

A318

AIRCRAFT CHARACTERISTICS AIRPORT AND MAINTENANCE PLANNING

AC

The content of this document is the property of Airbus.

It is supplied in confidence and commercial security on its contents must be maintained.

It must not be used for any purpose other than that for which it is supplied, nor may information contained in it be disclosed to unauthorized persons.

It must not be reproduced in whole or in part without permission in writing from the owners of the copyright. Requests for reproduction of any data in this document and the media authorized for it must be addressed to Airbus.

© AIRBUS S.A.S. 2005. All rights reserved.

AIRBUS S.A.S.
Customer Services
Technical Data Support and Services
31707 Blagnac Cedex
FRANCE

Issue: Jul 01/02 1 Rev: Jun 01/24

HIGHLIGHTS

Revision No. 26 - Jun 01/24

LOCATIONS	CHG CODE	DESCRIPTIONS OF CHANGE
CHAPTER 5		
Section 5-4	!	
Subject 5-4-2		
Grounding (Earthing) Points	R	NOTE AMENDED
	R	
FIGURE Ground Service Connections -		
Grounding (Earthing) Points - Wing		
Section 5-5		
Subject 5-5-0		
	R	ADDED THE STEP RELATED TO THE
Engine Starting Pneumatic Requirements		GLOBAL REQUIREMENTS FOR THE
		AIRFLOW START FOR ONE ENGINE.
Section 5-8		
Subject 5-8-0		
	R	ADDED INFORMATION RELATED TO
Ground Towing Requirements		ROTATING TOWEYE IN THE SUBTASK.
CHAPTER 7		
Section 7-2		
Subject 7-2-0		
	R	UPDATED THE ILLUSTRATION FOR
FIGURE Landing Gear Footprint	'`	LANDING GEAR FOOTPRINT.
		ILLUSTRATION REVISED
Section 7-3		
Subject 7-3-0		
	R	UPDATED THE ILLUSTRATION FOR
FIGURE Maximum Pavement Loads for		MAXIMUM PAVEMENT LOADS.
A318-100 and ACJ318-100		ILLUSTRATION REVISED
Section 7-9		
Subject 7-9-0		
	R	UPDATED THE ILLUSTRATION FOR ACN
FIGURE ACN Table for A318-100 and	'`	TABLE.
A318CJ		ILLUSTRATION REVISED

@A318

LOCATIONS	CHG CODE	DESCRIPTIONS OF CHANGE
Section 7-10 Subject 7-10-0 FIGURE ACR Table for A318-100 and A318CJ	R	ILLUSTRATION REVISED

LIST OF EFFECTIVE CONTENT

Revision No. 26 - Jun 01/24

CONTENT	CHG CODE	LAST REVISION DATE
CHAPTER 1 Subject 1-1-0		
Purpose		Mar 01/22
Subject 1-2-0		
Glossary		Dec 01/23
CHAPTER 2 Subject 2-1-1		
General Aircraft Characteristics Data		Mar 01/22
Subject 2-2-0		
General Aircraft Dimensions		May 01/14
FIGURE General Aircraft Dimensions - Wing Tip Fence		Feb 01/18
Subject 2-3-0		
Ground Clearances		May 01/23
FIGURE Ground Clearances - Wing Tip Fence		May 01/23
FIGURE Ground Clearances - Trailing Edge Flaps - Extended		May 01/15
FIGURE Ground Clearances - Flap Tracks - Extended		May 01/15
FIGURE Ground Clearances - Flap Tracks - Retracted		May 01/15
FIGURE Ground Clearances - Flap Tracks - 1 + F		May 01/15
FIGURE Ground Clearances - Aileron Down		May 01/15

