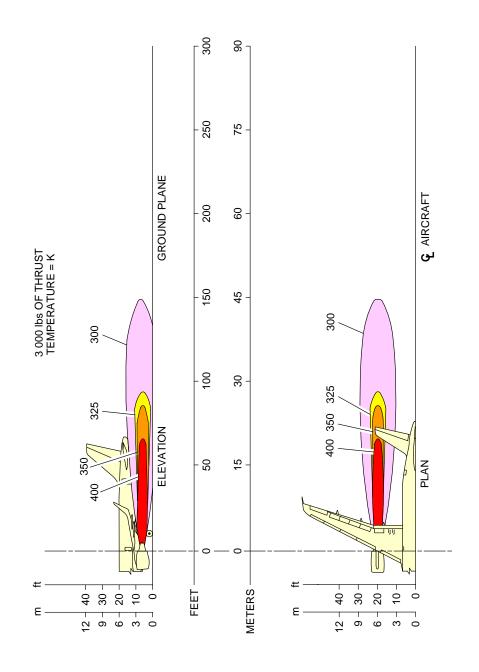
**ON A/C A319neo


N_AC_060104_1_0150101_01_00

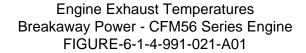
Engine Exhaust Temperatures Breakaway Power 24% MTO - CFM LEAP-1A Engine FIGURE-6-1-4-991-015-A01

Page 4 Dec 01/23

**ON A/C A319neo


N_AC_060104_1_0160101_01_00

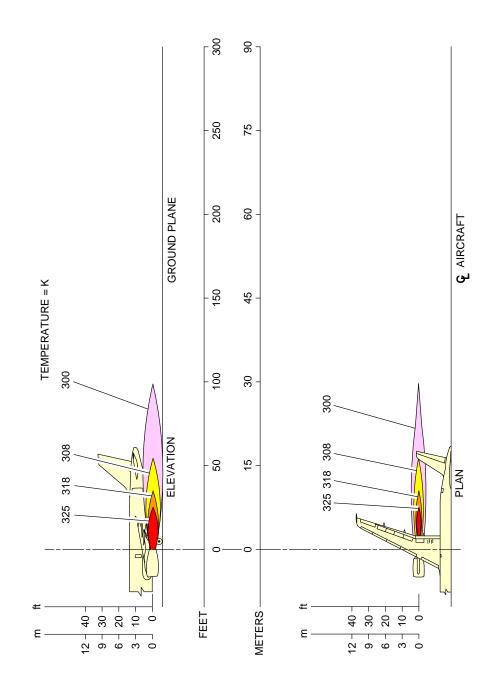
Engine Exhaust Temperatures Breakaway Power 24% MTO - PW 1100G Engine FIGURE-6-1-4-991-016-A01


Page 5 Dec 01/23

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

**ON A/C A319-100

N_AC_060104_1_0210101_01_00



6-1-4

Page 6 Dec 01/23

**ON A/C A319-100

N_AC_060104_1_0220101_01_00

Engine Exhaust Temperatures Breakaway Power - IAE V2500 Series Engine FIGURE-6-1-4-991-022-A01

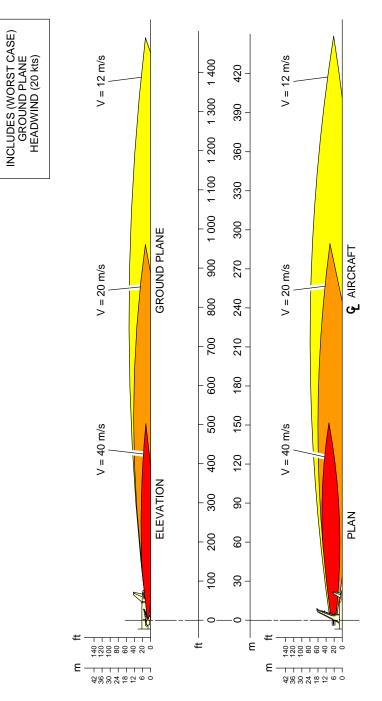
Page 7 Dec 01/23

GA319

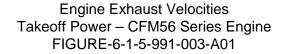
AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

6-1-5 Engine Exhaust Velocities Contours - Takeoff Power

**ON A/C A319-100 A319neo


Engine Exhaust Velocities Contours - Takeoff Power

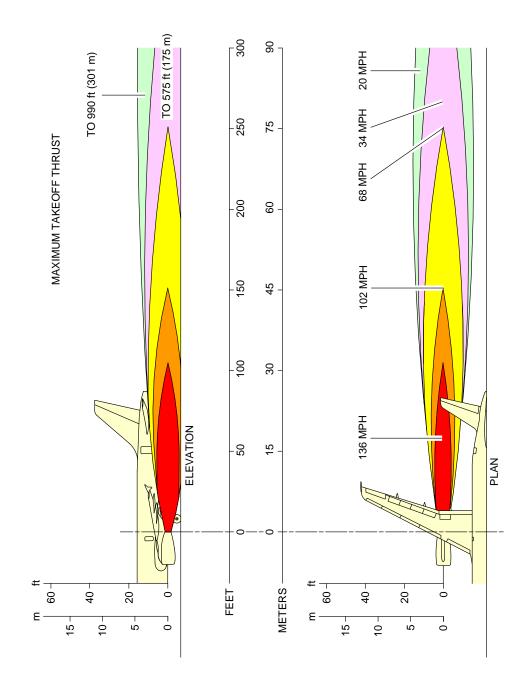
1. This section provides engine exhaust velocities contours at takeoff power.



**ON A/C A319-100

TAKEOFF POWER

N_AC_060105_1_0030101_01_01

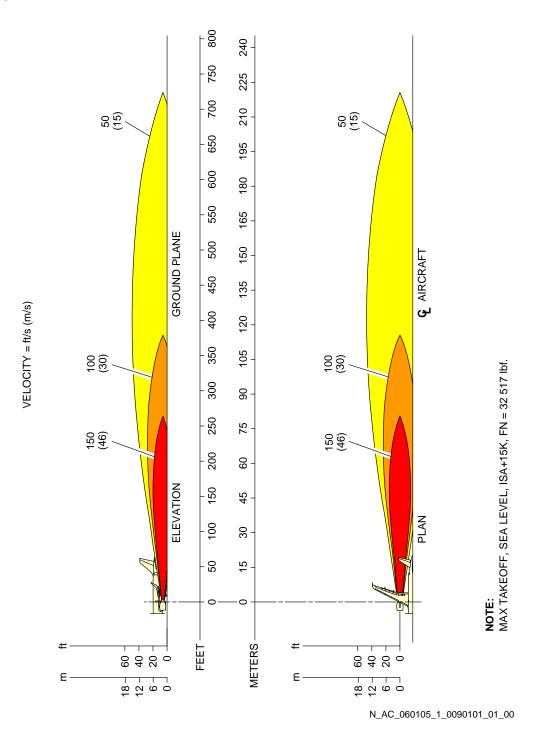


6-1-5

Page 2 Dec 01/23

**ON A/C A319-100

N_AC_060105_1_0040101_01_00

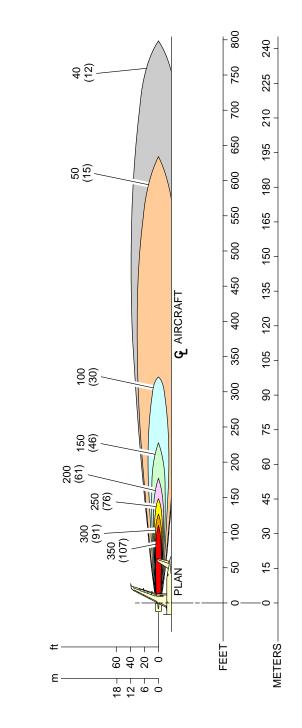

Engine Exhaust Velocities Takeoff Power – IAE V2500 Series Engine FIGURE-6-1-5-991-004-A01

6-1-5

Page 3 Dec 01/23

**ON A/C A319neo

Engine Exhaust Velocities Takeoff Power – CFM LEAP-1A Engine FIGURE-6-1-5-991-009-A01


6-1-5

Page 4 Dec 01/23

**ON A/C A319neo

VELOCITY = ft/s (m/s)

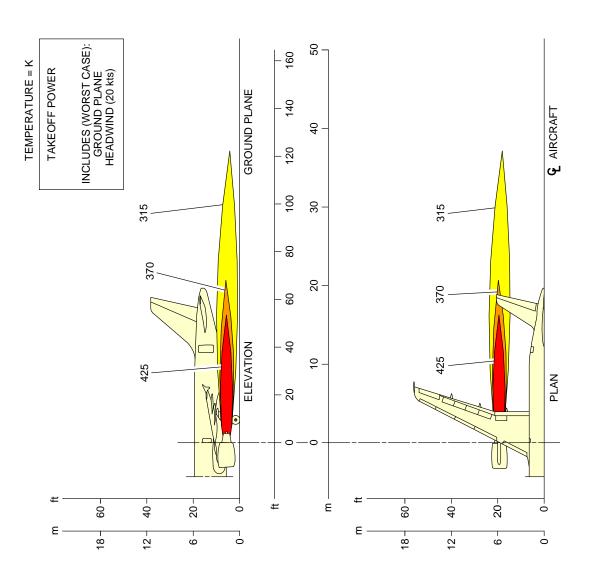
N_AC_060105_1_0100101_01_00

Engine Exhaust Velocities Takeoff Power – PW 1100G Engine FIGURE-6-1-5-991-010-A01

6-1-5

Page 5 Dec 01/23

6-1-6 Engine Exhaust Temperatures Contours - Takeoff Power


**ON A/C A319-100 A319neo

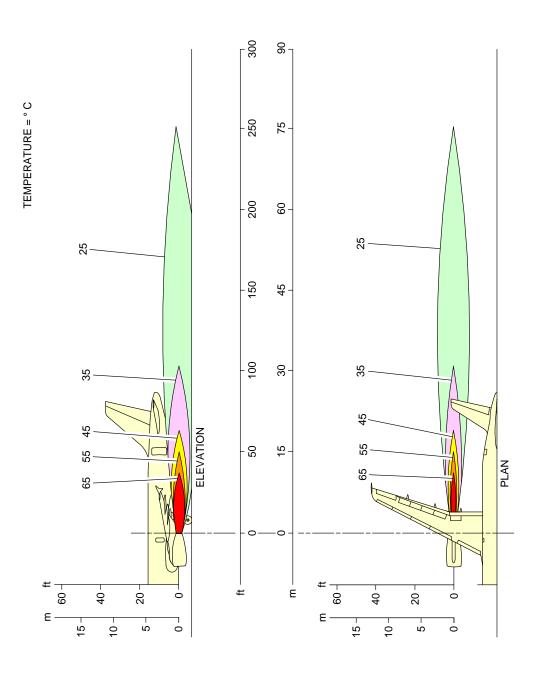
Engine Exhaust Temperatures Contours - Takeoff Power

1. This section provides engine exhaust temperatures contours at takeoff power.

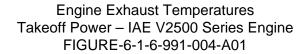
AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

**ON A/C A319-100

N_AC_060106_1_0030101_01_01


Engine Exhaust Temperatures Takeoff Power – CFM56 Series Engine FIGURE-6-1-6-991-003-A01

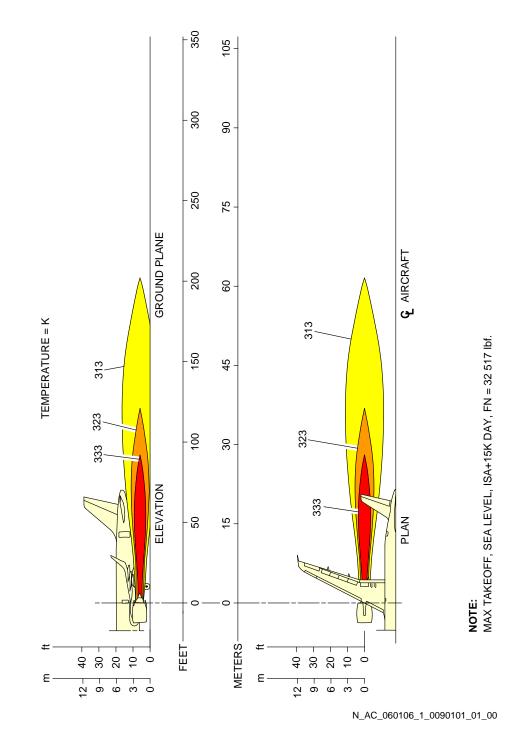
Page 2 Dec 01/23


GA319

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

**ON A/C A319-100

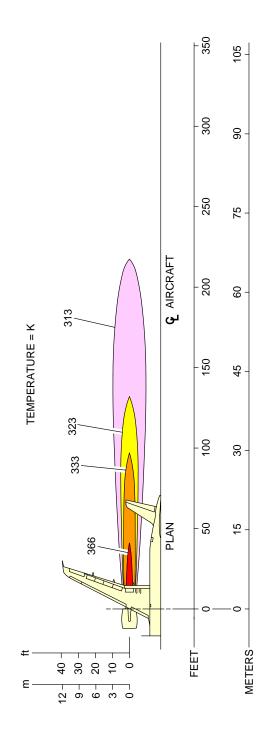
N_AC_060106_1_0040101_01_01



6-1-6

Page 3 Dec 01/23

**ON A/C A319neo


Engine Exhaust Temperatures Takeoff Power – CFM LEAP-1A Engine FIGURE-6-1-6-991-009-A01

6-1-6

Page 4 Dec 01/23

**ON A/C A319neo

N_AC_060106_1_0100101_01_00

Engine Exhaust Temperatures Takeoff Power – PW 1100G Engine FIGURE-6-1-6-991-010-A01

6-1-6

Page 5 Dec 01/23

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

6-3-0 Danger Areas of Engines

**ON A/C A319-100 A319neo

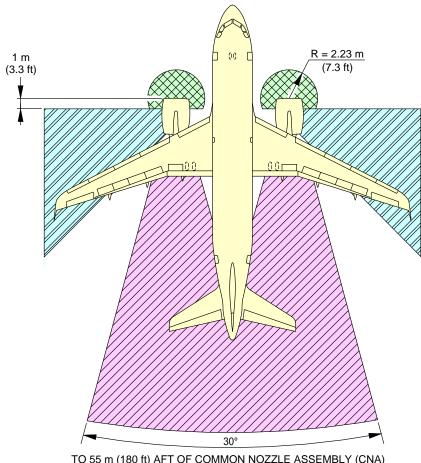
Danger Areas of Engines

- 1. Danger Areas of the Engines
 - A. The danger areas of the engines shown below are given in the normalized format:
 - Entry corridors are only available at ground idle.
 - Do not go into the areas between the engines.
 - The exhaust danger areas are given for 0 kt headwind (if not specified otherwise).

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

6-3-1 Ground Idle Power

**ON A/C A319-100 A319neo


Ground Idle Power

1. This section provides danger areas of the engines at ground idle power conditions.

SA319

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

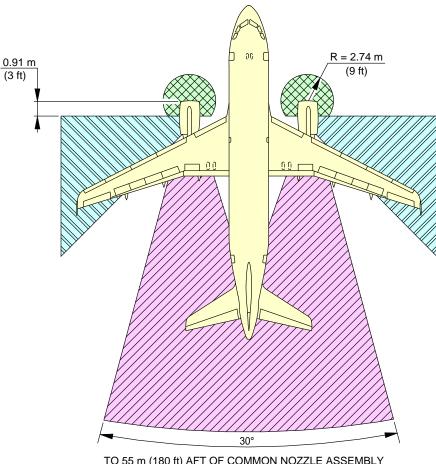
**ON A/C A319-100

TO 55 m (180 ft) AFT OF COMMON NOZZLE ASSEMBLY (CNA) INCLUDES CROSS WIND EFFECT

NOTE:

INLET SUCTION DANGER AREA

ENTRY CORRIDOR


EXHAUST WAKE DANGER AREA

N_AC_060301_1_0030101_01_04

Danger Areas of the Engines CFM56 Series Engine FIGURE-6-3-1-991-003-A01

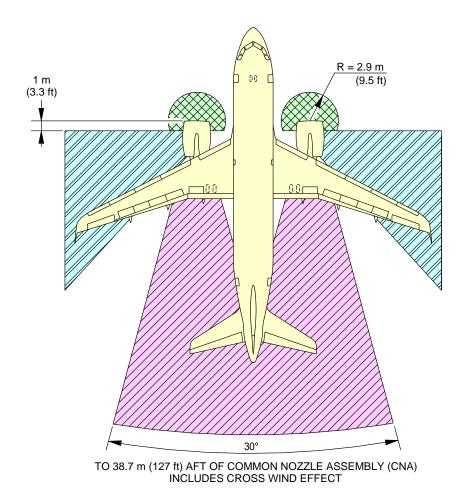
**ON A/C A319-100

TO 55 m (180 ft) AFT OF COMMON NOZZLE ASSEMBLY (CNA) INCLUDES CROSS WIND EFFECT

NOTE:

INTAKE SUCTION DANGER AREA MINIMUM IDLE POWER

ENTRY CORRIDOR


EXHAUST DANGER AREA

N_AC_060301_1_0040101_01_04

Danger Areas of the Engines IAE V2500 Series Engine FIGURE-6-3-1-991-004-A01

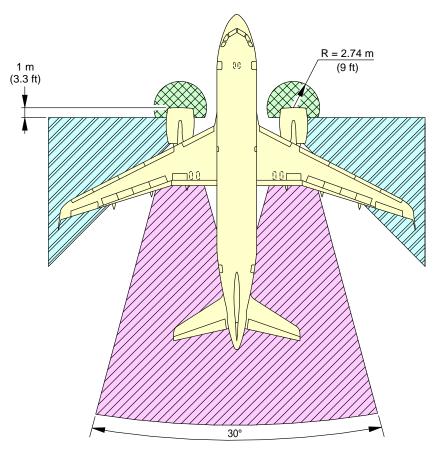
AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

**ON A/C A319neo

NOTE:

ENTRY CORRIDOR

EXHAUST DANGER AREA


N_AC_060301_1_0110101_01_02

Danger Areas of the Engines CFM LEAP-1A Engine FIGURE-6-3-1-991-011-A01

Page 4 Dec 01/23

**ON A/C A319neo

TO 40.3 m (132 ft) AFT OF COMMON NOZZLE ASSEMBLY (CNA) INCLUDES CROSS WIND EFFECT

NOTE:

INTAKE SUCTION DANGER AREA MINIMUM IDLE POWER

ENTRY CORRIDOR

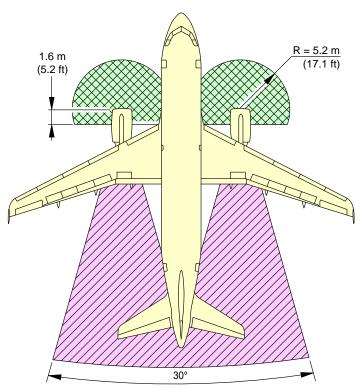
EXHAUST DANGER AREA

N_AC_060301_1_0120101_01_02

Danger Areas of the Engines PW 1100G Engine FIGURE-6-3-1-991-012-A01

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

6-3-2 Breakaway Power


**ON A/C A319-100 A319neo

Breakaway Power

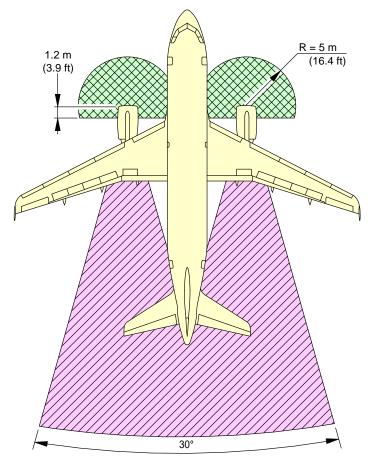
1. This section provides danger areas of the engines at breakaway power.