CONTENT	CHG CODE	LAST REVISION DATE
FIGURE Ground Clearances - Aileron Up		May 01/15
FIGURE Ground Clearances - Spoilers - Extended		May 01/15
FIGURE Ground Clearances - Leading Edge Slats - Extended		May 01/15
Subject 2-4-1		
Interior Arrangements - Plan View		May 01/16
FIGURE Interior Arrangements - Plan View - Typical Configuration - Single-Class, High Density		May 01/16
FIGURE Interior Arrangements - Plan View - Typical Configuration - Two-Class		May 01/16
Subject 2-5-0		
Interior Arrangements - Cross Section		May 01/15
FIGURE Interior Arrangements - Cross Section - Economy Class, 6 Abreast - Wider Aisle		May 01/15
FIGURE Interior Arrangements - Cross Section - First-Class		May 01/15
Subject 2-6-0		May 01/14
Cargo Compartments		Way 01/14
FIGURE Cargo Compartments - Locations and Dimensions		May 01/15
Subject 2-7-0		
Door Clearances		Mar 01/22
FIGURE Door Identification and Location - Door Identification		Feb 01/18
FIGURE Doors Clearances - Forward Passenger/Crew Doors		May 01/15

CONTENT	CHG CODE	LAST REVISION DATE
FIGURE Doors Clearances - Emergency Exits		May 01/15
FIGURE Doors Clearances - Aft Passenger/Crew Doors		May 01/15
FIGURE Doors Clearances - Forward Cargo Compartment Door		May 01/15
FIGURE Doors Clearances - Aft Cargo Compartment Door		May 01/15
FIGURE Doors Clearances - Main Landing Gear Doors		May 01/15
FIGURE Doors Clearances - Radome		May 01/15
FIGURE Doors Clearances - APU and Nose Landing Gear Doors		May 01/15
FIGURE Doors Clearances - Airstairs - Location		Mar 01/22
FIGURE Doors Clearances - Airstairs - Dimensions		Mar 01/22
FIGURE Doors Clearances - Airstairs - Location for Operating the Airstairs		Mar 01/22
FIGURE Operation of the Airstairs		Mar 01/22
Subject 2-8-0		Dec 01/18
Escape Slides		Dec 01/10
FIGURE Escape Slides - Location		Feb 01/18
FIGURE Escape Slides - Dimensions		Dec 01/15
Subject 2-9-0		Mar 01/22
Landing Gear		Mai U1/22

CONTENT	CHG CODE	LAST REVISION DATE
FIGURE Landing Gear - Main Landing Gear - Twin-Wheel		May 01/14
FIGURE Landing Gear - Main Landing Gear Dimensions - Twin-Wheel		May 01/14
FIGURE Landing Gear - Nose Landing Gear		Mar 01/22
FIGURE Operation of Airstairs for ACJ		Mar 01/22
FIGURE Landing Gear - Nose Landing Gear Dimensions		May 01/14
Landing Gear Maintenance Pits		May 01/14
FIGURE Landing Gear Maintenance Pits - Maintenance Pit Envelopes		May 01/14
FIGURE Landing Gear Maintenance Pits - Maintenance Pit Envelopes		May 01/14
Subject 2-10-0		
Exterior Lighting		May 01/15
FIGURE Exterior Lighting		May 01/15
FIGURE Exterior Lighting		May 01/15
FIGURE Exterior Lighting		May 01/15
FIGURE Exterior Lighting		May 01/15
Subject 2-11-0		
Antennas and Probes Location		May 01/14
FIGURE Antennas and Probes - Location		May 01/14
Subject 2-12-0		

CONTENT	CHG CODE	LAST REVISION DATE
Auxiliary Power Unit		May 01/14
FIGURE Auxiliary Power Unit - Access Doors		Dec 01/15
FIGURE Auxiliary Power Unit - General Layout		Dec 01/15
Engine and Nacelle		May 01/23
FIGURE Power Plant Handling - Major Dimensions - CFM56 Series Engine		May 01/14
FIGURE Power Plant Handling - Major Dimensions - CFM56 Series Engine		May 01/14
FIGURE Power Plant Handling - Fan Cowls - CFM56 Series Engine		May 01/17
FIGURE Power Plant Handling - Thrust Reverser Cowls - CFM56 Series Engine		May 01/17
FIGURE Power Plant Handling - Major Dimensions - PW 6000 Series Engine		May 01/14
FIGURE Power Plant Handling - Nacelle Dimensions - PW 6000 Series Engine		May 01/14
FIGURE Power Plant Handling - Fan Cowls - PW 6000 Series Engine		May 01/17
FIGURE Power Plant Handling - Thrust Reverser Halves - PW 6000 Series Engine		May 01/14
Subject 2-13-0		
Leveling, Symmetry and Alignment		May 01/14
FIGURE Location of the Leveling Points		May 01/14