**ON A/C A319-100

TO 74.7m (245 ft) AFT OF COMMON NOZZLE ASSEMBLY (CNA) INCLUDES CROSS WIND EFFECT

NOTE:

INTAKE SUCTION DANGER AREA MAX. TAKEOFF POWER


EXHAUST WAKE DANGER AREA

N_AC_060302_1_0030101_01_03

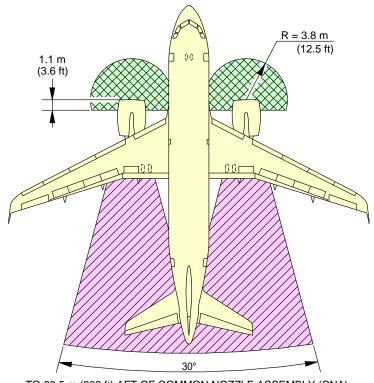
Danger Areas of the Engines CFM56 Series Engine FIGURE-6-3-2-991-003-A01

**ON A/C A319-100

TO 91.4 m (300 ft) AFT OF COMMON NOZZLE ASSEMBLY (CNA) INCLUDES CROSS WIND EFFECT

NOTE:

INTAKE SUCTION DANGER AREA MAX. TAKEOFF POWER


EXHAUST DANGER AREA

N_AC_060302_1_0040101_01_03

Danger Areas of the Engines IAE V2500 Series Engine FIGURE-6-3-2-991-004-A01

**ON A/C A319neo

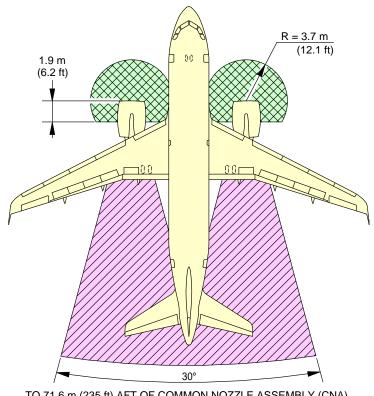
TO 63.5 m (208 ft) AFT OF COMMON NOZZLE ASSEMBLY (CNA) INCLUDES CROSS WIND EFFECT

NOTE:

IN⁻

INTAKE SUCTION DANGER AREA MAX. TAKEOFF POWER

EXHAUST DANGER AREA


N_AC_060302_1_0090101_01_02

Danger Areas of the Engines CFM LEAP-1A Engine FIGURE-6-3-2-991-009-A01

Page 4 Dec 01/23

**ON A/C A319neo

TO 71.6 m (235 ft) AFT OF COMMON NOZZLE ASSEMBLY (CNA) INCLUDES CROSS WIND EFFECT

NOTE:

INTAKE SUCTION DANGER AREA MAX. TAKEOFF POWER

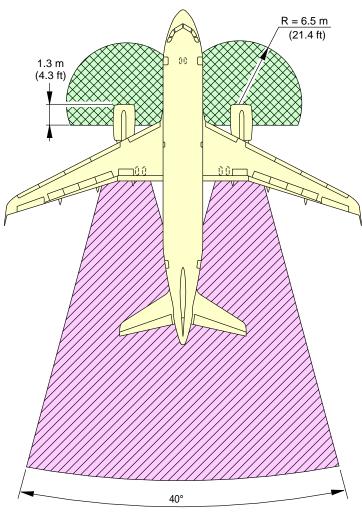
EXHAUST DANGER AREA

N_AC_060302_1_0100101_01_02

Danger Areas of the Engines PW 1100G Engine FIGURE-6-3-2-991-010-A01

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

6-3-3 Max Take Off Power


**ON A/C A319-100 A319neo

Take Off Power

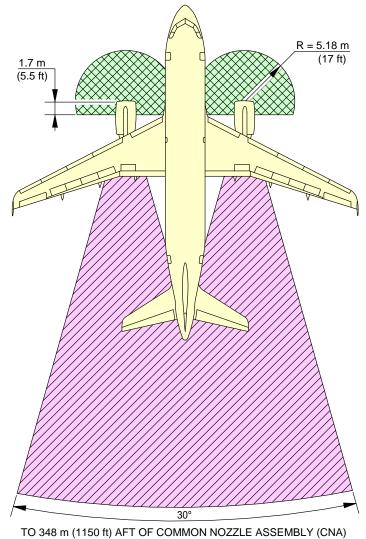
1. This section provides danger areas of the engines at maximum take-off power conditions.

**ON A/C A319-100

TO 275 m (900 ft) AFT OF COMMON NOZZLE ASSEMBLY (CNA) INCLUDES CROSS WIND EFFECT

NOTE:

INTAKE SUCTION DANGER AREA


EXHAUST WAKE DANGER

N_AC_060303_1_0030101_01_01

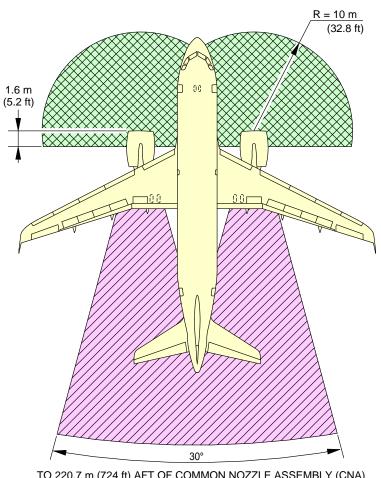
Danger Areas of the Engines CFM56 Series Engine FIGURE-6-3-3-991-003-A01

**ON A/C A319-100

TO 348 m (1150 ft) AFT OF COMMON NOZZLE ASSEMBLY (CN. INCLUDES CROSS WIND EFFECT

NOTE:

INTAKE SUCTION DANGER AREA MAX. TAKEOFF POWER


EXHAUST DANGER AREA

N_AC_060303_1_0040101_01_01

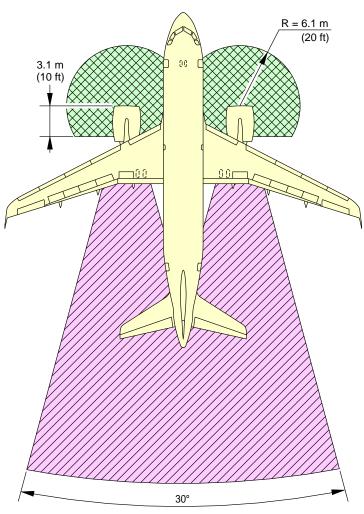
Danger Areas of the Engines IAE V2500 Series Engine FIGURE-6-3-3-991-004-A01

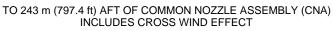
**ON A/C A319neo

TO 220.7 m (724 ft) AFT OF COMMON NOZZLE ASSEMBLY (CNA) INCLUDES CROSS WIND EFFECT

NOTE:

INTAKE SUCTION DANGER AREA MAX. TAKEOFF POWER


EXHAUST DANGER AREA


N_AC_060303_1_0050101_01_01

Danger Areas of the Engines CFM LEAP-1A Engine FIGURE-6-3-3-991-005-A01

**ON A/C A319neo

NOTE:

EXHAUST DANGER AREA

N_AC_060303_1_0060101_01_01

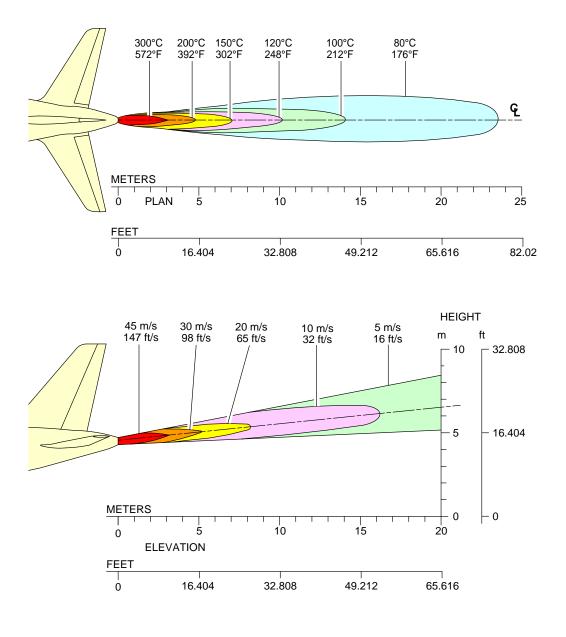
Danger Areas of the Engines PW 1100G Engine FIGURE-6-3-3-991-006-A01

Page 5 Dec 01/23

GA319

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

6-4-1 APU


**ON A/C A319-100 A319neo

APU - APIC & GARRETT

1. This section gives APU exhaust velocities and temperatures.

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

**ON A/C A319-100 A319neo

N_AC_060401_1_0020101_01_00

Exhaust Velocities and Temperatures APU – APIC & GARRETT FIGURE-6-4-1-991-002-A01

Page 2 Dec 01/23

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

PAVEMENT DATA

7-1-0 General Information

**ON A/C A319-100 A319neo

General Information

1. A brief description of the pavement charts that follow will help in airport planning.

To aid in the interpolation between the discrete values shown, each aircraft configuration is shown with a minimum range of five loads on the Main Landing Gear (MLG).

All curves on the charts represent data at a constant specified tire pressure with:

- The aircraft loaded to the Maximum Ramp Weight (MRW),
- The CG at its maximum permissible aft position.

Pavement requirements for commercial aircraft are derived from the static analysis of loads imposed on the MLG struts.

Landing Gear Footprint:

Section 07-02-00 presents basic data on the landing gear footprint configuration, MRW and tire sizes and pressures.

Maximum Pavement Loads:

Section 07-03-00 shows maximum vertical and horizontal pavement loads for certain critical conditions at the tire-ground interfaces.

Landing Gear Loading on Pavement:

The curves related to the landing gear loading on pavement are not given in section 07-04-00. Because the relationship between the aircraft weight, the center of gravity and the landing gear loading on the pavement is not strictly linear, it cannot be shown in chart format. But you can find in section 07-03-00 the maximum vertical and horizontal pavement loads for some critical conditions at the tire/ground interfaces for all the operational weight variants of the aircraft. For questions that are related to landing gear loading on pavement, contact Airbus.

Flexible Pavement Requirements - US Army Corps of Engineers Design Method:

7-1-0

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

The flexible pavement requirements curves as per U.S. Army Corps of Engineers Design Method are not given in section 07-05-00 since the related data is available through free software.

Sections 07-02-00 and 07-03-00 give all the inputs data required for the use of such software. For questions that are related to the flexible pavement requirements, contact Airbus.

Flexible Pavement Requirements - LCN Conversion Method:

The Load Classification Number (LCN) curves are not given in section 07-06-00 since the LCN system for reporting pavement strength is old and are replaced by the ICAO recommended ACN/PCN system in 1983 and ACR/PCR system in 2020.

For questions that are related to the flexible pavement requirements, contact Airbus.

Rigid Pavement Requirements - PCA (Portland Cement Association) Design Method: The rigid pavement requirements curves as per as Portland Cement Association Design Method are not given in section 07-07-00 since the related data is available through free software. Sections 07-02-00 and 07-03-00 give all the inputs data required for the use of such software. For questions that are related to the rigid pavement requirements, contact Airbus.

Rigid Pavement Requirements - LCN Conversion:

The Load Classification Number (LCN) curves are not given in section 07-08-00 since the LCN system for reporting pavement strength is old and are replaced by the ICAO recommended ACN/PCN system in 1983 and ACR/PCR system in 2020.

For questions that are related to the flexible pavement requirements, contact Airbus.

ACN/PCN Reporting System:

Section 07-09-00 gives ACN data prepared according to the ACN/PCN system as referenced in ICAO Annex 14, "Aerodromes", Volume 1 "Aerodrome Design and Operations".

Eighth Edition July 2018, incorporating Amendments 1 to 14 and ICAO doc 9157, "Aerodrome Design Manual", part 3 "Pavements" Second Edition 1983.

The ACN/PCN system is applicable until November 2024.

ACN is the Aircraft Classification Number and PCN is the related Pavement Classification Number.

An aircraft with an ACN less than or equal to the PCN can operate without restriction on the pavement.

Numerically the ACN is two times the derived single wheel load expressed in thousands of kilograms.

The derived single wheel load is calculated as the load on a single tire inflated to 1.25 MPa (181 psi) that would have the same pavement requirements as the aircraft.

Computationally the ACN/PCN system uses PCA program PDILB for rigid pavements and S-77-1 for flexible pavements to calculate ACN values.

The airport authority must select the method of pavement analysis.

The results of their analysis should be reported using the following format:

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

		PCN	
PAVEMENT TYPE	SUBGRADE CATEGORY	TIRE PRESSURE CATEGORY	EVALUATION METHOD
R – Rigid	A – High	W – No pressure limit	T – Technical
F – Flexible	B – Medium	X – High pressure limited to 1.75 MPa (254 psi)	U – Using Aircraft
	C – Low	Y – Medium pressure limited to 1.25 MPa (181 psi)	
	D – Ultra Low	Z – Low pressure limited to 0.5 MPa (73 psi)	

Section 07-09-00 shows the aircraft ACN values.

For flexible pavements, the four subgrade categories (CBR) are:

CBR 15
CBR 10
CBR 6
CBR 3

For rigid pavements, the four subgrade categories (k) are:

- A. High Strength	k = 150 MN/m ³ (550 pci)
- B. Medium Strength	k = 80 MN/m ³ (300 pci)
- C. Low Strength	k = 40 MN/m³ (150 pci)
- D. Ultra Low Strength	k = 20 MN/m³ (75 pci)

ACR/PCR Reporting System:

Section 07-10-00 gives ACR data prepared according to the ACR/PCR system as referenced in ICAO Annex 14, "Aerodromes", Volume 1 "Aerodrome Design and Operations".

Eight Edition July 2018, incorporating Amendments 1 to 15 and ICAO doc 9157, "Aerodrome Design Manual", part 3 "Pavements" Third Edition 2021.

The ACR/PCR system is effective from November 2020 and will be applicable in November 2024.

ACR is the Aircraft Classification Rating and PCR is the related Pavement Classification Rating. An aircraft with an ACR less than or equal to the PCR can operate without restriction on the pavement.

Numerically the ACR is two times the derived single-wheel load expressed in hundreds of kilograms.

The derived single-wheel load is calculated as the load on a single tire inflated to 1.50 Mpa (218 psi) that can have the same pavement requirements as the aircraft.

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

Computationally the ACR/PCR system relies on the Linear Elastic Analysis (LEA). The ACR are computed with the official ICAO-ACR software.

States can start their own methods for PCR determination, which agree with the overall parameters of the ACR/PCR method.

The results of their analysis should be reported with the following format:

		PCR	
PAVEMENT TYPE	SUBGRADE CATEGORY	TIRE PRESSURE CATEGORY	EVALUATION METHOD
R – Rigid	A – High	W – No pressure limit	T – Technical
F – Flexible	B – Medium	X – High pressure limited to 1.75 MPa (254 psi)	U – Using Aircraft
	C – Low	Y – Medium pressure limited to 1.25 MPa (181 psi)	
	D – Ultra Low	Z – Low pressure limited to 0.5 MPa (73 psi)	

Section 07-10-00 shows the aircraft ACR value.

For flexible and rigid pavement, the four subgrade categories are defined based on the subgrade modulus of elasticity (E):

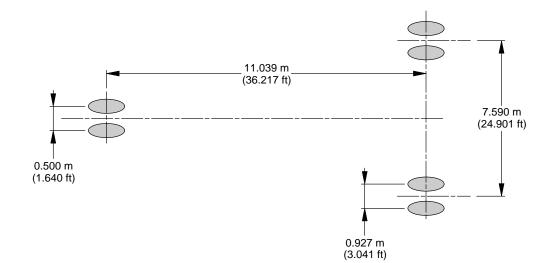
- A. High Strength
- B. Medium Strength
- C. Low Strength
- D. Ultra Low Strength

E = 200 Mpa (29 008 psi) E = 120 Mpa (17 405 psi) E = 80 Mpa (11 603 psi) E = 50 Mpa (7 252 psi)

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

7-2-0 Landing Gear Footprint

**ON A/C A319-100 A319neo


Landing Gear Footprint

1. This section gives data about the landing gear footprint in relation with the aircraft MRW and tire sizes and pressures.

The landing-gear footprint information is given for all the operational weight variants of the aircraft.