CONTENT	CHG CODE	LAST REVISION DATE
Subject 2-14-0		
Jacking for Maintenance		May 01/14
FIGURE Jacking for Maintenance - Jacking Point Locations		May 01/15
FIGURE Jacking for Maintenance - Forward Jacking Point		May 01/14
FIGURE Jacking for Maintenance - Wing Jacking Points		May 01/14
FIGURE Jacking for Maintenance - Safety Stay		May 01/15
FIGURE Jacking for Maintenance - Jacking Design		May 01/15
Jacking of the Landing Gear		May 01/17
FIGURE Jacking of the Landing Gear - MLG Jacking Point Location - Twin Wheels		May 01/14
FIGURE Jacking of the Landing Gear - MLG Jacking with Cantilever Jack - Twin Wheels		May 01/14
FIGURE Jacking of the Landing Gear - NLG Jacking - Point Location		May 01/14
FIGURE Jacking of the Landing Gear - Maximum Load Capacity to Lift Each Jacking Point		May 01/17
CHAPTER 3 Subject 3-1-0		
General Information		May 01/14
Subject 3-2-1		
Payload/Range - ISA Conditions		May 01/15
FIGURE Payload/Range - ISA Conditions		May 01/15

CONTENT	CHG CODE	LAST REVISION DATE
Subject 3-3-1		
Take-Off Weight Limitation - ISA Conditions		May 01/14
FIGURE Take-Off Weight Limitation - ISA Conditions - CFM56 Series Engine		May 01/14
FIGURE Take-Off Weight Limitation - ISA Conditions - PW 6000 Series Engine		May 01/14
Subject 3-3-2		
Take-Off Weight Limitation - ISA +15°C (+27°F) Conditions		Dec 01/18
FIGURE Take-Off Weight Limitation - ISA +15°C (+27°F) Conditions - CFM56 Series Engine		Dec 01/18
FIGURE Take-Off Weight Limitation - ISA +15°C (+27°F) Conditions - PW 6000 Series Engine		Dec 01/18
Subject 3-3-3		
Aerodrome Reference Code		Dec 01/18
Subject 3-4-1		
Landing Field Length - ISA Conditions		May 01/14
FIGURE Landing Field Length - ISA Conditions - CFM56-5B Series Engine		May 01/14
FIGURE Landing Field Length - ISA Conditions - PW 6000 Series Engine		May 01/14
Subject 3-5-0		
Final Approach Speed		May 01/14
CHAPTER 4 Subject 4-1-0		

CONTENT	CHG CODE	LAST REVISION DATE
General Information		May 01/14
Subject 4-2-0		
Turning Radii		Dec 01/15
FIGURE Turning Radii, No Slip Angle - (Sheet 1)		Dec 01/15
FIGURE Turning Radii, No Slip Angle - (Sheet 2)		Dec 01/15
Subject 4-3-0		Dec 01/15
Minimum Turning Radii		Dec 01/15
FIGURE Minimum Turning Radii		Dec 01/15
Subject 4-4-0		May 04/44
Visibility from Cockpit in Static Position		May 01/14
FIGURE Visibility from Cockpit in Static Position		Dec 01/18
FIGURE Binocular Visibility Through Windows from Captain Eye Position		May 01/14
Subject 4-5-0		
Runway and Taxiway Turn Paths		May 01/14
Subject 4-5-1		
135° Turn - Runway to Taxiway		May 01/14
FIGURE 135° Turn - Runway to Taxiway - Cockpit Over Centerline Method		Dec 01/18
FIGURE 135° Turn - Runway to Taxiway - Judgemental Oversteering Method		Dec 01/18
Subject 4-5-2		

CONTENT	CHG CODE	LAST REVISION DATE
90° Turn - Runway to Taxiway		May 01/14
FIGURE 90° Turn - Runway to Taxiway - Cockpit Over Centerline Method		Dec 01/18
FIGURE 90° Turn - Runway to Taxiway - Judgemental Oversteering Method		Dec 01/18
Subject 4-5-3		D 04/45
180° Turn on a Runway		Dec 01/15
FIGURE 180° Turn on a Runway - Edge of Runway Method		Dec 01/18
Subject 4-5-4		May 01/14
135° Turn - Taxiway to Taxiway		Way 01/14
FIGURE 135° Turn - Taxiway to Taxiway - Cockpit Over Centerline Method		Dec 01/18
Subject 4-5-5		
90° Turn - Taxiway to Taxiway		May 01/14
FIGURE 90° Turn - Taxiway to Taxiway - Cockpit Over Centerline Method		Dec 01/18
Subject 4-6-0		
Runway Holding Bay (Apron)		May 01/14
FIGURE Runway Holding Bay (Apron)		May 01/14
Subject 4-7-0		Mov 04/44
Minimum Line-Up Distance Corrections		May 01/14
FIGURE Minimum Line-Up Distance Corrections - 90° Turn on Runway Entry		May 01/14

CONTENT	CHG CODE	LAST REVISION DATE
FIGURE Minimum Line-Up Distance Corrections - 180° Turn on Runway Turn Pad		May 01/14
FIGURE Minimum Line-Up Distance Corrections - 180° Turn on Runway Width		May 01/14
Subject 4-8-0		
Aircraft Mooring		May 01/14
FIGURE Aircraft Mooring		May 01/14
CHAPTER 5 Subject 5-1-1		M 04/44
Aircraft Servicing Arrangements		May 01/14
Subject 5-1-2		
Typical Ramp Layout - Open Apron		May 01/14
FIGURE Typical Ramp Layout - Open Apron - Bulk Loading		May 01/15
Subject 5-1-3		May 01/14
Typical Ramp Layout - Gate		May 01/14
FIGURE Typical Ramp Layout - Gate		May 01/15
Subject 5-2-0		Feb 01/18
Terminal Operations - Full Servicing Turn Round Time		1 60 01/10
FIGURE Full Servicing Turn Round Time Chart		Dec 01/18
Subject 5-3-0		Dog 04/49
Terminal Operations - Outstation Turn Round Time		Dec 01/18
FIGURE Outstation Turn Round Time Chart		Dec 01/18
Subject 5-4-1		

CONTENT	CHG CODE	LAST REVISION DATE
Ground Service Connections Layout		May 01/14
FIGURE Ground Service Connections Layout		May 01/14
Subject 5-4-2	В	lun 04/24
Grounding (Earthing) Points	R	Jun 01/24
FIGURE Ground Service Connections - Grounding (Earthing) Points - Landing Gear		May 01/14
FIGURE Ground Service Connections - Grounding (Earthing) Points - Wing	R	Jun 01/24
FIGURE Ground Service Connections - Grounding (Earthing) Point - Avionics Compartment Door-Frame		May 01/14
FIGURE Ground Service Connections - Grounding (Earthing) Point - Engine Air Intake (If Installed)		May 01/14
Subject 5-4-3		
Hydraulic Servicing		May 01/16
FIGURE Ground Service Connections - Green System Ground Service Panel		May 01/16
FIGURE Ground Service Connections - Blue System Ground Service Panel		May 01/16
FIGURE Ground Service Connections - Yellow System Ground Service Panel		May 01/16
FIGURE Ground Service Connections - RAT		May 01/16
Subject 5-4-4		Mov 04/45
Electrical System		May 01/15

CONTENT	CHG CODE	LAST REVISION DATE
FIGURE Ground Service Connections - External Power Receptacles		May 01/14
Subject 5-4-5		
Oxygen System		May 01/14
FIGURE Ground Service Connections - Oxygen System		May 01/14
Subject 5-4-6		M. 04/44
Fuel System		May 01/14
FIGURE Ground Service Connections - Refuel/Defuel Control Panel		May 01/14
FIGURE Ground Service Connections - Refuel/Defuel Couplings		May 01/14
FIGURE Ground Service Connections - Overwing Gravity-Refuel Cap (If Installed)		May 01/14
FIGURE Ground Service Connections - Overpressure Protectors and NACA Vent Intake		May 01/14
Subject 5-4-7		
Pneumatic System		May 01/14
FIGURE Ground Service Connections - LP and HP Ground Connectors		May 01/14
Subject 5-4-8		Dec 01/21
Oil System		
FIGURE Ground Service Connections - Engine Oil Tank – CFM56 Series Engine		May 01/14
FIGURE Ground Service Connections - IDG Oil Tank – CFM56 Series Engine		May 01/14