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

**ON A/C A319-100

		PERCENTAGE				
WEIGHT VARIANT	MAXIMUM RAMP WEIGHT	OF WEIGHT ON MAIN GEAR GROUP	NOSE GEAR TIRE SIZE	NOSE GEAR TIRE PRESSURE	MAIN GEAR TIRE SIZE	MAIN GEAR TIRE PRESSURE
A319-100	64 400 kg	92.6%	30x8.8R15	11.4 bar	46x17R20	11.9 bar
WV000 (CG 39%)	(141 975 lb)		(30x8.8-15)	(165 psi)	(46x16-20)	(173 psi)
A319-100	64 400 kg	91.4%	30x8.8R15	11.4 bar	46x17R20	11.9 bar
WV000 (CG 36%)	(141 975 lb)		(30x8.8-15)	(165 psi)	(46x16-20)	(173 psi)
A319-100	70 400 kg	92.1%	30x8.8R15	12.5 bar	46x17R20	12.9 bar
WV001 (CG 37.5%)	(155 200 lb)		(30x8.8-15)	(181 psi)	(46x16-20)	(187 psi)
A319-100	70 400 kg	91.5%	30x8.8R15	12.5 bar	46x17R20	12.9 bar
WV001 (CG 36%)	(155 200 lb)		(30x8.8-15)	(181 psi)	(46x16-20)	(187 psi)
A319-100	75 900 kg	91.6%	30x8.8R15	13.2 bar	46x17R20	13.8 bar
WV002	(167 325 lb)		(30x8.8-15)	(191 psi)	(46x16-20)	(200 psi)
A319-100	75 900 kg	91.6%	30x8.8R15	13.9 bar	46x17R20	13.8 bar
WV002 (CJ)	(167 325 lb)		(30x8.8-15)	(202 psi)	(46x16-20)	(200 psi)
A319-100	68 400 kg	92.3%	30x8.8R15	12.1 bar	46x17R20	12.5 bar
WV003 (CG 38.1%)	(150 800 lb)		(30x8.8-15)	(175 psi)	(46x16-20)	(181 psi)
A319-100	68 400 kg	91.5%	30x8.8R15	12.1 bar	46x17R20	12.5 bar
WV003 (CG 36%)	(150 800 lb)		(30x8.8-15)	(175 psi)	(46x16-20)	(181 psi)

N_AC_070200_1_0040101_01_03

Landing Gear Footprint (Sheet 1 of 2) FIGURE-7-2-0-991-004-A01

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

**ON A/C A319-100

WEIGHT VARIANT	MAXIMUM RAMP WEIGHT	PERCENTAGE OF WEIGHT ON MAIN GEAR GROUP	NOSE GEAR TIRE SIZE	NOSE GEAR TIRE PRESSURE	MAIN GEAR TIRE SIZE	MAIN GEAR TIRE PRESSURE
A319-100	68 400 kg	92.3%	30x8.8R15	12.1 bar	46x17R20	12.5 bar
WV004 (CG 38.1%)	(150 800 lb)		(30x8.8-15)	(175 psi)	(46x16-20)	(181 psi)
A319-100	68 400 kg	91.5%	30x8.8R15	12.1 bar	46x17R20	12.5 bar
WV004 (CG 36%)	(150 800 lb)		(30x8.8-15)	(175 psi)	(46x16-20)	(181 psi)
A319-100	70 400 kg	92.1%	30x8.8R15	12.5 bar	46x17R20	12.9 bar
WV005 (CG 37.5%)	(155 200 lb)		(30x8.8-15)	(181 psi)	(46x16-20)	(187 psi)
A319-100	70 400 kg	91.5%	30x8.8R15	12.5 bar	46x17R20	12.9 bar
WV005 (CG 36%)	(155 200 lb)		(30x8.8-15)	(181 psi)	(46x16-20)	(187 psi)
A319-100	70 400 kg	91.6%	30x8.8R15	13.9 bar	46x17R20	13.8 bar
WV005 (CJ)	(155 200 lb)		(30x8.8-15)	(202 psi)	(46x16-20)	(200 psi)
A319-100	73 900 kg	91.7%	30x8.8R15	13.5 bar	46x17R20	13.4 bar
WV006 (CG 36.52%)	(162 925 lb)		(30x8.8-15)	(196 psi)	(46x16-20)	(194 psi)
A319-100	73 900 kg	91.5%	30x8.8R15	13.5 bar	46x17R20	13.4 bar
WV006 (CG 36%)	(162 925 lb)		(30x8.8-15)	(196 psi)	(46x16-20)	(194 psi)
A319-100	75 900 kg	91.6%	30x8.8R15	13.2 bar	46x17R20	13.8 bar
WV007	(167 325 lb)		(30x8.8-15)	(191 psi)	(46x16-20)	(200 psi)
A319-100	64 400 kg	92.6%	30x8.8R15	11.4 bar	46x17R20	11.9 bar
WV008 (CG 39%)	(141 975 lb)		(30x8.8-15)	(165 psi)	(46x16-20)	(173 psi)
A319-100	64 400 kg	91.4%	30x8.8R15	11.4 bar	46x17R20	11.9 bar
WV008 (CG 36%)	(141 975 lb)		(30x8.8-15)	(165 psi)	(46x16-20)	(173 psi)
A319-100	66 400 kg	92.6%	30x8.8R15	12.1 bar	46x17R20	12.5 bar
WV009 (CG 38.8%)	(146 375 lb)		(30x8.8-15)	(175 psi)	(46x16-20)	(181 psi)
A319-100	66 400 kg	91.5%	30x8.8R15	12.1 bar	46x17R20	12.5 bar
WV009 (CG 36%)	(146 375 lb)		(30x8.8-15)	(175 psi)	(46x16-20)	(181 psi)
A319-100 WV010 (CJ)	76 900 kg (169 525 lb)	91.5%	30x8.8R15 (30x8.8-15)	13.9 bar (202 psi)	46x17R20	13.8 bar (200 psi)
A319-100	66 400 kg	92.6%	30x8.8R15	12.1 bar	46x17R20	12.5 bar
WV011 (CG 38.8%)	(146 375 lb)		(30x8.8-15)	(175 psi)	(46x16-20)	(181 psi)
A319-100	66 400 kg	91.5%	30x8.8R15	12.1 bar	46x17R20	12.5 bar
WV011 (CG 36%)	(146 375 lb)		(30x8.8-15)	(175 psi)	(46x16-20)	(181 psi)
A319-100	62 400 kg	92.6%	30x8.8R15	11.4 bar	46x17R20	11.9 bar
WV012 (CG 39%)	(137 575 lb)		(30x8.8-15)	(165 psi)	(46x16-20)	(173 psi)
A319-100	62 400 kg	91.4%	30x8.8R15	11.4 bar	46x17R20	11.9 bar
WV012 (CG 36%)	(137 575 lb)		(30x8.8-15)	(165 psi)	(46x16-20)	(173 psi)
A319-100	75 900 kg	91.6%	30x8.8R15	13.9 bar	46x17R20	13.8 bar
WV013 (CJ)	(167 325 lb)		(30x8.8-15)	(202 psi)	(46x16-20)	(200 psi)

N_AC_070200_1_0040102_01_04

Landing Gear Footprint (Sheet 2 of 2) FIGURE-7-2-0-991-004-A01

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

**ON A/C A319neo

WEIGHT VARIANT	MAXIMUM RAMP WEIGHT	PERCENTAGE OF WEIGHT ON MAIN GEAR GROUP	NOSE GEAR TIRE SIZE	NOSE GEAR TIRE PRESSURE	MAIN GEAR TIRE SIZE	MAIN GEAR TIRE PRESSURE
A319NEO WV050 (CG 36%)	64 400 kg (141 975 lb)	91.4%	30x8.8R15 (30x8.8-15)	11.4 bar (165 psi)	46x17R20 (46x16-20)	11.9 bar (173 psi)
A319NEO WV050 (CG 35.44%)	64 400 kg (141 975 lb)	91.2%	30x8.8R15 (30x8.8-15)	11.4 bar (165 psi)	46x17R20 (46x16-20)	11.9 bar (173 psi)
A319NEO WV051 (CG 36%)	64 400 kg (141 975 lb)	91.4%	30x8.8R15 (30x8.8-15)	11.4 bar (165 psi)	46x17R20 (46x16-20)	11.9 bar (173 psi)
A319NEO WV051 (CG 35.44%)	64 400 kg (141 975 lb)	91.2%	30x8.8R16 (30x8.8-16)	11.4 bar (165 psi)	46x17R20 (46x16-20)	11.9 bar (173 psi)
A319NEO WV051 (CG 32%)	64 400 kg (141 975 lb)	89.9%	30x8.8R17 (30x8.8-17)	11.4 bar (165 psi)	46x17R20 (46x16-20)	11.9 bar (173 psi)
A319NEO WV052 (CG 36%)	70 400 kg (155 200 lb)	91.5%	30x8.8R15 (30x8.8-15)	12.5 bar (181 psi)	46x17R20 (46x16-20)	12.9 bar (187 psi)
A319NEO WV052 (CG 32%)	70 400 kg (155 200 lb)	89.9%	30x8.8R19 (30x8.8-19)	12.5 bar (181 psi)	46x17R20 (46x16-20)	12.9 bar (187 psi)
A319NEO WV053 (CG 36%)	70 400 kg (155 200 lb)	91.5%	30x8.8R15 (30x8.8-15)	12.5 bar (181 psi)	46x17R20 (46x16-20)	12.9 bar (187 psi)

N_AC_070200_1_0370101_01_04

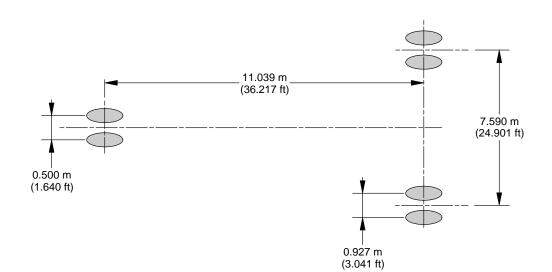
Landing Gear Footprint (Sheet 1 of 2) FIGURE-7-2-0-991-037-A01

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

**ON A/C A319neo

WEIGHT VARIANT	MAXIMUM RAMP WEIGHT	PERCENTAGE OF WEIGHT ON MAIN GEAR GROUP	NOSE GEAR TIRE SIZE	NOSE GEAR TIRE PRESSURE	MAIN GEAR TIRE SIZE	MAIN GEAR TIRE PRESSURE
A319NEO WV053 (CG 32%)	70 400 kg (155 200 lb)	89.9%	30x8.8R21 (30x8.8-21)	12.5 bar (181 psi)	46x17R20 (46x16-20)	12.9 bar (187 psi)
A319NEO WV054 (CG 36%)	75 900 kg (167 325 lb)	91.6%	30x8.8R15 (30x8.8-15)	13.2 bar (191 psi)	46x17R20 (46x16-20)	13.8 bar (200 psi)
A319NEO WV054 (CG 32%)	75 900 kg (167 325 lb)	90.0%	30x8.8R23 (30x8.8-23)	13.2 bar (191 psi)	46x17R20 (46x16-20)	13.8 bar (200 psi)
A319NEO WV055	75 900 kg (167 325 lb)	91.6%	30x8.8R15 (30x8.8-15)	13.2 bar (191 psi)	46x17R20 (46x16-20)	13.8 bar (200 psi)

N_AC_070200_1_0370102_01_00


Landing Gear Footprint (Sheet 2 of 2) FIGURE-7-2-0-991-037-A01

7-2-0

Page 5 Dec 01/23

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

**ON A/C A319neo

WEIGHT VARIANT	Maximum Ramp Weight	PERCENTAGE OF WEIGHT ON MAIN GEAR GROUP	NOSE GEAR TIRE SIZE	NOSE GEAR TIRE PRESSURE	MAIN GEAR TIRE SIZE	MAIN GEAR TIRE PRESSURE
ACJ319NEO WV054	75 900 kg (167 325 lb)	91.6%	30x8.8R15 (30x8.8-15)	13.9 bar (202 psi)	46x17R20 (46x16-20)	13.8 bar (200 psi)
ACJ319NEO WV055 (CG 36%)	75 900 kg (167 325 lb)	91.6%	30x8.8R15 (30x8.8-15)	13.9 bar (202 psi)	46x17R20 (46x16-20)	13.8 bar (200 psi)
ACJ319NEO WV055 (CG 32%)	75 900 kg (167 325 lb)	90.0%	30x8.8R15 (30x8.8-15)	13.9 bar (202 psi)	46x17R20 (46x16-20)	13.8 bar (200 psi)
ACJ319NEO WV110 (CG 36%)	77 700 kg (171 300 lb)	91.5%	30x8.8R15 (30x8.8-15)	13.9 bar (202 psi)	46x17R20 (46x16-20)	13.8 bar (200 psi)
ACJ319NEO WV110 (CG 32%)	77 700 kg (171 300 lb)	89.9%	30x8.8R15 (30x8.8-15)	13.9 bar (202 psi)	46x17R20 (46x16-20)	13.8 bar (200 psi)
ACJ319NEO WV111	77 700 kg (171 300 lb)	91.5%	30x8.8R15 (30x8.8-15)	13.9 bar (202 psi)	46x17R20 (46x16-20)	13.8 bar (200 psi)
ACJ319NEO WV112	77 700 kg (171 300 lb)	91.5%	30x8.8R15 (30x8.8-15)	13.9 bar (202 psi)	46x17R20 (46x16-20)	13.8 bar (200 psi)
ACJ319NEO WV113	76 900 kg (169 525 lb)	91.5%	30x8.8R15 (30x8.8-15)	13.9 bar (202 psi)	46x17R20 (46x16-20)	13.8 bar (200 psi)

N_AC_070200_1_0400101_01_01

Landing Gear Footprint for ACJ319NEO (Sheet 1 of 2) FIGURE-7-2-0-991-040-A01

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

**ON A/C A319neo

WEIGHT VARIANT	MAXIMUM RAMP WEIGHT	PERCENTAGE OF WEIGHT ON MAIN GEAR GROUP	NOSE GEAR TIRE SIZE	NOSE GEAR TIRE PRESSURE	MAIN GEAR TIRE SIZE	MAIN GEAR TIRE PRESSURE
ACJ319NEO	76 900 kg	91.5%	30x8.8R15	13.9 bar	46x17R20	13.8 bar
WV114	(169 525 lb)		(30x8.8-15)	(202 psi)	(46x16-20)	(200 psi)
ACJ319NEO	76 900 kg	91.5%	30x8.8R15	13.9 bar	46x17R20	13.8 bar
WV115	(169 525 lb)		(30x8.8-15)	(202 psi)	(46x16-20)	(200 psi)
ACJ319NEO	75 900 kg	91.6%	30x8.8R15	13.9 bar	46x17R20	13.8 bar
WV116	(167 325 lb)		(30x8.8-15)	(202 psi)	(46x16-20)	(200 psi)
ACJ319NEO WV120 (CG 34%)	78 600 kg (173 275 lb)	90.7%	30x8.8R15 (30x8.8-15)	13.9 bar (202 psi)	46x17R20 (46x16-20)	13.8 bar (200 psi)
ACJ319NEO WV120 (CG 32%)	78 600 kg (173 275 lb)	89.9%	30x8.8R15 (30x8.8-15)	13.9 bar (202 psi)	46x17R20 (46x16-20)	13.8 bar (200 psi)

N_AC_070200_1_0400102_01_00

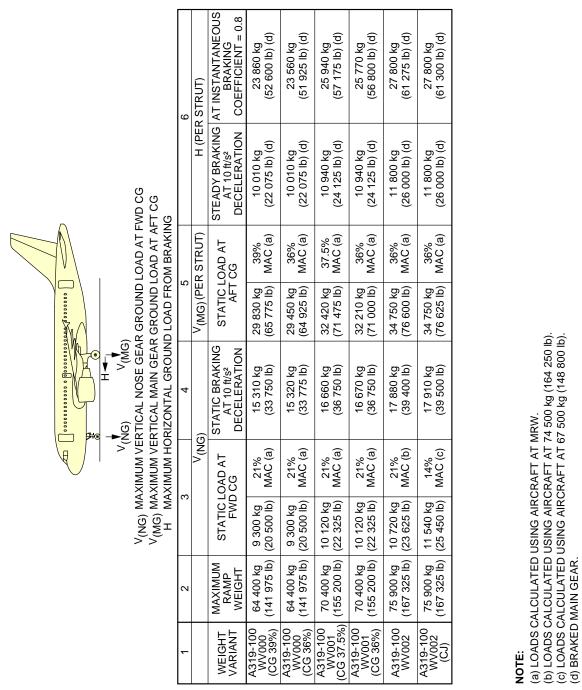
Landing Gear Footprint for ACJ319NEO (Sheet 2 of 2) FIGURE-7-2-0-991-040-A01

Page 7 Dec 01/23

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

7-3-0 Maximum Pavement Loads

**ON A/C A319-100 A319neo


Maximum Pavement Loads

1. This section gives maximum vertical and horizontal pavement loads for some critical conditions at the tire-ground interfaces.

The maximum pavement loads are given for all the operational weight variants of the aircraft.