CONTENT	CHG CODE	LAST REVISION DATE
FIGURE Ground Service Connections - Starter Oil Tank – CFM56 Series Engine		May 01/14
FIGURE Ground Service Connections - Engine Oil Tank – PW6000 Series Engine		May 01/14
FIGURE Ground Service Connections - IDG Oil Tank – PW6000 Series Engine		May 01/14
FIGURE Ground Service Connections - Starter Oil Tank – PW6000 Series Engine		May 01/14
FIGURE Ground Service Connections - APU Oil Tank		May 01/14
Subject 5-4-9		May 01/14
Potable Water System		Way 01/14
FIGURE Ground Service Connections - Potable Water Ground Service Panels		May 01/14
FIGURE Ground Service Connections - Potable Water Tank Location		May 01/14
Subject 5-4-10		Nov 01/19
Waste Water System		1000 0 1/19
FIGURE Ground Service Connections - Waste Water Ground Service Panel		May 01/14
FIGURE Ground Service Connections - Waste Tank Location		May 01/14
Subject 5-5-0	Б	L 04/04
Engine Starting Pneumatic Requirements	R	Jun 01/24
Subject 5-6-0		May 04/45
Ground Pneumatic Power Requirements		May 01/15

CONTENT	CHG CODE	LAST REVISION DATE
FIGURE Ground Pneumatic Power Requirements - Heating		May 01/14
FIGURE Ground Pneumatic Power Requirements - Cooling		May 01/14
Subject 5-7-0		May 01/15
Preconditioned Airflow Requirements		may on ro
FIGURE Preconditioned Airflow Requirements		May 01/16
Subject 5-8-0	Б	L 04/04
Ground Towing Requirements	R	Jun 01/24
FIGURE Ground Towing Requirements		Dec 01/23
Subject 5-9-0		May 04/45
De-Icing and External Cleaning		May 01/15
CHAPTER 6 Subject 6-1-0		5 04/45
Engine Exhaust Velocities and Temperatures		Dec 01/15
Subject 6-1-1		
Engine Exhaust Velocities Contours - Ground Idle Power		Dec 01/15
FIGURE Engine Exhaust Velocities - Ground Idle Power – CFM56 Series Engine		Dec 01/15
FIGURE Engine Exhaust Velocities - Ground Idle Power – PW 6000 Series Engine		Dec 01/15
Subject 6-1-2		5 04/45
Engine Exhaust Temperatures Contours - Ground Idle Power		Dec 01/15
FIGURE Engine Exhaust Temperatures - Ground Idle Power – CFM56 Series Engine		Dec 01/15

CONTENT	CHG CODE	LAST REVISION DATE
FIGURE Engine Exhaust Temperatures - Ground Idle Power – PW 6000 Series Engine		Dec 01/15
Subject 6-1-3		
Engine Exhaust Velocities Contours - Breakaway Power		Dec 01/15
FIGURE Engine Exhaust Velocities - Breakaway Power – CFM56 Series Engine		Dec 01/15
FIGURE Engine Exhaust Velocities - Breakaway Power – PW 6000 Series Engine		Dec 01/15
Subject 6-1-4		
Engine Exhaust Temperatures Contours - Breakaway Power		Dec 01/15
FIGURE Engine Exhaust Temperatures - Breakaway Power – CFM56 Series Engine		Dec 01/15
FIGURE Engine Exhaust Temperatures - Breakaway Power – PW 6000 Series Engine		Dec 01/15
Subject 6-1-5		
Engine Exhaust Velocities Contours - Takeoff Power		Dec 01/15
FIGURE Engine Exhaust Velocities - Takeoff Power – CFM56 Series Engine		Dec 01/15
FIGURE Engine Exhaust Velocities - Takeoff Power – PW 6000 Series Engine		Dec 01/15
Subject 6-1-6		
Engine Exhaust Temperatures Contours - Takeoff Power		Dec 01/15
FIGURE Engine Exhaust Temperatures - Takeoff Power – CFM56 Series Engine		Dec 01/15