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

**ON A/C A319-100

N_AC_070300_1_0230101_01_03

Maximum Pavement Loads for A319-100 and ACJ319-100 (Sheet 1 of 3) FIGURE-7-3-0-991-023-A01

7-3-0

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

**ON A/C A319-100

V(MG) V(MG) (PER STRUT) H(PER STRUT) WRIGHT RAXIMU RAMP STATIC LOAD AT RAMP STATIC LOAD AT STATIC BRAKING V(MG) H(PER STRUT) H(PER STRUT) VRIGHT RAXIMU RAMP STATIC LOAD AT RAMP STATIC LOAD AT STATIC BRAKING STATIC STATIC STATIC STATIC BRAKING STATIC STATIC BLAKING STATIC BLAKING STATIC BLAKING STATIC BLAKING STATIC BLAKING STATIC BLAKING STATIC BLAKING	2	3		4	5			6
Image: Mark Mark Mark Mark Mark Mark Mark Mark			V(NG	()	V _(MG) (PE	R STRUT)	H (PEF	R STRUT)
00 kg9 860 kg21%16 230 kg31 560 kg38.1%10 630 kg800 lb)(21 750 lb)MAC (a)(35 775 lb)(69 600 lb)MAC (a)(23 425 lb) (d)800 lb)(21 750 lb)MAC (a)(35 775 lb)(68 950 lb)MAC (a)(23 425 lb) (d)800 lb)(21 750 lb)MAC (a)(35 775 lb)(68 950 lb)MAC (a)(23 425 lb) (d)800 lb)(21 750 lb)MAC (a)(35 775 lb)(68 950 lb)MAC (a)(23 425 lb) (d)800 lb)(21 750 lb)MAC (a)(35 775 lb)(68 950 lb)MAC (a)(23 425 lb) (d)800 lb)(21 750 lb)MAC (a)(35 775 lb)(68 950 lb)MAC (a)(23 425 lb) (d)800 lb)(21 750 lb)MAC (a)(35 775 lb)(68 950 lb)MAC (a)(24 125 lb) (d)800 lb)(21 750 lb)MAC (a)(74 775 lb)MAC (a)(24 125 lb) (d)00 kg10 120 kg21%(36 750 lb)(71 075 lb)MAC (a)(24 125 lb) (d)00 kg10 120 kg21%(36 550 lb)(71 075 lb)MAC (a)(24 125 lb) (d)00 kg10 120 kg21%(36 550 lb)(71 075 lb)MAC (a)(24 125 lb) (d)00 kg10 120 kg21%(38 500 lb)(71 075 lb)MAC (a)(24 125 lb) (d)00 kg10 50 kg32 400 lb)32 240 kg36 52 %11 480 kg00 kg10 610 kg21%(38 500 lb)(71 075 lb)MAC (a)(24 125 lb) (d)00 kg10 610 kg <td>MAXIMUM RAMP WEIGHT</td> <td>STATIC L FWD</td> <td>OAD AT CG</td> <td>STATIC BRAKING AT 10 ft/s² DECELERATION</td> <td>STATIC L MAX AI</td> <td>OAD AT FT CG</td> <td>STEADY BRAKING AT 10 ft/s² DECELERATION</td> <td>AT INSTANTANEOUS BRAKING COEFFICIENT = 0.8</td>	MAXIMUM RAMP WEIGHT	STATIC L FWD	OAD AT CG	STATIC BRAKING AT 10 ft/s ² DECELERATION	STATIC L MAX AI	OAD AT FT CG	STEADY BRAKING AT 10 ft/s ² DECELERATION	AT INSTANTANEOUS BRAKING COEFFICIENT = 0.8
00 kg9 860 kg21%16 230 kg31 280 kg36%10 630 kg800 lb)(21 750 lb)MAC (a)(35 775 lb)(68 950 lb)MAC (a)(23 425 lb) (d)800 lb)(21 750 lb)MAC (a)(35 775 lb)(68 950 lb)MAC (a)(23 425 lb) (d)800 lb)(21 750 lb)MAC (a)(35 775 lb)(68 950 lb)MAC (a)(23 425 lb) (d)800 lb)(21 750 lb)MAC (a)(35 775 lb)(68 950 lb)MAC (a)(23 425 lb) (d)800 lb)(21 750 lb)MAC (a)(35 775 lb)(68 950 lb)MAC (a)(23 425 lb) (d)9 860 kg21%16 570 kg31 280 kg36%10 940 kg10 940 kg200 lb)(22 325 lb)MAC (a)(36 750 lb)(71 475 lb)MAC (a)(24 125 lb) (d)00 kg10 120 kg21%16 670 kg32 240 kg36%10 940 kg200 lb)(22 325 lb)MAC (a)(36 750 lb)(71 075 lb)MAC (a)(24 125 lb) (d)00 kg11 550 kg11 470 kg33 240 kg36%11 940 kg10 940 kg200 lb)(22 325 lb)MAC (a)(38 500 lb)(71 075 lb)MAC (a)(23 125 lb) (d)00 kg10 610 kg21%17 470 kg33 820 kg36%11 940 kg200 lb)(23 400 lb)MAC (a)(38 500 lb)(71 775 lb)MAC (a)(21 125 lb) (d)00 kg10 610 kg21%17 470 kg33 820 kg36%11 480 kg200 kg23 400 lb)(71 7	68 400 kg (150 800 lb)	9 860 kg (21 750 lb)		16 230 kg (35 775 lb)	31 560 kg (69 600 lb)	38.1% MAC (a)	10 630 kg (23 425 lb) (d)	25 250 kg (55 675 lb) (d)
00 kg9 860 kg21% 21%16 230 kg (35 775 lb)31 560 kg (89 600 lb)38.1% MAC (a)10 630 kg (33 425 lb) (d)800 lb)(21 750 lb)MAC (a)(35 775 lb)(68 950 lb)MAC (a)(23 425 lb) (d)800 lb)(21 750 lb)MAC (a)(35 775 lb)(68 950 lb)MAC (a)(23 425 lb) (d)800 lb)(21 750 lb)MAC (a)(35 775 lb)(68 950 lb)MAC (a)(23 425 lb) (d)800 lb)(21 750 lb)MAC (a)(35 775 lb)(71 475 lb)MAC (a)(24 125 lb) (d)00 kg10 120 kg21%16 660 kg32 210 kg36%10 940 kg200 lb)(22 325 lb)MAC (a)(36 750 lb)(71 000 lb)MAC (a)(24 125 lb) (d)00 kg10 120 kg14%17 990 kg32 240 kg36%10 940 kg200 lb)(22 325 lb)MAC (a)(36 750 lb)(71 075 lb)MAC (a)(24 125 lb) (d)00 kg11 550 kg14 560 kg33 850 kg36 552 %11 480 kg00 kg10 610 kg21%17 470 kg33 820 kg36 552 %11 480 kg00 kg10 610 kg21%17 470 kg33 820 kg36 552 %11 480 kg00 kg10 610 kg21%17 470 kg33 820 kg36 552 %11 480 kg00 kg10 610 kg21%17 470 kg33 820 kg36 552 %11 480 kg00 kg10 720 kg21%17 470 kg33 820 kg36 552 %10 80 kg00 kg10 720 kg	68 400 kg (150 800 lb)	9 860 kg (21 750 lb)	21% MAC (a)	16 230 kg (35 775 lb)	31 280 kg (68 950 lb)	36% MAC (a)	10 630 kg (23 425 lb) (d)	25 020 kg (55 175 lb) (d)
68 400 kg9 860 kg21%16 230 kg31 280 kg36%10 630 kg(150 800 lb)(21 750 lb)MAC (a)(35 775 lb)(68 950 lb)MAC (a)(23 425 lb) (d)70 400 kg10 120 kg21%16 660 kg32 420 kg37.5%10 940 kg(155 200 lb)(22 325 lb)MAC (a)(36 750 lb)(71 475 lb)MAC (a)(24 125 lb) (d)70 400 kg10 120 kg21%16 670 kg32 210 kg36%10 940 kg(155 200 lb)(22 325 lb)MAC (a)(36 750 lb)(71 000 lb)MAC (a)(24 125 lb) (d)70 400 kg11 550 kg14%17 990 kg32 240 kg36%10 940 kg70 400 kg11 550 kg14 480(38 550 lb)(71 075 lb)MAC (a)(24 125 lb) (d)70 400 kg11 550 kg17 470 kg33 890 kg36.52%11 480 kg70 400 kg10 610 kg21%17 470 kg33 820 kg36.52%11 480 kg73 900 kg10 610 kg21%17 470 kg33 820 kg36.52%11 480 kg73 900 kg10 610 kg21%17 470 kg33 820 kg36.52%11 480 kg73 900 kg10 610 kg21%17 470 kg33 820 kg36.52%11 480 kg73 900 kg10 610 kg21%17 470 kg33 820 kg36.52 kb) (d)17 430 kg73 900 kg10 610 kg21%17 470 kg33 820 kg36.52 kb) (d)17 430 kg73 900 kg10 610 kg21%17 470 kg33 820 kg	68 400 kg (150 800 lb)			16 230 kg (35 775 lb)	31 560 kg (69 600 lb)		10 630 kg (23 425 lb) (d)	25 250 kg (55 675 lb) (d)
70 400 kg 10 120 kg 21% 16 660 kg 32 420 kg 37.5% 10 940 kg (155 200 lb) (22 325 lb) MAC (a) (36 750 lb) (71 475 lb) MAC (a) (24 125 lb) (d) 70 400 kg 10 120 kg 21% 16 670 kg 32 210 kg 36% 10 940 kg 70 400 kg 11 550 kg 316 750 lb) (71 000 lb) MAC (a) (24 125 lb) (d) 70 400 kg 11 550 kg 14% 17 990 kg 32 240 kg 36% 10 940 kg 70 400 kg 11 550 kg 14% 17 990 kg 32 240 kg 36% 10 940 kg 73 900 kg 11 550 kg 14% 17 470 kg 33 890 kg 36.52 kg 11 480 kg 73 900 kg 10 610 kg 21% 17 470 kg 33 820 kg 36.53 lb) (d) 11 480 kg 73 900 kg 10 610 kg 21% 17 470 kg 33 820 kg 36.53 lb) (d) 11 480 kg 73 900 kg 10 610 kg 21% 17 470 kg 33 820 kg 36.53 lb) (d) 17 470 kg 73 900 kg<	68 400 kg (150 800 lb)		21% MAC (a)	16 230 kg (35 775 lb)	31 280 kg (68 950 lb)	36% MAC (a)	10 630 kg (23 425 lb) (d)	25 020 kg (55 175 lb) (d)
70 400 kg 10 120 kg 21% 16 670 kg 32 210 kg 36% 10 940 kg (155 200 lb) (22 325 lb) MAC (a) (36 750 lb) (36 750 lb) (71 000 lb) MAC (a) (24 125 lb) (d) 70 400 kg 11 550 kg 14% (7 990 kg) (32 240 kg) (36 750 lb) (71 075 lb) MAC (a) (24 125 lb) (d) 70 400 kg 11 550 kg 17 470 kg (33 500 lb) (74 725 lb) MAC (a) (24 125 lb) (d) 73 900 kg 10 610 kg 21% 17 470 kg 33 890 kg 36.52% 11 480 kg 73 900 kg 10 610 kg 21% 17 470 kg 33 820 kg 36.52% 11 480 kg 73 900 kg 10 610 kg 21% 17 470 kg 33 820 kg 36.52 25 lb) (d) 11 480 kg 73 900 kg 10 610 kg 21% 17 470 kg 33 820 kg 36.5325 lb) (d) 11 480 kg 75 900 kg 10 610 kg 21% 17 470 kg 33 820 kg 36% 11 480 kg 75 900 kg 10 610 kg 21% 17 470 kg<	70 400 kg (155 200 lb)		21% MAC (a)	16 660 kg (36 750 lb)	32 420 kg (71 475 lb)	37.5% MAC (a)	10 940 kg (24 125 lb) (d)	25 940 kg (57 175 lb) (d)
70 400 kg11 550 kg14%17 990 kg32 240 kg36%10 940 kg(155 200 lb)(25 450 lb)MAC (b)(39 650 lb)(71 075 lb)MAC (a)(24 125 lb) (d)73 900 kg10 610 kg21%17 470 kg33 890 kg36.52%11 480 kg73 900 kg10 610 kg21%17 470 kg33 830 kg36.52%11 480 kg73 900 kg10 610 kg21%17 470 kg33 820 kg36.52%11 480 kg73 900 kg10 610 kg21%17 470 kg33 820 kg36%11 480 kg75 900 kg10 610 kg21%17 880 kg33 820 kg36%11 480 kg75 900 kg10 720 kg21%17 880 kg34 750 kg36%11 800 kg75 900 kg10 720 kg21%17 880 kg36 750 lb)MAC (a)(26 000 lb) (d)75 910 kg23 625 lb)MAC (c)(39 400 lb)76 600 lb)MAC (a)(26 000 lb) (d)	70 400 kg (155 200 lb)	10 120 kg (22 325 lb)	21% MAC (a)	16 670 kg (36 750 lb)	32 210 kg (71 000 lb)		10 940 kg (24 125 lb) (d)	25 770 kg (56 800 lb) (d)
73 900 kg 10 610 kg 21% 17 470 kg 33 890 kg 36.52% 11 480 kg (162 925 lb) (23 400 lb) MAC (a) (38 500 lb) (74 725 lb) MAC (a) (25 325 lb) (d) 73 900 kg 10 610 kg 21% 17 470 kg 33 820 kg 36% 11 480 kg 73 900 kg 10 610 kg 21% 17 470 kg 33 820 kg 36% 11 480 kg 75 900 kg 10 720 kg 21% 17 880 kg 34 750 kg 36% 11 800 kg 75 900 kg 10 720 kg 21% 17 880 kg 36 750 kg 36% 11 800 kg 76 325 lb) MAC (a) (76 600 lb) MAC (a) (26 000 lb) (d) 1	70 400 kg (155 200 lb)		14% MAC (b)	17 990 kg (39 650 lb)	32 240 kg (71 075 lb)	36% MAC (a)	10 940 kg (24 125 lb) (d)	25 800 kg (56 875 lb) (d)
000 kg 10 610 kg 21% 17 470 kg 33 820 kg 36% 11 480 kg 925 lb) (23 400 lb) MAC (a) (38 500 lb) (74 550 lb) MAC (a) (25 325 lb) (d) 900 kg 10 720 kg 21% 17 880 kg 34 750 kg 36% 11 800 kg 325 lb) (23 625 lb) MAC (c) (39 400 lb) (76 600 lb) MAC (a) (26 000 lb) (d)		10 610 kg (23 400 lb)		17 470 kg (38 500 lb)	33 890 kg (74 725 lb)	36.52% MAC (a)	11 480 kg (25 325 lb) (d)	27 110 kg (59 775 lb) (d)
000 kg 10 720 kg 21% 17 880 kg 34 750 kg 36% 11 800 kg 325 lb) (23 625 lb) MAC (c) (39 400 lb) (76 600 lb) MAC (a) (26 000 lb) (d)	73 900 kg (162 925 lb)	10 610 kg (23 400 lb)	21% MAC (a)	17 470 kg (38 500 lb)	33 820 kg (74 550 lb)		11 480 kg (25 325 lb) (d)	27 050 kg (59 650 lb) (d)
	75 900 kg (167 325 lb)			17 880 kg (39 400 lb)	34 750 kg (76 600 lb)		11 800 kg (26 000 lb) (d)	27 800 kg (61 275 lb) (d)
	(d) BRAKED MAIN GEAR.							

N_AC_070300_1_0230102_01_03

Maximum Pavement Loads for A319-100 and ACJ319-100 (Sheet 2 of 3) FIGURE-7-3-0-991-023-A01

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

**ON A/C A319-100

Γ		0US 0.8										
9	H (PER STRUT)	AT INSTANTANEOUS BRAKING COEFFICIENT = 0.8	23 860 kg (52 600 lb) (c)	23 560 kg (51 925 lb) (c)	24 590 kg (54 200 lb) (c)	24 290 kg (53 550 lb) (c)	28 140 kg (62 050 lb) (c)	24 590 kg (54 200 lb) (c)	24 290 kg (53 550 lb) (c)	23 120 kg (50 975 lb) (c)	22 820 kg (50 325 lb) (c)	27 800 kg (61 300 lb) (c)
	H (PEF	STEADY BRAKING AT 10 ft/s ² DECELERATION	10 010 kg (22 075 lb) (c)	10 010 kg (22 075 lb) (c)	10 320 kg (22 750 lb) (c)	10 320 kg (22 750 lb) (c)	11 950 kg (26 350 lb) (c)	10 320 kg (22 750 lb) (c)	10 320 kg (22 750 lb) (c)	9 700 kg (21 375 lb) (c)	9 700 kg (21 375 lb) (c)	11 800 kg (26 000 lb) (c)
	R STRUT)	OAD AT T CG	39% MAC (a)	36% MAC (a)	38.8% MAC (a)	36% MAC (a)	36% MAC (a)	38.8% MAC (a)	36% MAC (a)	39% MAC (a)	36% MAC (a)	36% MAC (a)
5	^V (MG) (PER STRUT)	STATIC LOAD AT MAX AFT CG	29 830 kg (65 775 lb)	29 450 kg (64 925 lb)	30 730 kg (67 750 lb)	30 360 kg (66 950 lb)	35 180 kg (77 550 lb)	30 730 kg (67 750 lb)	30 360 kg (66 950 lb)	28 900 kg (63 725 lb)	28 530 kg (62 900 lb)	34 750 kg (76 625 lb)
4	(5	STATIC BRAKING AT 10 ft/s ² DECELERATION	15 310 kg (33 750 lb)	15 320 kg (33 775 lb)	15 770 kg (34 775 lb)	15 770 kg (34 775 lb)	17 830 kg (39 300 lb)	15 770 kg (34 775 lb)	15 770 kg (34 775 lb)	15 000 kg (33 075 lb)	15 000 kg (33 075 lb)	17 910 kg (39 500 lb)
	V(NG)	OAD AT CG	21% MAC (a)	21% MAC (a)	21% MAC (a)	21% MAC (a)	14% MAC (b)	21% MAC (a)	21% MAC (a)	20.4% MAC (a)	20.4% MAC (a)	14% MAC (b)
3		STATIC LOAD AT FWD CG	9 300 kg (20 500 lb)	9 300 kg (20 500 lb)	9 580 kg (21 125 lb)	9 580 kg (21 125 lb)	11 540 kg (25 450 lb)	9 580 kg (21 125 lb)	9 580 kg (21 125 lb)	9 170 kg (20 200 lb)	9 170 kg (20 200 lb)	11 540 kg (25 450 lb)
2		MAXIMUM RAMP WEIGHT	64 400 kg (141 975 lb)	64 400 kg (141 975 lb)	66 400 kg (146 375 lb)	66 400 kg (146 375 lb)	76 900 kg (169 525 lb)	66 400 kg (146 375 lb)	66 400 kg (146 375 lb)	62 400 kg (137 575 lb)	62 400 kg (137 575 lb)	75 900 kg (167 325 lb)
.		WEIGHT VARIANT	A319-100 WV008 (CG 39%)	A319-100 WV008 (CG 36%)	A319-100 WV009 (CG 38.8%)	A319-100 WV009 (CG 36%)	A319-100 WV010 (CJ)	A319-100 WV011 (CG 38.8%)	A319-100 WV011 (CG 36%)	A319-100 WV012 (CG 39%)	A319-100 WV012 (CG 36%)	A319-100 WV013 (CJ)

N_AC_070300_1_0230104_01_04

NOTE: (a) LOADS CALCULATED USING AIRCRAFT AT MRW. (b) LOADS CALCULATED USING AIRCRAFT AT 67 500 kg (148 800 lb). (c) BRAKED MAIN GEAR.

Maximum Pavement Loads for A319-100 and ACJ319-100 (Sheet 3 of 3) FIGURE-7-3-0-991-023-A01

7-3-0

⑤Δ319

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

**ON A/C A319neo

V(MG)

(DNG)

			8.0 8.0							
	6	H (PER STRUT)	AT INSTANTANEC BRAKING COEFFICIENT =	23 560 kg (51 925 lb) (b)	23 500 kg (51 800 lb) (b)	23 560 kg (51 925 lb) (b)	23 500 kg (51 800 lb) (b)	23 150 kg (51 025 lb) (b)	25 770 kg (56 800 lb) (b)	
VD CG		H (PEF	STEADY BRAKING AT INSTANTANEOUS @ 10 ft/s ² BRAKING DECELERATION COEFFICIENT = 0.8	10 010 kg (22 075 lb) (b)	10 010 kg (22 075 lb) (b)	10 010 kg (22 075 lb) (b)	10 010 kg (22 075 lb) (b)	10 010 kg (22 075 lb) (b)	10 940 kg (24 125 lb) (b)	
DAD AT FV AD AT AF 1 BRAKING		R STRUT)	STATIC LOAD AT MAX AFT C.G.	36% MAC (a)	35.44% MAC (a)	36% MAC (a)	35.44% MAC (a)	32% MAC (a)	36% MAC (a)	
SROUND LC ROUND LO OAD FRON	5	V(MG) (PER STRUT)	STATIC I MAX AI	29 450 kg (64 925 lb)	29 370 kg (64 750 lb)	29 450 kg (64 925 lb)	29 370 kg (64 750 lb)	28 940 kg (63 800 lb)	32 210 kg (71 000 lb)	
V _(NG) MAXIMUM VERTICAL NOSE GEAR GROUND LOAD AT FWD CG V _(MG) MAXIMUM VERTICAL MAIN GEAR GROUND LOAD AT AFT CG H MAXIMUM HORIZONTAL GROUND LOAD FROM BRAKING	7	(6	STATIC BRAKING @ 10 ft/s ² DECELERATION	15 320 kg (33 775 lb)	15 310 kg (33 750 lb)	15 320 kg (33 775 lb)	15 310 kg (33 750 lb)	15 320 kg (33 775 lb)	16 670 kg 36 750 lb	
JM VERTI JM VERTI JM HORIZ		(NG)	OAD AT ND C.G.	21% MAC (a)	21% MAC (a)	21% MAC (a)	21% MAC (a)	21% MAC (a)	21% MAC (a)	
NG) MAXIMI NG) MAXIMI H MAXIMI	3		STATIC LOAD AT MOST FWD C.G.	9 300 kg (20 500 lb)	9 300 kg (20 500 lb)	9 300 kg 21% (20 500 lb) MAC (a)	9 300 kg 21% (20 500 lb) MAC (a)	9 300 kg 21% (20 500 lb) MAC (a)	10 120 kg (22 325 lb)	
Z) ∑ Z) ∑J	2		MAXIMUM RAMP WEIGHT	64 400 kg 9 300 kg 21% (141 975 lb) (20 500 lb) MAC (a)	64 400 kg 9 300 kg 21% (141 975 lb) (20 500 lb) MAC (a)	64 400 kg (141 975 lb)	64 400 kg (141 975 lb)	64 400 kg (141 975 lb)	70 400 kg (155 200 lb)	
	1		WEIGHT VARIANT	A319NEO WV050 (CG 36%)	A319NEO WV050 (CG 35.44%)	A319NEO WV051 (CG 36%)	A319NEO WV051 (CG 35.44%)	A319NEO WV051 (CG 32%)	A319NEO WV052 (CG 36%)	NOTE:

 (a) LOADS CALCULATED USING AIRCRAFT AT MRW.
 (b) LOADS CALCULATED USING AIRCRAFT AT 74 500 kg (164 250 lb).
 (c) BRAKED MAIN GEAR. N_AC_070300_1_0400101_01_05

Maximum Pavement Loads for ACF319NEO. Maximum Pavement Loads for ACF319NEO (Sheet 1 of 4) FIGURE-7-3-0-991-040-A01

7-3-0

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

**ON A/C A319neo

6	H (PER STRUT)	AT INSTANTANEOUS BRAKING COEFFICIENT = 0.8	25 320 kg (55 825 lb) (c)	25 770 kg (56 800 lb) (c)	25 320 kg (55 825 lb) (c)	27 800 kg (61 275 lb) (c)	27 310 kg (60 225 lb) (c)	27 800 kg (61 275 lb) (c)	
	н (ре	STEADY BRAKING @ 10 ft/s ² DECELERATION	10 940 kg (24 125 lb) (c)	10 940 kg (24 125 lb) (c)	10 940 kg (24 125 lb) (c)	11 800 kg (26 000 lb) (c)	11 800 kg (26 000 lb) (c)	11 800 kg (26 000 lb) (c)	
	R STRUT)	OAD AT T C.G.	32% MAC (a)	36% MAC (a)	32% MAC (a)	36% MAC (a)	32% MAC (a)	36% MAC (a)	
5	^V (MG) (PER STRUT)	STATIC LOAD AT MAX AFT C.G.	31 650 kg (69 775 lb)	32 210 kg (71 000 lb)	31 650 kg (69 775 lb)	34 750 kg (76 600 lb)	34 140 kg (75 275 lb)	34 750 kg (76 600 lb)	
4	(1	STATIC BRAKING @ 10 ft/s ² DECELERATION	16 670 kg (36 750 lb)	16 670 kg (36 750 lb)	16 670 kg (36 750 lb)	17 880 kg (39 400 lb)	17 870 kg (39 400 lb)	17 880 kg (39 400 lb)	
	V(NG)	OAD AT VD C.G.	21% MAC (a)	21% MAC (a)	21% MAC (a)	21% MAC (b)	21% MAC (b)	21% MAC (b)	
3		STATIC LOAD AT MOST FWD C.G.	10 120 kg (22 325 lb)	10 120 kg (22 325 lb)	10 120 kg (22 325 lb)	10 720 kg (23 625 lb)	10 720 kg (23 625 lb)	10 720 kg (23 625 lb)	
2		MAXIMUM RAMP WEIGHT	70 400 kg 10 120 kg 21% (155 200 lb) (22 325 lb) MAC (a)	70 400 kg 10 120 kg 21% (155 200 lb) (22 325 lb) MAC (a)	70 400 kg 10 120 kg 21% (155 200 lb) (22 325 lb) MAC (a)	75 900 kg 10 720 kg 21% (167 325 lb) (23 625 lb) MAC (b)	75 900 kg 10 720 kg 21% (167 325 lb) (23 625 lb) MAC (b)	75 900 kg 10 720 kg 21% (167 325 lb) (23 625 lb) MAC (b)	
Ļ		WEIGHT VARIANT	A319NEO WV052 (CG 32%)	A319NEO WV053 (CG 36%)	A319NEO WV053 (CG 32%)	A319NEO WV054 (CG 36%)	A319NEO WV054 (CG 32%)	A319NEO WV055	

N_AC_070300_1_0400103_01_00

NOTE: (a) LOADS CALCULATED USING AIRCRAFT AT MRW. (b) LOADS CALCULATED USING AIRCRAFT AT 74 500 kg (164 250 lb). (c) BRAKED MAIN GEAR.

Maximum Pavement Loads for ACF319NEO. Maximum Pavement Loads for ACF319NEO (Sheet 2 of 4) FIGURE-7-3-0-991-040-A01

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

**ON A/C A319neo

	-	2	ო		4	5			6
MAXIMUM RAMP WEIGHT STATIC BRAKING MOST FWD C.G. STATIC BRAKING DECELERATION STATIC LOAD AT MAX AFT C.G. 75 900 kg 11 540 kg 10 ft/s ² MAC (b) MAX AFT C.G. 75 900 kg 11 540 kg 14% 17 880 kg 34 750 kg 36% 75 900 kg 11 540 kg 14% 39 425 lb) 36 750 kg 36% 75 900 kg 11 540 kg 14% 39 425 lb) 76 625 lb) MAC (a) 75 900 kg 11 540 kg 14% 39 425 lb) 76 625 lb) MAC (a) 75 900 kg 11 540 kg 14% 39 425 lb) 77 60 cb) MAC (a) 77 700 kg 11 540 kg 14% 39 425 lb) 75 300 lb) MAC (a) 77 700 kg 11 540 kg 147 780 kg 34 150 kg 36% 36% 77 700 kg 11 540 kg 147 (b) 39 220 lb) MAC (a) 37 50 kg 36% 36% 77 700 kg 11 540 kg 147% 39 220 lb) 36 90 kg 36 90				V(NG	(5	V _(MG) (PE	R STRUT)	H (PEF	R STRUT)
75 900 kg 11 540 kg 14% 17 880 kg 34 750 kg 36% 11 800 kg 75 900 kg 11 540 kg 14% (39 425 lb) (76 625 lb) MAC (a) (26 000 lb) (c) 75 900 kg 11 540 kg 14% 17 880 kg 34 750 kg 36% 11 800 kg 75 900 kg 11 540 kg 14% 17 880 kg 76 625 lb) MAC (a) (26 000 lb) (c) 75 900 kg 11 540 kg 14% 17 880 kg 75 500 lb) MAC (a) (26 000 lb) (c) 77 900 kg 11 540 kg 147 80 kg 75 300 lb) MAC (a) (26 000 lb) (c) 77 700 kg 11 540 kg 147 80 kg 35 540 kg 36% 12 070 kg 77 700 kg 11 540 kg 147 80 kg 77 000 lb) MAC (b) (39 200 lb) (77 000 lb) (26 625 lb) (c) 77 700 kg 11 540 kg 14% 17 780 kg 36% dg 12 070 kg (17 1 300 lb) (26 625 lb) (c) (26 625 lb) (c) (71 1 300 lb) (26 625 lb) (c) (71 1 2 070 kg (71 1 2 070 kg (71 1 2 00 lb)	WEIGHT VARIANT	MAXIMUM RAMP WEIGHT	STATIC L MOST FV		STATIC BRAKING @ 10 ft/s ² DECELERATION		-OAD AT -T C.G.	STEADY BRAKING @ 10 ft/s ² DECELERATION	AT INSTANTANEOUS BRAKING COEFFICIENT = 0.8
75 900 kg 11 540 kg 14% 17 880 kg 34 750 kg 36% 11 800 kg (167 325 lb) (25 450 lb) MAC (b) (39 425 lb) (76 625 lb) MAC (a) (26 000 lb) (c) 75 900 kg 11 540 kg 14% 17 880 kg 34 150 kg 32% 11 800 kg 75 900 kg 11 540 kg 14% 17 880 kg 34 150 kg 32% 11 800 kg 77 700 kg 11 540 kg 14% 17 780 kg 35 540 kg 36% 12 070 kg 77 700 kg 11 540 kg 14% 33 200 lb) (77 000 lb) MAC (a) (26 625 lb) (c) 77 700 kg 11 540 kg 147% 32 200 lb) (77 000 lb) MAC (a) (26 625 lb) (c) 77 700 kg 11 540 kg 147% 32 200 lb) (77 000 lb) MAC (a) (26 625 lb) (c) 77 700 kg 11 540 kg 148% 17 780 kg 35 540 kg 36% 12 070 kg 77 700 kg 11 540 kg 148% 17 780 kg 35 540 kg 36% 12 070 kg (c) <td>ACJ319NEO WV054</td> <td>75 900 kg (167 325 lb)</td> <td>11 540 kg (25 450 lb)</td> <td>14% MAC (b)</td> <td>17 880 kg (39 425 lb)</td> <td>34 750 kg (76 625 lb)</td> <td>36% MAC (a)</td> <td>11 800 kg (26 000 lb) (c)</td> <td>27 800 kg (61 300 lb) (c)</td>	ACJ319NEO WV054	75 900 kg (167 325 lb)	11 540 kg (25 450 lb)	14% MAC (b)	17 880 kg (39 425 lb)	34 750 kg (76 625 lb)	36% MAC (a)	11 800 kg (26 000 lb) (c)	27 800 kg (61 300 lb) (c)
75 900 kg 11 540 kg 14% 17 880 kg 34 150 kg 32% 11 800 kg (167 325 lb) (25 450 lb) MAC (b) (39 425 lb) (75 300 lb) MAC (a) (26 000 lb) (c) 77 700 kg 11 540 kg 14% 17 780 kg 35 540 kg 36% 12 070 kg 77 700 kg 11 540 kg 14% 32 200 lb) (78 350 lb) MAC (a) (26 625 lb) (c) 77 700 kg 11 540 kg 14% 17 780 kg 34 930 kg 32% 12 070 kg 77 700 kg 11 540 kg 14% 33 200 lb) (77 000 lb) MAC (a) (26 625 lb) (c) 77 700 kg 11 540 kg 14% 17 780 kg 35 540 kg 36% 12 070 kg 77 700 kg 11 540 kg 14% 17 780 kg 35 540 kg 36% 12 070 kg 77 700 kg 11 540 kg 14% 17 780 kg 35 540 kg 36% 12 070 kg 77 700 kg 11 540 kg 13 200 lb) 77 300 lb) 36% 12 070 kg 12 070 kg	ACJ319NEO WV055 (CG 36%)	75 900 kg (167 325 lb)	11 540 kg (25 450 lb)	14% MAC (b)	17 880 kg (39 425 lb)	34 750 kg (76 625 lb)	36% MAC (a)	11 800 kg (26 000 lb) (c)	27 800 kg (61 300 lb) (c)
77 700 kg 11 540 kg 14% 17 780 kg 35 540 kg 36% 12 070 kg (171 300 lb) (25 450 lb) MAC (b) (39 200 lb) (78 350 lb) MAC (a) (26 625 lb) (c) 77 700 kg 11 540 kg 14% 17 780 kg 34 930 kg 32% 12 070 kg 77 700 kg 11 540 kg 14% 37 200 lb) MAC (a) (26 625 lb) (c) 77 700 kg 11 540 kg 14% 17 780 kg 34 930 kg 32% 12 070 kg 77 700 kg 11 540 kg 14% 37 200 lb) MAC (a) (26 625 lb) (c) 77 700 kg 11 540 kg 14% 17 780 kg 35 540 kg 36% 12 070 kg 77 700 kg 11 540 kg 14% 17 780 kg 35 540 kg 36% 12 070 kg	ACJ319NEO WV055 (CG 32%)	75 900 kg (167 325 lb)	11 540 kg (25 450 lb)	14% MAC (b)	17 880 kg (39 425 lb)	34 150 kg (75 300 lb)	32% MAC (a)	11 800 kg (26 000 lb) (c)	27 320 kg (60 225 lb) (c)
77 700 kg 11540 kg 14% 17780 kg 34930 kg 32% 12070 kg (171 300 lb) (25 450 lb) MAC (b) (39 200 lb) (77 000 lb) MAC (a) (26 625 lb) (c) 77 700 kg 11 540 kg 14% 17780 kg 35 540 kg 36% 12 070 kg (171 300 lb) (25 450 lb) MAC (b) (39 200 lb) (78 350 lb) MAC (a) (26 625 lb) (c)	ACJ319NEO WV110 (CG 36%)	77 700 kg (171 300 lb)	11 540 kg (25 450 lb)	14% MAC (b)	17 780 kg (39 200 lb)	35 540 kg (78 350 lb)		12 070 kg (26 625 lb) (c)	28 440 kg (62 700 lb) (c)
77 700 kg 11 540 kg 14% 17 780 kg 35 540 kg 36% 12 070 kg (171 300 lb) (25 450 lb) MAC (b) (39 200 lb) (78 350 lb) MAC (a) (26 625 lb) (c)	ACJ319NEO WV110 (CG 32%)	77 700 kg (171 300 lb)	11 540 kg (25 450 lb)	14% MAC (b)	17 780 kg (39 200 lb)	34 930 kg (77 000 lb)	32% MAC (a)	12 070 kg (26 625 lb) (c)	27 950 kg (61 600 lb) (c)
	ACJ319NEO WV111	77 700 kg (171 300 lb)	11 540 kg (25 450 lb)	14% MAC (b)	17 780 kg (39 200 lb)	35 540 kg (78 350 lb)	36% MAC (a)	12 070 kg (26 625 lb) (c)	28 440 kg (62 700 lb) (c)

V_(NG) MAXIMUM VERTICAL NOSE GEAR GROUND LOAD AT FWD CG V_(MG) MAXIMUM VERTICAL MAIN GEAR GROUND LOAD AT AFT CG H MAXIMUM HORIZONTAL GROUND LOAD FROM RRAKIMA

V(MG)

(NG)

0000000000

N_AC_070300_1_0400102_01_01

(a) LOADS CALCULATED USING AIRCRAFT AT MRW.
 (b) LOADS CALCULATED USING AIRCRAFT AT 67 500 kg (148 800 lb).
 (c) BRAKED MAIN GEAR.

Maximum Pavement Loads for ACF319NEO. Maximum Pavement Loads for ACJ319NEO (Sheet 3 of 4) FIGURE-7-3-0-991-040-A01

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

**ON A/C A319neo

									1	
6	H (PER STRUT)	STEADY BRAKINGAT INSTANTANEOUS@ 10 ft/s2BRAKING@ DECELERATIONCOEFFICIENT = 0.8	28 440 kg (62 700 lb) (c)	28 140 kg (62 050 lb) (c)	28 140 kg (62 050 lb) (c)	28 140 kg (62 050 lb) (c)	27 800 kg (61 300 lb) (c)	28 520 kg (62 875 lb) (c)	28 270 kg (62 325 lb) (c)	
	H (PER	STEADY BRAKING @ 10 ft/s ² DECELERATION	12 070 kg (26 625 lb) (c)	11 950 kg (26 350 lb) (c)	11 950 kg (26 350 lb) (c)	11 950 kg (26 350 lb) (c)	11 800 kg (26 000 lb) (c)	12 210 kg (26 925 lb) (c)	12 210 kg (26 925 lb) (c)	
	R STRUT)	TATIC LOAD AT MAX AFT C.G.	36% MAC (a)	36% MAC (a)	36% MAC (a)	36% MAC (a)	36% MAC (a)	34% MAC (a)	32% MAC (a)	
5	V _(MG) (PER STRUT)	STATIC LOAD AT MAX AFT C.G.	35 540 kg (78 350 lb)	35 180 kg (77 550 lb)	35 180 kg (77 550 lb)	35 180 kg (77 550 lb)	34 750 kg (76 625 lb)	35 650 kg (78 575 lb)	35 340 kg (77 900 lb)	
4	()	STATIC BRAKING @ 10 ft/s ² DECELERATION	17 780 kg (39 200 lb)	17 790 kg (39 225 lb)	17 790 kg (39 225 lb)	17 790 kg (39 225 lb)	17 880 kg (39 425 lb)	17 780 kg (39 200 lb)	17 780 kg (39 200 lb)	
	V(NG)	OAD AT VD C.G.	14% MAC (b)	14% MAC (b)	14% MAC (b)	14% MAC (b)	14% MAC (b)	14% MAC (b)	14% MAC (b)	
3		STATIC LOAD AT MOST FWD C.G.	11 540 kg (25 450 lb)	11 540 kg (25 450 lb)	11 540 kg (25 450 lb)	11 540 kg 14% (25 450 lb) MAC (b)	11 540 kg (25 450 lb)	11 540 kg (25 450 lb)	11 540 kg (25 450 lb)	
2		MAXIMUM RAMP WEIGHT	77 700 kg 11 540 kg 14% (171 300 lb) (25 450 lb) MAC (b)	76 900 kg 11 540 kg 14% (169 525 lb) (25 450 lb) MAC (b)	76 900 kg (169 525 lb)	76 900 kg (169 525 lb)	75 900 kg (167 325 lb)	78 600 kg (173 275 lb)	78 600 kg (173 275 lb)	
1		WEIGHT VARIANT	ACJ319NEO WV112	ACJ319NEO WV113	ACJ319NEO WV114	ACJ319NEO WV115	ACJ319NEO WV116	ACJ319NEO WV120 (CG 34%)	ACJ319NEO WV120 (CG 32%)	

N_AC_070300_1_0400104_01_00

NOTE: (a) LOADS CALCULATED USING AIRCRAFT AT MRW. (b) LOADS CALCULATED USING AIRCRAFT AT 67 500 kg (148 800 lb). (c) BRAKED MAIN GEAR.