CONTENT	CHG CODE	LAST REVISION DATE
FIGURE Engine Exhaust Temperatures - Takeoff Power – PW 6000 Series Engine		Dec 01/15
Subject 6-3-0		D 04/40
Danger Areas of Engines		Dec 01/18
Subject 6-3-1		D 04/45
Ground Idle Power		Dec 01/15
FIGURE Danger Areas of the Engines - CFM56 Series Engine		Dec 01/18
FIGURE Danger Areas of the Engines - PW 6000 Series Engine		Dec 01/18
Subject 6-3-2		Nov 01/19
Breakaway Power		1407 0 17 13
FIGURE Danger Areas of the Engines - CFM56 Series Engine		Nov 01/19
Subject 6-3-3		Feb 01/18
Take Off Power		Feb 01/16
FIGURE Danger Areas of the Engines - CFM56 Series Engine		Dec 01/18
FIGURE Danger Areas of the Engines - PW 6000 Series Engine		Dec 01/18
Subject 6-4-1		
APU - APIC & GARRETT		May 01/14
FIGURE Exhaust Velocities and Temperatures - APU – APIC & GARRETT		May 01/14
CHAPTER 7 Subject 7-1-0		
General Information		Mar 01/22
Subject 7-2-0		

CONTENT	CHG CODE	LAST REVISION DATE
Landing Gear Footprint		Mar 01/22
FIGURE Landing Gear Footprint	R	Jun 01/24
Subject 7-3-0		Mar 01/22
Maximum Pavement Loads		Wai 01/22
FIGURE Maximum Pavement Loads for A318-100 and ACJ318-100	R	Jun 01/24
Subject 7-4-0		Mar 01/22
Landing Gear Loading on Pavement		Wai 01/22
Subject 7-5-0		M = 04/00
Flexible Pavement Requirements - US Army Corps of Engineers Design Method		Mar 01/22
Subject 7-6-0		
Flexible Pavement Requirements - LCN Conversion		Mar 01/22
Subject 7-7-0		
Rigid Pavement Requirements - Portland Cement Association Design Method		Mar 01/22
Subject 7-8-0		
Rigid Pavement Requirements - LCN Conversion		Mar 01/22
Subject 7-9-0		
Aircraft Classification Number - Flexible and Rigid Pavements		Mar 01/22
FIGURE ACN Table for A318-100 and A318CJ	R	Jun 01/24
Subject 7-10-0		M = 04/00
ACR/PCR Reporting System - Flexible and Rigid Pavements		Mar 01/22
FIGURE ACR Table for A318-100 and A318CJ	R	Jun 01/24

CONTENT	CHG CODE	LAST REVISION DATE
CHAPTER 8 Subject 8-0-0		
Scaled Drawings		May 01/14
FIGURE Scaled Drawing		May 01/14
CHAPTER 10 Subject 10-0-0		
Aircraft Rescue and Fire Fighting		May 01/15
FIGURE Front Page		Nov 01/19
FIGURE Highly Flammable and Hazardous Materials and Components		Nov 01/19
FIGURE Batteries Location and Access		Nov 01/19
FIGURE Wheel/Brake Overheat - Wheel Safety Area		Nov 01/19
FIGURE Composite Materials		May 01/15
FIGURE L/G Ground Lock Safety Devices		Nov 01/19
FIGURE Emergency Evacuation Devices		Feb 01/18
FIGURE Pax/Crew Doors		Nov 01/19
FIGURE Emergency Exit Hatch		Nov 01/19
FIGURE FWD and AFT Lower Deck Cargo Doors		Nov 01/19
FIGURE Control Panels		Nov 01/19
FIGURE APU Access Door		Nov 01/19

©A318

CONTENT	CHG CODE	LAST REVISION DATE
FIGURE Aircraft Ground Clearances		May 01/16
FIGURE Structural Break-in Points		Nov 01/19