Maximum Pavement Loads for ACF319NEO. Maximum Pavement Loads for ACJ319NEO (Sheet 4 of 4) FIGURE-7-3-0-991-040-A01

7-3-0

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

7-4-0 Landing Gear Loading on Pavement

**ON A/C A319-100

Landing Gear Loading on Pavement

 The curves related to the landing gear loading on pavement are not given in section 07-04-00. Because the relationship between the aircraft weight, the center of gravity and the landing gear loading on the pavement is not strictly linear, it cannot be shown in chart format. But you can find in section 07-03-00 the maximum vertical and horizontal pavement loads for some critical conditions at the tire/ground interfaces for all the operational weight variants of the aircraft. For questions that are related to landing gear loading on pavement, contact Airbus.

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

7-5-0 Flexible Pavement Requirements - U.S. Army Corps of Engineers Design Method

**ON A/C A319-100 A319neo

Flexible Pavement Requirements - US Army Corps of Engineers Design Method

1. The flexible pavement requirements curves as per as U.S. Army Corps of Engineers Design Method are not given in section 07-05-00 since the related data is available through free software.

Sections 07-02-00 and 07-03-00 give all the inputs data required for the use of such software.

<u>NOTE</u>: The U.S. Army Corps of Engineers Design Method for flexible pavements is being gradually superseded by mechanistic-empirical design methods mostly relying on Linear Elastic Analysis (LEA). The number of parameters considered by such methods is not applicable for a chart format and the use of dedicated pavement-design software is necessary.

For questions that are related to the flexible pavement requirements, contact Airbus.

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

7-6-0 Flexible Pavement Requirements - LCN Conversion

**ON A/C A319-100 A319neo

Flexible Pavement Requirements - LCN Conversion

 The Load Classification Number (LCN) curves are not given in section 07-06-00 since the LCN system for reporting pavement strength is old and are replaced by the ICAO recommended ACN/PCN system in 1983 and ACR/PCR system in 2020. For questions that are related to the LCN system, contact Airbus.

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

7-7-0 Rigid Pavement Requirements - Portland Cement Association Design Method

**ON A/C A319-100 A319neo

Rigid Pavement Requirements - Portland Cement Association Design Method

- 1. The rigid-pavement requirements curves as per as Portland Cement Association Design Method are not given in section 07-07-00 since the related data is available through free software. Sections 07-02-00 and 07-03-00 give all the inputs data required for the use of such software.
 - <u>NOTE</u>: The Portland Cement Association Design Method for rigid pavements is being gradually superseded by mechanistic-empirical design methods mostly relying on Finite Element Analysis (FEM). The number of parameters considered by such methods is not applicable for a chart format and the use of dedicated pavement-design software is necessary.

For questions that are related to the rigid pavement requirements, contact Airbus.

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

7-8-0 Rigid Pavement Requirements - LCN Conversion

**ON A/C A319-100 A319neo

Rigid Pavement Requirements - LCN Conversion

 The Load Classification Number (LCN) curves are not given in section 07-08-00 since the LCN system for reporting pavement strength is old and are replaced by the ICAO recommended ACN/PCN system in 1983 and ACR/PCR system in 2020. For questions that are related to the LCN system, contact Airbus.

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

7-9-0 ACN/PCN Reporting System - Flexible and Rigid Pavements

**ON A/C A319-100 A319neo

Aircraft Classification Number - Flexible and Rigid Pavements

1. This section gives data about the Aircraft Classification Number (ACN) for an aircraft gross weight in relation with standard subgrade strength values for flexible and rigid pavement.

To find the ACN of an aircraft on flexible and rigid pavement, you must know the aircraft gross weight and the subgrade strength.

- <u>NOTE</u>: An aircraft with an ACN equal to or less than the reported PCN can operate on that pavement, subject to any limitation on the tire pressure. (Ref: ICAO Aerodrome Design Manual, Part 3, Chapter 1, Second Edition 1983).
- 2. Aircraft Classification Number ACN table

The tables in FIGURE 7-9-0-991-006-A and FIGURE 7-9-0-991-009-A give ACN data in tabular format for all the operational weight variants of the aircraft.

As an approximation, use a linear interpolation in order to get the ACN at the required operating weight using the following equation:

ACN = ACN min + (ACN max - ACN min) x (Operating weight - 41 000 kg)/(MRW - 41 000 kg)

Please note that the interpolation error may reach 5% to 10%.

As an approximation, use a linear interpolation in order to get the aircraft weight at the pavement PCN using the following equation:

Operating weight = 41 000 kg + (MRW - 41 000 kg) x (PCN - ACN min)/(ACN max - ACN min)

Please note that the interpolation error may reach up to 5%.

With ACN max = ACN calculated at the MRW in the table and with ACN min = ACN calculated at 41 000 kg.

For questions or specific calculation regarding ACN/PCN Reporting System, contact Airbus.

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

**ON A/C A319-100

L	A-LOW	42	24	41	24	46	24	46	24	0	24	50	24	45	24	45	24	45	24	45	24	46	24	46	24	46	24	49	24	49	24
NEMEN /EMEN S - CBR		4		7	0	7		4		G		G		4	2	4	N	7		4		4		4		4		4		4	~
ADES		36	5	36	21	41	21	40	2	44	2	44	21	39	21	39	5	39	5	39	2	41	2	40	5	40	21	43	5	43	21
ACN FOR FLEXIBLE PAVEMENT SUBGRADES - CBR	MEDIUM LOW ULTRA-LOW	33	19	32	19	36	19	36	19	40	19	40	19	35	19	35	19	35	19	35	19	36	19	36	19	37	19	39	19	39	19
	HIGH 15	32	19	31	19	35	19	35	19	39	19	39	19	34	19	34	19	34	19	34	19	35	19	35	19	35	19	37	19	37	19
LENT MN/m ³	OW ULTRA-LOW	41	24	41	24	46	25	46	25	20	25	20	25	44	25	44	24	44	25	44	24	46	25	46	25	46	25	49	25	49	25
AVEN ES - I	LOW 40	39	23	39	23	44	23	44	23	48	24	48	24	42	23	42	23	42	23	42	23	44	23	44	23	44	24	47	24	47	24
ACN FOR RIGID PAVEMENT SUBGRADES - MN/m ³	HIGH MEDIUM 150 80	37	22	36	21	42	22	41	22	46	22	46	22	40	22	40	22	40	22	40	22	42	22	41	22	42	22	44	22	44	22
S S	HIGH 150	35	20	34	20	39	21	39	21	44	21	44	21	38	21	37	20	38	21	37	20	39	21	39	21	40	21	42	21	42	21
TIRE	(MPa)	7	<u>ת</u>	1 10		1 20	1.23	1 20	67.1	00 1	00.1	00 1	00.1	1 25	CZ.1	1 25	C7.	1 26	C7.1	1 05	CZ.	1 20	.23	1 20		1 20	00.1	1 31	+0	1 21	+ +
LOAD ON ONE MAIN	GEAR LEG (%)	46.3	46.3	45.7	45.7	46.1	46.0	45.8	45.7	45.8	45.7	45.8	45.8	46.1	46.1	45.7	45.7	46.1	46.1	45.7	45.7	46.1	46.0	45.8	45.7	45.8	45.7	45.9	45.8	45.8	45.7
ALL UP	MASS (kg)	64 400	41 000	64 400	41 000	70 400	41 000	70 400	41 000	75 900	41 000	75 900	41 000	68 400	41 000	68 400	41 000	68 400	41 000	68 400	41 000	70 400	41 000	70 400	41 000	70 400	41 000	73 900	41 000	73 900	41 000
WEIGHT		A319-100	WV000 (CG 39%)	A319-100	WV000 (CG 36%)	A319-100	WV0001(CG 37.5%)	A319-100	WV001 (CG 36%)	A319-100	WV002	A319-100	WV002 (CJ)	A319-100	WV003 (CG 38.1%)	A319-100	WV003 (CG 36%)	A319-100	WV004 (CG 38.1%)	A319-100	WV004 (CG 36%)	A319-100	WV005 (CG 37.5%)	A319-100	WV005 (CG 36%)	A319-100	WV005 (CJ)	A319-100	WV006 (CG 36.52%)	A319-100	WV006 (CG 36%)

N_AC_070900_1_0060101_01_02

ACN Table for A319-100 (Sheet 1 of 2) FIGURE-7-9-0-991-006-A01

Page 2 Dec 01/23

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

**ON A/C A319-100

	~	-																					
MENT CBR	ULTRA-LOW 3	50	24	42	24	41	24	44	24	43	24	51	24	44	24	43	24	41	24	40	24	50	24
ACN FOR BLE PAVE SRADES -	Pow 9	44	21	36	21	36	21	38	21	37	21	45	21	38	21	37	21	35	21	34	21	44	21
ACN FOR FLEXIBLE PAVEMENT SUBGRADES - CBR	MEDIUM 10	40	19	33	19	32	19	34	19	34	19	41	19	34	19	34	19	32	19	31	19	40	19
	HIGH 15	39	19	32	19	31	19	33	19	33	19	39	19	33	19	33	19	31	19	30	19	39	19
ш ³	ULTRA-LOW 20	50	25	41	24	41	24	43	25	42	24	51	25	43	25	42	24	40	24	39	24	50	25
EMEN-	LOW 40	48	24	39	23	39	23	41	23	41	23	49	24	41	23	41	23	38	23	37	23	48	24
ACN FOR RIGID PAVEMENT SUBGRADES - MN/m ³	MEDIUM LOW 80 40	46	22	37	22	36	21	39	22	38	22	47	22	39	22	38	22	36	22	35	21	46	22
SUE	HIGH 150	44	21	35	20	34	20	37	21	36	20	44	21	37	21	36	20	33	20	33	20	44	21
TIRE	(MPa)	00 1	00.1	07	<u>.</u>	C 7 7	<u>.</u>	1 06	CZ.1	1 05	C7.1	00 1	00.1	101	C7.1	1 05	C7.1	- - -	<u>ת</u> -	~	<u>ת</u> -	00 1	00.1
LOAD ON ONE MAIN	GEAR LEG (%)	45.8	45.7	46.3	46.3	45.7	45.7	46.3	46.2	45.7	45.7	45.7	45.8	46.3	46.2	45.7	45.7	46.3	46.3	45.7	45.7	45.8	45.8
ALL UP	MASS (kg)	75 900	41 000	64 400	41 000	64 400	41 000	66 400	41 000	66 400	41 000	006 92	41 000	66 400	41 000	66 400	41 000	62 400	41 000	62 400	41 000	75 900	41 000
WEIGHT	VARIANT	A319-100	WV007	A319-100	WV008 (CG 39%)	A319-100	WV008 (CG 36%)	A319-100	WV009 (CG 38.8%)	A319-100	WV009 (CG 36%)	A319-100	WV010 (CJ)	A319-100	WV011 (CG 38.8%)	A319-100	WV011 (CG 36%)	A319-100	WV012 (CG 39%)	A319-100	WV012 (CG 36%)	A319-100	WV013 (CJ)

N_AC_070900_1_0060102_01_04

ACN Table for A319-100 (Sheet 2 of 2) FIGURE-7-9-0-991-006-A01

Page 3 Dec 01/23

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

**ON A/C A319neo

WEIGHT	ALL UP	LOAD ON ONE MAIN	TIRE	SL	ACN F RIGID PA JBGRADE	/EME	NT N/m³		ACN F EXIBLE P UBGRAD	AVEN	
VARIANT	MASS (kg)	GEAR LEG (%)	(MPa)	HIGH 150	MEDIUM 80	LOW 40	ULTRA -LOW 20	HIGH 15	MEDIUM 10	LOW 6	ULTRA -LOW 3
A319NEO	64 400	45.7	4.40	34	36	39	41	31	32	36	41
WV050 (CG 36%)	41 000	45.7	1.19	20	21	23	24	19	19	21	24
A319NEO	64 400	45.6	4.40	34	36	39	40	31	32	36	41
WV050 (CG 35.44%)	41 000	45.6	1.19	20	21	23	24	19	19	21	24
A319NEO	64 400	45.7	1.19	34	36	39	41	31	32	36	41
WV051 (CG 36%)	41 000	45.7	1.19	20	21	23	24	19	19	21	24
A319NEO	64 400	45.6	4.40	34	36	39	40	31	32	36	41
WV051 (CG 35.44%)	41 000	45.6	1.19	20	21	23	24	19	19	21	24
A319NEO	64 400	44.9	4.40	33	36	38	40	31	32	35	41
WV051 (CG 32%)	41 000	44.9	1.19	20	21	22	24	19	19	20	23
A319NEO	70 400	45.8	1.29	39	41	44	46	35	36	40	46
WV052 (CG 36%)	41 000	45.7	1.29	21	22	23	25	19	19	21	24
A319NEO	70 400	45.0	1.29	38	41	43	45	34	35	39	45
WV052 (CG 32%)	41 000	44.9	1.29	20	22	23	24	19	19	20	23
A319NEO	70 400	45.8	1.29	39	41	44	46	35	36	40	46
WV053 (CG 36%)	41 000	45.7	1.29	21	22	23	25	19	19	21	24
A319NEO	70 400	45.0	1.29	38	41	43	45	34	35	39	45
WV053 (CG 32%)	41 000	44.9	1.29	20	22	23	24	19	19	20	23
A319NEO	75 900	45.8	1.38	44	46	48	50	39	40	44	50
WV054(CG 36%)	41 000	45.7	1.30	21	22	24	25	19	19	21	24
A319NEO	75 900	45.0	1.00	43	45	48	49	38	39	43	49
WV054(CG 32%)	41 000	44.9	1.38	21	22	23	24	19	19	20	23
A319NEO	75 900	45.8	1.38	44	46	48	50	39	40	44	50
WV055	41 000	45.7	1.30	21	22	24	25	19	19	21	24

N_AC_070900_1_0090101_01_04

ACN Table for A319NEO and ACJ319NEO ACN Table for A319NEO (Sheet 1 of 2) FIGURE-7-9-0-991-009-A01

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

**ON A/C A319neo

WEIGHT	ALL UP	LOAD ON ONE MAIN	TIRE		ACN F RIGID PA JBGRADE	/EME		FL S	ACN F EXIBLE P UBGRAD	AVEN	IENT CBR
VARIANT	MASS (kg)	GEAR LEG (%)	PRESSURE (MPa)	HIGH 150	MEDIUM 80	LOW 40	ULTRA -LOW 20	HIGH 15	MEDIUM 10	LOW 6	ULTRA -LOW 3
ACJ319NEO	75 900	45.8	1.20	44	46	48	50	39	40	44	50
WV054	41 000	45.8	1.38	21	22	24	25	19	19	21	24
ACJ319NEO	75 900	45.8	1.38	44	46	48	50	39	40	44	50
WV055 (CG 36%)	41 000	45.8	1.30	21	22	24	25	19	19	21	24
ACJ319NEO	75 900	45.0	1.38	43	45	48	49	38	39	43	49
WV055 (CG 32%)	41 000	44.9	1.30	21	22	23	24	19	19	20	23
ACJ319NEO	77 700	45.7	1.38	45	47	50	52	40	41	46	52
WV110 (CG 36%)	41 000	45.8	1.30	21	22	24	25	19	19	21	24
ACJ319NEO	77 700	45.0	1.38	44	46	49	51	39	40	45	51
WV110 (CG 32%)	41 000	44.9	1.30	21	22	23	24	19	19	20	23
ACJ319NEO	77 700	45.7	1.38	45	47	50	52	40	41	46	52
WV111	41 000	45.8	1.30	21	22	24	25	19	19	21	24
ACJ319NEO	77 700	45.7	1.38	45	47	50	52	40	41	46	52
WV112	41 000	45.8	1.30	21	22	24	25	19	19	21	24
ACJ319NEO	76 900	45.7	1.38	44	47	49	51	39	41	45	51
WV113	41 000	45.8	1.30	21	22	24	25	19	19	21	24
ACJ319NEO	76 900	45.7	1.38	44	47	49	51	39	41	45	51
WV114	41 000	45.8	1.50	21	22	24	25	19	19	21	24
ACJ319NEO	76 900	45.7	1.38	44	47	49	51	39	41	45	51
WV115	41 000	45.8	1.30	21	22	24	25	19	19	21	24
ACJ319NEO	75 900	45.8	1.38	44	46	48	50	39	40	44	50
WV116	41 000	45.8	1.30	21	22	24	25	19	19	21	24
ACJ319NEO	78 600	45.3	1.38	45	48	50	52	40	41	46	52
WV120 (CG 34%)	41 000	45.3	1.50	21	22	23	25	19	19	21	24
ACJ319NEO	78 600	45.0	1.38	44	47	49	51	39	41	45	51
WV120 (CG 32%)	41 000	44.9	1.50	21	22	23	24	19	19	20	23

N_AC_070900_1_0090103_01_01

ACN Table for A319NEO and ACJ319NEO ACN Table for ACJ319NEO (Sheet 2 of 2) FIGURE-7-9-0-991-009-A01

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

7-10-0 ACR/PCR Reporting System - Flexible And Rigid Pavements

**ON A/C A319-100 A319neo

ACR/PCR Reporting System - Flexible and Rigid Pavements

1. The ACR/PCR system has been developed by the ICAO to overcome the deficiencies of the ACN/PCN system. Significant advances in pavement design methods had occurred since its development in the late 1970s early 1980s, leading to inconsistencies with the pavement-strength-rating system.

The ACR/PCR system entails new procedures for the determination of both the ACR and the PCR that are consistent with the current pavement design procedures. This allows to capture the effects of the improved characteristics of new pavement materials as well as modern landing gear configurations, thus leading to an improved accuracy.

This section gives data about the Aircraft Classification Rating (ACR) for the maximum ramp weight in relation with standard subgrade strength values for flexible and rigid pavement. To determine the ACR at other aircraft gross weight, use the official ICAO-ACR software.

- <u>NOTE</u>: An aircraft with an ACR equal to or less than the reported PCR can operate on that pavement, subject to any limitation on the tire pressure. (Ref: ICAO Aerodrome Design Manual, Part 3, Third Edition 2020).
- 2. Aircraft Classification Rating ACR Table

The tables in FIGURE 7-10-0-991-004-A, FIGURE 7-10-0-991-005-A and FIGURE 7-10-0-991-006-A give ACR data in tabular format for all the operational weight variants of the aircraft. For questions or specific calculation related to ACR/PCR Reporting System, contact Airbus.

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

**ON A/C A319-100

	ALL UP MASS	UND AN AN	TIRE PRESSURE (MPa)		ACR FOR RIGID PAVEMENT SUBGRADES - MPa	AVEN ADES			ACR FOR FLEXIBLE PAVEMENT SUBGRADES - MPa	PAVE DES-	MENT MPa
	(kg)	(%)	(ואוו מ)	НІGH 200		80 V	200 120 80 50 200 120 80 50			LOW 80	ULIRA-LOW 50
A319-100 WV000 (CG 39%)	64 400	46.3	1.19	360	380	400	410	280	300	330	360
A319-100 WV000 (CG 36%)	64 400	45.7	1.19	350	370	390	410	280	300	320	360
A319-100 WV001 (CG 37.5%)	70 400	46.1	1.29	410	430	440	460	310	340	370	410
A319-100 WV001 (CG 36%)	70 400	45.8	1.29	400	420	440	460	310	330	360	400
A319-100 WV002	75 900	45.8	1.38	450	470	490	500	350	370	400	450
A319-100 WV002 (CJ)	75 900	45.8	1.38	450	470	490	500	350	370	400	450
A319-100 WV003 (CG 38.1%)	68 400	46.1	1.25	390	410	430	440	300	330	350	390
A319-100 WV003 (CG 36%)	68 400	45.7	1.25	380	410	420	440	300	320	350	390
A319-100 WV004 (CG 38.1%)	68 400	46.1	1.25	390	410	430	440	300	330	350	390
A319-100 WV004 (CG 36%)	68 400	45.7	1.25	380	410	420	440	300	320	350	390
A319-100 WV005 (CG 37.5%)	70 400	46.1	1.29	410	430	440	460	310	340	370	410
A319-100 WV005 (CG 36%)	70 400	45.8	1.29	400	420	440	460	310	330	360	400
A319-100 WV005 (CJ)	70 400	45.8	1.38	410	430	450	460	320	340	370	410

N_AC_071000_1_0040101_01_00

ACR Table for A319-100 and A319-100 CJ (Sheet 1 of 2) FIGURE-7-10-0-991-004-A01

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

**ON A/C A319-100

	≥													
JR /EMENT S - MPa	HIGH MEDIUM LOW ULTRA-LOW 200 120 80 50	430	430	450	360	360	380	370	450	380	370	350	350	450
CR FO	LOW 80	390	390	400	330	320	340	340	410	340	340	310	310	400
ACR FOR FLEXIBLE PAVEMENT SUBGRADES - MPa	MEDIUM 120	360	360	370	300	300	320	310	370	320	310	290	290	370
	HIGH 200	330	330	350	280	280	290	290	350	290	290	270	270	350
k ENT - MPa	HIGH MEDIUM LOW ULTRA-LOW 200 120 80 50	490	490	500	410	410	430	420	510	430	420	400	390	500
R FOF AVEM DES	LOW 80	470	470	490	400	06£	410	410	490	410	410	380	380	490
ACR FOR RIGID PAVEMENT SUBGRADES - MPa	MEDIUM 120	450	450	470	380	370	400	390	480	400	390	370	360	470
	HIGH 200	430	430	450	360	350	380	370	460	380	370	340	340	450
TIRE	(MPa)	1.34	1.34	1.38	1.19	1.19	1.25	1.25	1.38	1.25	1.25	1.19	1.19	1.38
LOAD ON ONE MAIN		45.9	45.8	45.8	46.3	45.7	46.3	45.7	45.7	46.3	45.7	46.3	45.7	45.8
ALL UP MASS	(kg)	73 900	73 900	75 900	64 400	64 400	66 400	66 400	76 900	66 400	66 400	62 400	62 400	75 900
WEIGHT	VAKIANI	A319-100 WV006 (CG 36.52%)	A319-100 WV006 (CG 36%)	A319-100 WV007	A319-100 WV008 (CG 39%)	A319-100 WV008 (CG 36%)	A319-100 WV009 (CG 38.8%)	A319-100 WV009 (CG 36%)	A319-100 WV010 (CJ)	A319-100 WV011 (CG 38.8%)	A319-100 WV011 (CG 36%)	A319-100 WV012 (CG 39%)	A319-100 WV012 (CG 36%)	A319-100 WV013 (CJ)

N_AC_071000_1_0040102_01_00

ACR Table for A319-100 and A319-100 CJ (Sheet 2 of 2) FIGURE-7-10-0-991-004-A01

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

**ON A/C A319neo

WEIGHT	ALL UP	LOAD ON ONE MAIN	TIRE		ACR F RIGID PA UBGRAD	/EME			ACR F EXIBLE P UBGRAD	AVEN	
VARIANT	MASS (kg)	GEAR LEG (%)	PRESSURE (MPa)	HIGH 200	MEDIUM 120	LOW 80	ULTRA -LOW 50	HIGH 200	MEDIUM 120	LOW 80	ULTRA -LOW 50
A319NEO WV050 (CG 36%)	64 400	45.7	1.19	350	370	390	410	280	300	320	360
A319NEO WV050 (CG 35.44%)	64 400	45.6	1.19	350	370	390	400	280	300	320	360
A319NEO WV051 (CG 36%)	64 400	45.7	1.19	350	370	390	410	280	300	320	360
A319NEO WV051 (CG 35.44%)	64 400	45.6	1.19	350	370	390	400	280	300	320	360
A319NEO WV051 (CG 32%)	64 400	44.9	1.19	350	370	380	400	270	290	310	350
A319NEO WV052 (CG 36%)	70 400	45.8	1.29	400	420	440	460	310	330	360	400
A319NEO WV052 (CG 32%)	70 400	45.0	1.29	390	420	430	450	310	330	350	390
A319NEO WV053 (CG 36%)	70 400	45.8	1.29	400	420	440	460	310	330	360	400
A319NEO WV053 (CG 32%)	70 400	45.0	1.29	390	420	430	450	310	330	350	390
A319NEO WV054 (CG 36%)	75 900	45.8	1.38	450	470	490	500	350	370	400	450
A319NEO WV054 (CG 32%)	75 900	45.0	1.38	440	460	480	490	340	360	390	440
A319NEO WV055	75 900	45.8	1.38	450	470	490	500	350	370	400	450

N_AC_071000_1_0050101_01_01

ACR Table FIGURE-7-10-0-991-005-A01

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

**ON A/C A319neo

WEIGHT	ALL UP	LOAD ON ONE MAIN	TIRE		ACR I RIGID PA UBGRAD	VEME			ACR F EXIBLE P UBGRAD	AVEN	
VARIANT	MASS (kg)	GEAR LEG (%)	PRESSURE (MPa)	HIGH 200	MEDIUM 120	LOW 80	ULTRA -LOW 50	HIGH 200	MEDIUM 120	LOW 80	ULTRA -LOW 50
ACJ319NEO WV054	75 900	45.8	1.38	450	470	490	500	350	370	400	450
ACJ319NEO WV055 (CG 36%)	75 900	45.8	1.38	450	470	490	500	350	370	400	450
ACJ319NEO WV055 (CG 32%)	75 900	45.0	1.38	440	460	480	490	340	360	390	440
ACJ319NEO WV110 (CG 36%)	77 700	45.7	1.38	460	480	500	520	350	380	410	460
ACJ319NEO WV110 (CG 32%)	77 700	45.0	1.38	450	470	490	510	350	370	400	450
ACJ319NEO WV111	77 700	45.7	1.38	460	480	500	520	350	380	410	460
ACJ319NEO WV112	77 700	45.7	1.38	460	480	500	520	350	380	410	460
ACJ319NEO WV113	76 900	45.7	1.38	460	480	490	510	350	370	410	450
ACJ319NEO WV114	76 900	45.7	1.38	460	480	490	510	350	370	410	450
ACJ319NEO WV115	76 900	45.7	1.38	460	480	490	510	350	370	410	450
ACJ319NEO WV116	75 900	45.8	1.38	450	470	490	500	350	370	400	450
ACJ319NEO WV120 (CG 34%)	78 600	45.3	1.38	460	490	500	520	360	380	410	460
ACJ319NEO WV120 (CG 32%)	78 600	45.0	1.38	460	480	500	510	350	380	410	450

N_AC_071000_1_0060101_01_01

ACR Table for ACJ319NEO FIGURE-7-10-0-991-006-A01

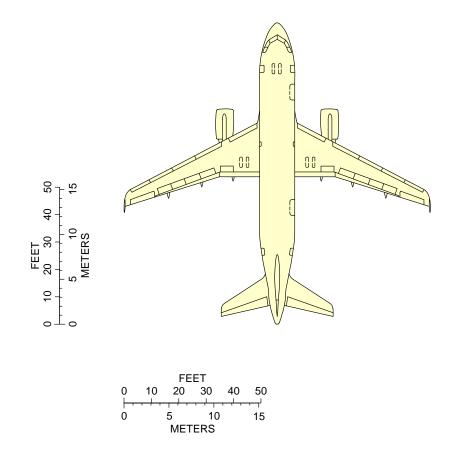
AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

SCALED DRAWINGS

8-0-0 SCALED DRAWINGS

**ON A/C A319-100 A319neo

Scaled Drawings

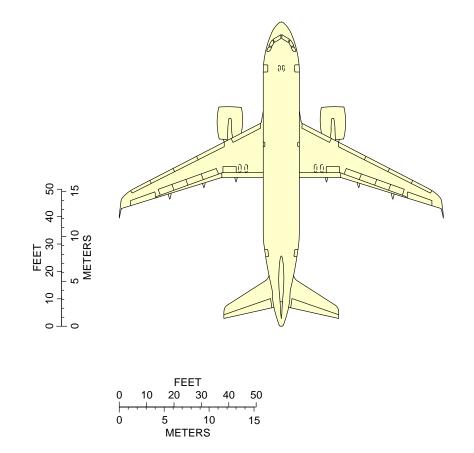

1. This section provides the scaled drawings.

<u>NOTE</u>: When printing this drawing, make sure to adjust for proper scaling.

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

**ON A/C A319-100

NOTE: WHEN PRINTING THIS DRAWING, MAKE SURE TO ADJUST FOR PROPER SCALING.


N_AC_080000_1_0020101_01_00

Scaled Drawing FIGURE-8-0-0-991-002-A01

Page 2 Dec 01/23

**ON A/C A319neo

NOTE: WHEN PRINTING THIS DRAWING, MAKE SURE TO ADJUST FOR PROPER SCALING.

N_AC_080000_1_0050101_01_00

Scaled Drawing FIGURE-8-0-0-991-005-A01

Page 3 Dec 01/23

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

AIRCRAFT RESCUE AND FIRE FIGHTING

10-0-0 AIRCRAFT RESCUE AND FIRE FIGHTING

**ON A/C A319-100 A319neo

Aircraft Rescue and Fire Fighting

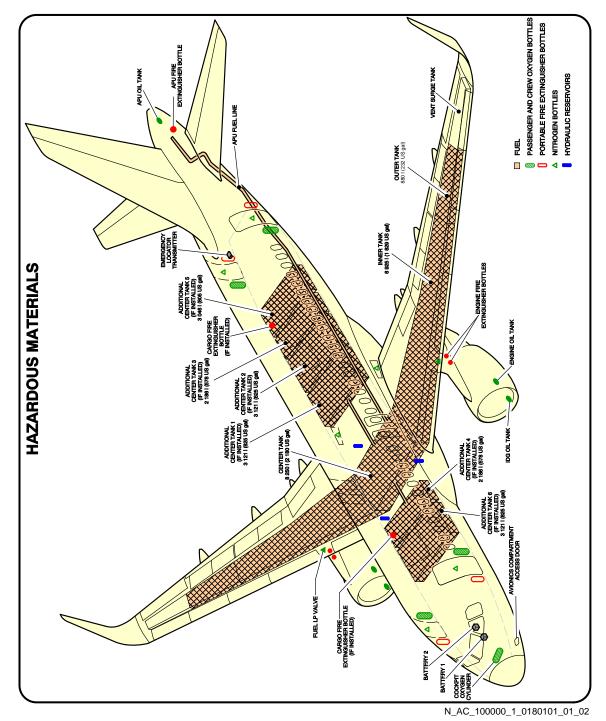
1. Aircraft Rescue and Fire Fighting Charts

This sections provides data related to aircraft rescue and fire fighting. The figures contained in this section are the figures that are in the Aircraft Rescue and Fire Fighting Charts poster available for download on AIRBUSWorld and the Airbus website.

GA319

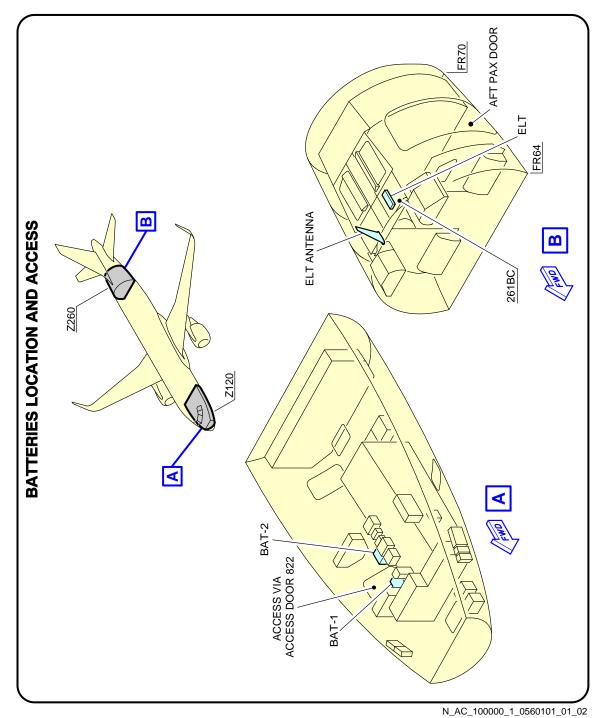
AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

**ON A/C A319-100 A319neo


AIRBUS A319/A319000 Aircraft Rescue and Fire Fighting Chart ARFC
NOTE: THIS CHART GIVES THE GENERAL LAYOUT OF THE A319 STANDARD VERSION. THE NUMBER AND ARRANGEMENT OF THE INDIVIDUAL ITEMS VARY WITH THE CUSTOMERS. FIGURES CONTAINED IN THIS POSTER ARE AVAILABLE SEPARATELY IN THE CHAPTER 10 OF THE "AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING" DOCUMENT.
ISSUED BY: AIRBUS S.A.S CUSTOMER SERVICES TECHNICAL DATA SUPPORT AND SERVICES 31707 BLAGNAC CEDEX FRANCE © AIRBUS S.A.S. 2018 . All rights reserved.