TABLE OF CONTENTS

1	SCOPE
1-1-0	Introduction
1-2-0	Glossary
2	AIRCRAFT DESCRIPTION
2-1-1	General Aircraft Characteristics Data
2-2-0	General Aircraft Dimensions
2-3-0	Ground Clearances
2-4-1	Interior Arrangements - Plan View
2-5-0	Interior Arrangements - Cross Section
2-6-0	Cargo Compartments
2-7-0	Door Clearances and Location
2-8-0	Escape Slides
2-9-0	Landing Gear
2-10-0	Exterior Lighting
2-11-0	Antennas and Probes Location
2-12-0	Power Plant
2-13-0	Leveling, Symmetry and Alignment
2-14-0	Jacking
3	AIRCRAFT PERFORMANCE
3-1-0	General Information
3-2-1	Payload / Range - ISA Conditions
3-3-1	Take-off Weight Limitation - ISA Conditions
3-3-2	Take-off Weight Limitation - ISA +15°C (+59°F) Conditions
3-3-3	Aerodrome Reference Code
3-4-1	Landing Field Length - ISA Conditions
3-5-0	Final Approach Speed
4	GROUND MANEUVERING
4-1-0	General Information
4-2-0	Turning Radii
4-3-0	Minimum Turning Radii
4-4-0	Visibility from Cockpit in Static Position
4-5-0	Runway and Taxiway Turn Paths
4-5-1	135° Turn - Runway to Taxiway

©A318

4-5-2	90° Turn - Runway to Taxiway
4-5-3	180° Turn on a Runway
4-5-4	135° Turn - Taxiway to Taxiway
4-5-5	90° Turn - Taxiway to Taxiway
4-6-0	Runway Holding Bay (Apron)
4-7-0	Minimum Line-Up Distance Corrections
4-8-0	Aircraft Mooring
5	TERMINAL SERVICING
5-1-1	Aircraft Servicing Arrangements
5-1-2	Typical Ramp Layout - Open Apron
5-1-3	Typical Ramp Layout - Gate
5-2-0	Terminal Operations - Full Servicing Turn Round Time Chart
5-3-0	Terminal Operation - Outstation Turn Round Time Chart
5-4-1	Ground Service Connections
5-4-2	Grounding Points
5-4-3	Hydraulic System
5-4-4	Electrical System
5-4-5	Oxygen System
5-4-6	Fuel System
5-4-7	Pneumatic System
5-4-8	Oil System
5-4-9	Potable Water System
5-4-10	Waste Water System
5-5-0	Engine Starting Pneumatic Requirements
5-6-0	Ground Pneumatic Power Requirements
5-7-0	Preconditioned Airflow Requirements
5-8-0	Ground Towing Requirements
5-9-0	De-Icing and External Cleaning
6	OPERATING CONDITIONS
6-1-0	Engine Exhaust Velocities and Temperatures
6-1-1	Engine Exhaust Velocities Contours - Ground Idle Power
6-1-2	Engine Exhaust Temperatures Contours - Ground Idle Power
6-1-3	Engine Exhaust Velocities Contours - Breakaway Power
6-1-4	Engine Exhaust Temperatures Contours - Breakaway Power
6-1-5	Engine Exhaust Velocities Contours - Takeoff Power
6-1-6	Engine Exhaust Temperatures Contours - Takeoff Power
6-3-0	Danger Areas of Engines

@A318

6-3-1	Ground Idle Power
6-3-2	Breakaway Power
6-3-3	Max Take Off Power
6-4-1	APU
7	PAVEMENT DATA
7-1-0	General Information
7-2-0	Landing Gear Footprint
7-3-0	Maximum Pavement Loads
7-4-0	Landing Gear Loading on Pavement
7-5-0	Flexible Pavement Requirements - U.S. Army Corps of Engineers Design Method
7-6-0	Flexible Pavement Requirements - LCN Conversion
7-7-0	Rigid Pavement Requirements - Portland Cement Association Design Method
7-8-0	Rigid Pavement Requirements - LCN Conversion
7-9-0	ACN/PCN Reporting System - Flexible and Rigid Pavements
7-10-0	ACR/PCR Reporting System - Flexible And Rigid Pavements
8	SCALED DRAWINGS
8-0-0	SCALED DRAWINGS
10	AIRCRAFT RESCUE AND FIRE FIGHTING
10-0-0	AIRCRAFT RESCUE AND FIRE FIGHTING

SCOPE

1-1-0 Introduction

**ON A/C A318-100

<u>Purpose</u>

1. General

The A318 AIRCRAFT CHARACTERISTICS – AIRPORT AND MAINTENANCE PLANNING (AC) manual is issued for the A318-100 series aircraft that have the wing-tip fences, to give necessary data to the airport operators, airlines and Maintenance/Repair Organizations (MRO) for airport and maintenance facilities planning.