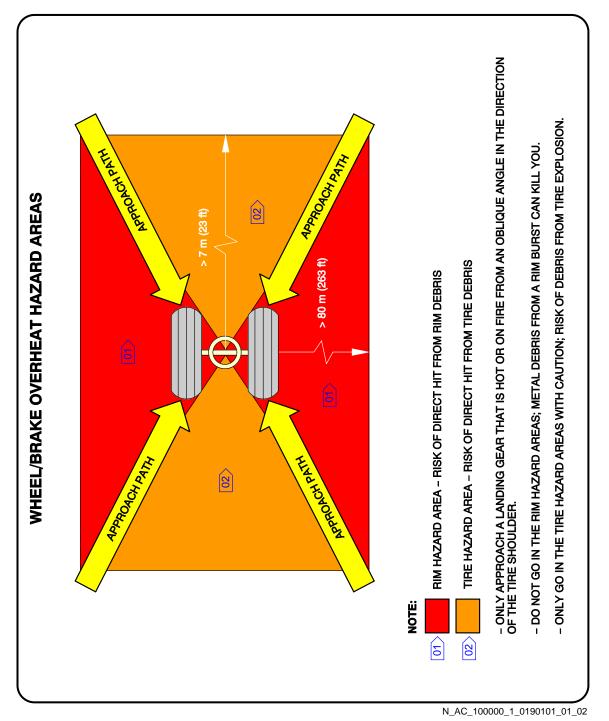
N_AC_100000_1_0170101_01_04

Front Page FIGURE-10-0-0-991-017-A01


**ON A/C A319-100 A319neo

Highly Flammable and Hazardous Materials and Components FIGURE-10-0-0-991-018-A01

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING


**ON A/C A319-100 A319neo

Batteries Location and Access FIGURE-10-0-0-991-056-A01

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

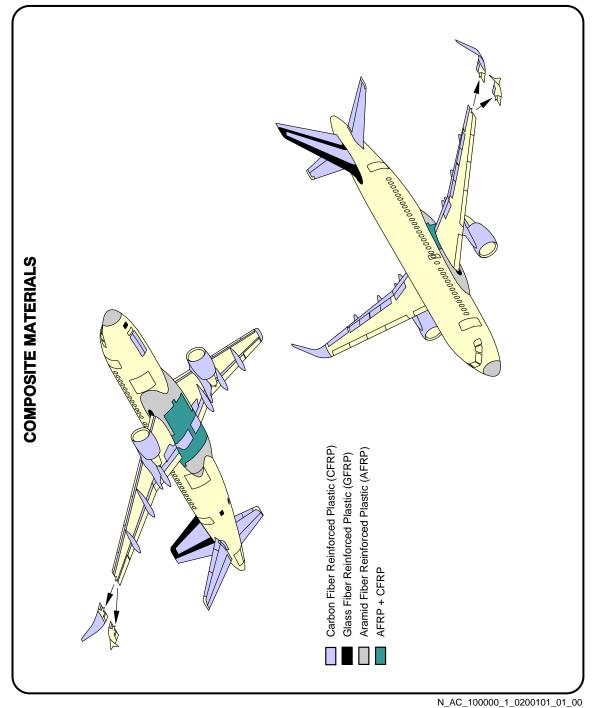
**ON A/C A319-100 A319neo

Wheel/Brake Overheat Wheel Safety Area (Sheet 1 of 2) FIGURE-10-0-0-991-019-A01

GA319

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

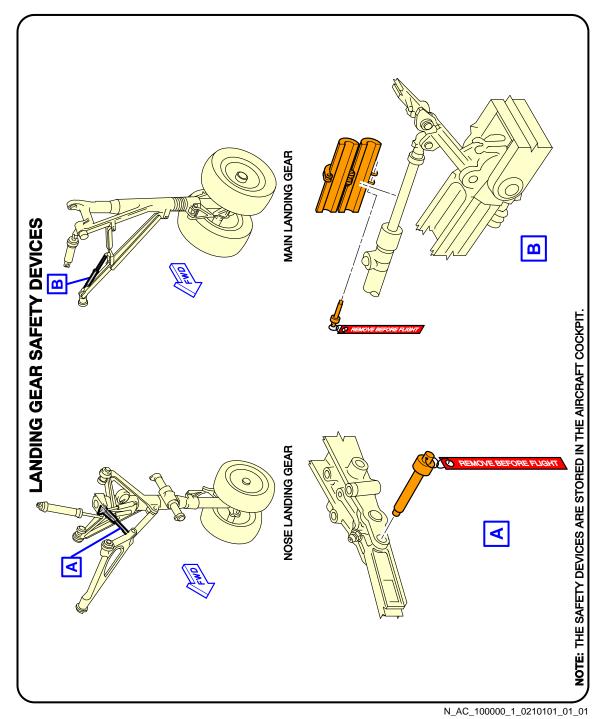
**ON A/C A319-100 A319neo


BHARE OVERHEAL AND LANDING GEAR FIRE WARNING: BE VERY CAREFUL WHEN THERE IS A BRAKE OVERHEAT AND/OR LANDING GEAR FIRE. THERE IS A RISK OF TIRE EXPLOSION AND/OR WHEEL IN BURST THAT CAN CAUSE DEATH OR INJURY.
THE PROCEDURES THAT FOLLOW GIVE RECOMMENDATIONS IN FOLLOW. BRAKES AFTER ABNORMAL OPERATIONS SUCH AS A REJECTED TAKE-OFF OR OVERWEIGHT LANDING. FOR THE COOLING OF BRAKES AFTER NORMAL TAXI-IN, REFER TO YOUR COMPANY PROCEDURES.
BRAKE OVERHEAT:
1 - GET THE BRAKE TEMPERATURE FROM THE COCKPIT OR USE A REMOTE MEASUREMENT TECHNIQUE. THE REAL TEMPERATURE OF THE BRAKES CAN BE MUCH HIGHER THAN THE TEMPERATURE SHOWN ON THE ECAM. NOTE: AT HIGH TEMPERATURES (>800°C), THERE IS A RISK OF WARPING OF THE LANDING GEAR STRUTS AND AXLES.
2 - Approach the landing gear with extreme caution and from an oblique angle in the direction of the tire shoulder. Do not go into the rim hazard area and only go in the tire hazard area with caution. (ref fig. wheel/brake overheat hazard areas). If possible, stay in a vehicle.
3 - LOOK AT THE CONDITION OF THE TIRES: IF THE TIRES ARE STILL INFLATED (FUSE PLUGS NOT MELTED), THERE IS A RISK OF TIRE EXPLOSION AND RIM BURST. DO NOT USE COOLING FANS BECAUSE THEY CAN PREVENT OPERATION OF THE FUSE PLUGS.
4 - USE WATER MIST TO DECREASE THE TEMPERATURE OF THE COMPLETE WHEEL AND BRAKE ASSEMBLY. USE A TECHNIQUE THAT PREVENTS SUDDEN COOLING. SUDDEN COOLING CAN CAUSE WHEEL CRACKS OR RIM BURST. DO NOT APPLY WATER, FOAM OR CO2. THESE COOLING AGENTS (AND ESPECIALLY CO2, WHICH HAS A VERY STRONG COOLING EFFECT) CAN CAUSE THERMAL SHOCKS AND BURST OF HOT PARTS.
LANDING GEAR FIRE:
CAUTION: AIRBUS RECOMMENDS THAT YOU DO NOT USE DRY POWDERS OR DRY CHEMICALS ON HOT BRAKES OR LANDING GEAR FIRES. THESE AGENTS CAN CHANGE INTO SOLID OR ENAMELED DEPOSITS. THEY CAN DECREASE THE SPEED OF HEAT DISSIPATION WITH A POSSIBLE RISK OF PERMANENT STRUCTURAL DAMAGE TO THE BRAKES, WHEELS OR WHEEL AXLES.
1 – IMMEDIATELY STOP THE FIRE:
A) APPROACH THE LANDING GEAR WITH EXTREME CAUTION AND FROM AN OBLIQUE ANGLE IN THE DIRECTION OF THE TIRE SHOULDER. DO NOT GO INTO THE RIM HAZARD AREA AND ONLY GO IN THE TIRE HAZARD AREA WITH CAUTION. IF POSSIBLE, STAY IN A VEHICLE.
B) USE LARGE AMOUNTS OF WATER, WATER MIST; IF THE FUEL TANKS ARE AT RISK, USE FOAM. USE A TECHNIQUE THAT PREVENTS SUDDEN COOLING. SUDDEN COOLING CAN CAUSE WHEEL CRACKS OR RIM BURST.
C) DO NOT USE FANS OR BLOWERS.

N_AC_100000_1_0190102_01_00

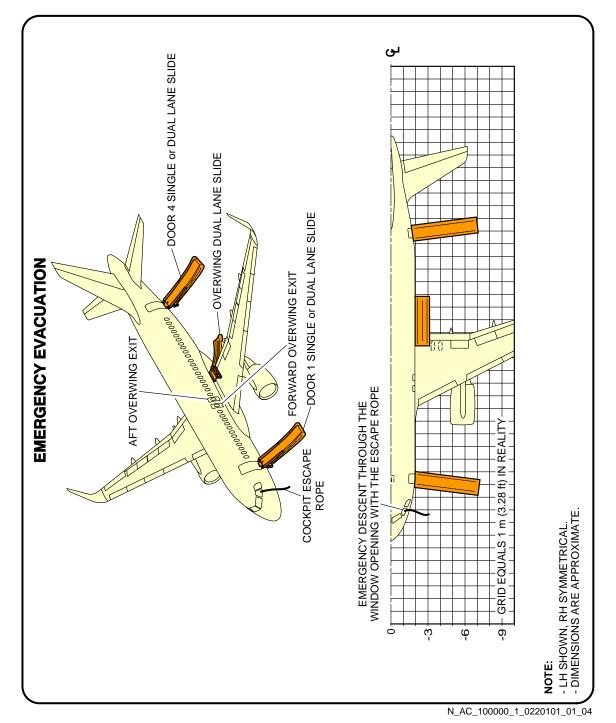
Wheel/Brake Overheat Recommendations (Sheet 2 of 2) FIGURE-10-0-0-991-019-A01

**ON A/C A319-100 A319neo

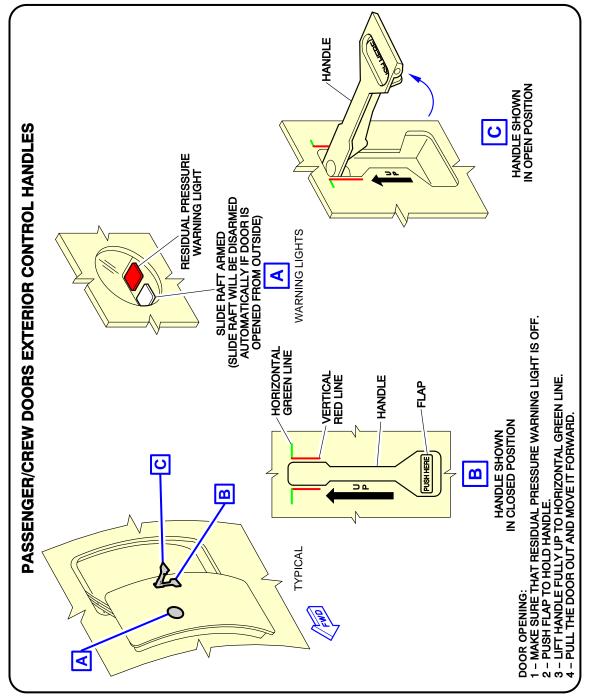


N_AC_100000_1_0200101

Composite Materials FIGURE-10-0-0-991-020-A01


**ON A/C A319-100 A319neo

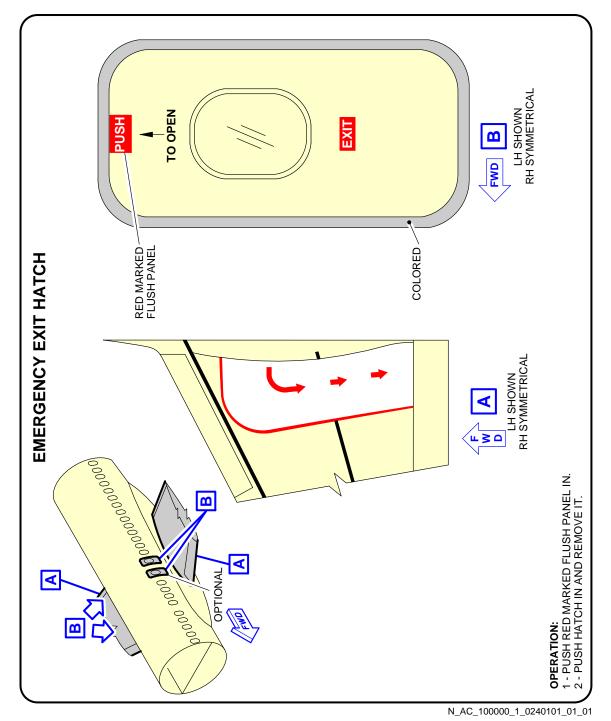
L/G Ground Lock Safety Devices FIGURE-10-0-0-991-021-A01


**ON A/C A319-100 A319neo

Emergency Evacuation Devices FIGURE-10-0-0-991-022-A01

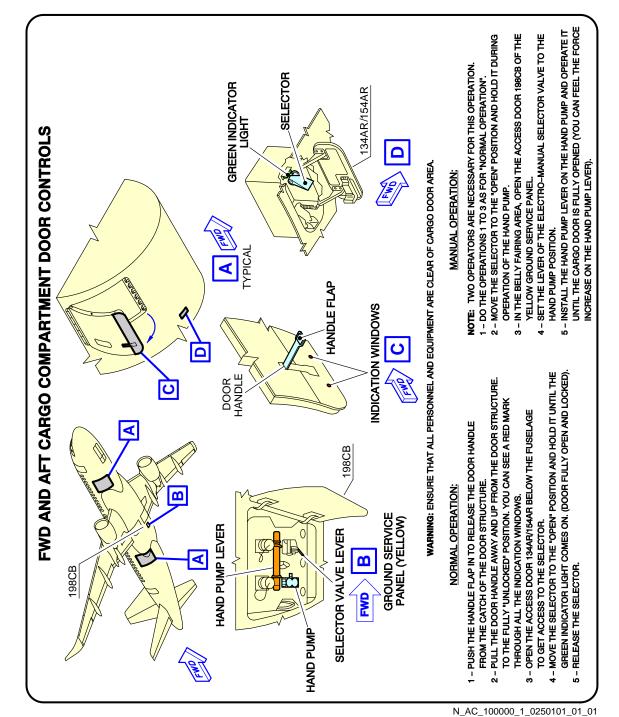
AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

**ON A/C A319-100 A319neo



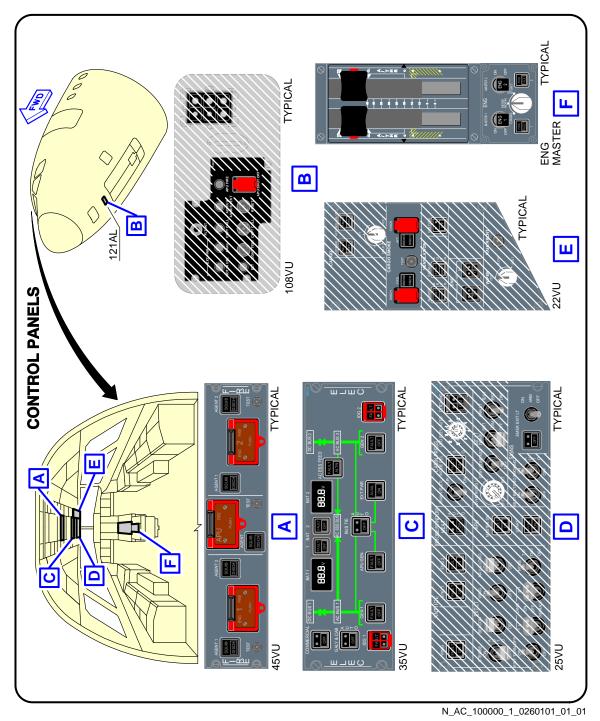
N_AC_100000_1_0230101_01_01

Pax/Crew Doors FIGURE-10-0-0-991-023-A01

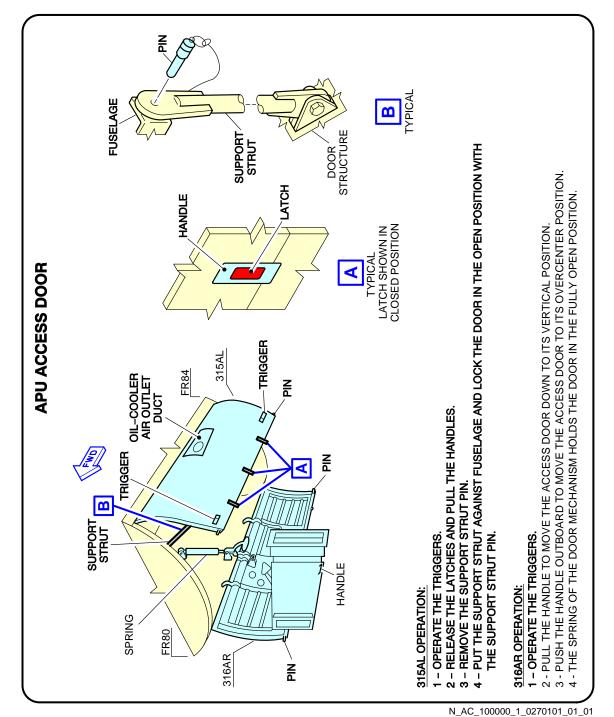

**ON A/C A319-100 A319neo

Emergency Exit Hatch FIGURE-10-0-0-991-024-A01

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

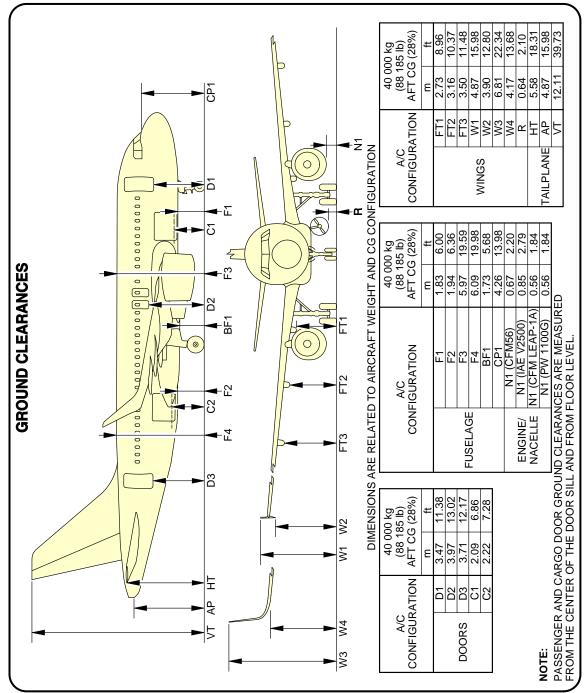

**ON A/C A319-100 A319neo

FWD and AFT Lower Deck Cargo Doors FIGURE-10-0-0-991-025-A01


**ON A/C A319-100 A319neo

Control Panels FIGURE-10-0-0-991-026-A01

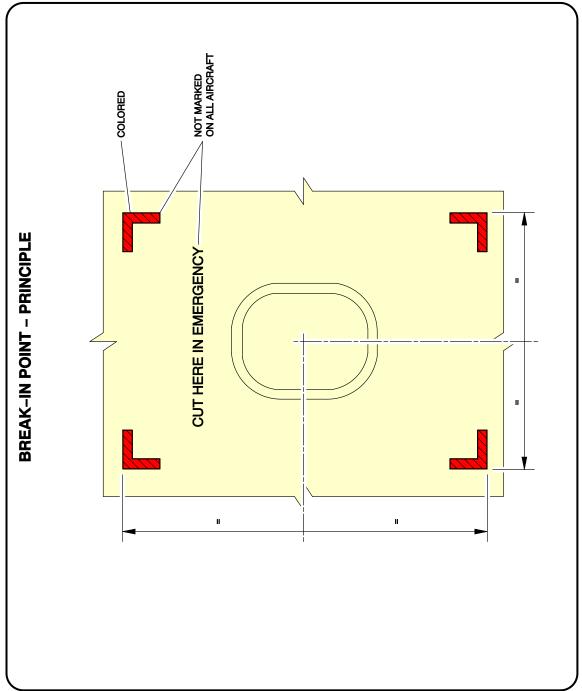
AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING


**ON A/C A319-100 A319neo

APU Access Door FIGURE-10-0-0-991-027-A01

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

**ON A/C A319-100 A319neo



N_AC_100000_1_0280101_01_02

Aircraft Ground Clearances FIGURE-10-0-0-991-028-A01

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

**ON A/C A319-100 A319neo

N_AC_100000_1_0290101_01_01

Structural Break-in Points FIGURE-10-0-0-991-029-A01

10-0-0

Page 16 Dec 01/23