This document is not customized and must not use it for the training purposes. No information can constitute a contractual commitment.

The A320 Family is the world's best-selling single-aisle aircraft. An A320 takes off or lands in the world each 2.5 seconds for each day, the family recorded more than 50 million cycles since the entry-into-service and records the best-in-class reliability of 99.7%.

When you fly the ACJ family member, we pride ourselves on four key intertwined DNA strands that are behind everything. We give the ultimate comfort, intercontinental freedom, pioneering technology and reliability. An ACJ is not only a plane but a home where you can experience space like no other jet, crafted ambience and artisanal quality materials you can connect with. We have selected the space and technology to let you do fine dining, pampering, movie night, working from the sky to make strategic business decisions or simply relaxing with your loved ones and guests, uncompromisingly.

1-2-0 Glossary

**ON A/C A318-100

Glossary

1. List of Abbreviations

A/C ACF ACN ACR AMM APU B/C CBR CC CG CKPT E ELEC ESWL FAA F/C FDL FR FSTE FWD GPU GSE HYD ICAO IDG ISA L L L LCN LD	Aircraft Cabin Flex Aircraft Classification Number Aircraft Classification Rating Aircraft Maintenance Manual Auxiliary Power Unit Business Class California Bearing Ratio Cargo Compartment Center of Gravity Cockpit Young's Modulus Electric, Electrical, Electricity Equivalent Single Wheel Load Federal Aviation Administration First Class Fuselage Datum Line Frame Full Size Trolley Equivalent Forward Ground Power Unit Ground Support Equipment Hydraulic International Civil Aviation Organisation Integrated Drive Generator International Standard Atmosphere Left Radius of relative stiffness Load Classification Number Lower Deck
-	
_	
L/G	Landing Gear
LH	Left Hand
LPS	Last Pax Seating

Mean Aerodynamic Chord
•

MAX Maximum MIN Minimum

MLG Main Landing Gear
NLG Nose Landing Gear
OAT Outside Air Temperature

PAX Passenger

PBB Passenger Boarding Bridge
PCA Portland Cement Association
PCN Pavement Classification Number
PCR Pavement Classification Rating
PRM Passenger with Reduced Mobility

R Right

RH
ULD
Unit Load Device
US
United States
WV
Weight Variant
Y/C
Tourist Class

2. Design Weight Terminology

- Maximum Design Ramp Weight (MRW):
 Maximum weight for ground maneuver (including weight of taxi and run-up fuel) as limited by aircraft strength and airworthiness requirements. It is also called Maximum Design Taxi Weight (MTW).
- Maximum Design Landing Weight (MLW):
 - Maximum weight for landing as limited by aircraft strength and airworthiness requirements.
- Maximum Design Takeoff Weight (MTOW):
 - Maximum weight for takeoff as limited by aircraft strength and airworthiness requirements. (This is the maximum weight at start of the take-off run).
- Maximum Design Zero Fuel Weight (MZFW):
 - Maximum permissible weight of the aircraft without usable fuel.
- Maximum Seating Capacity:
 - Maximum number of passengers specifically certified or anticipated for certification.
- Usable Volume:
 - Usable volume available for cargo, pressurized fuselage, passenger compartment and cockpit.
- Water Volume:
 - Maximum volume of cargo compartment.
- Usable Fuel:
 - Fuel available for aircraft propulsion.

AIRCRAFT DESCRIPTION

2-1-1 General Aircraft Characteristics Data

**ON A/C A318-100

General Aircraft Characteristics Data

1. The following table gives characteristics of A318-100 and ACJA318 models, these data are specific to each weight variant:

Aircraft Characteristics					
	WV000	WV001	WV002	WV003	WV004
Maximum Ramp Weight					
(MRW)	59 400 kg	61 900 kg	63 400 kg	64 900 kg	66 400 kg
Maximum Taxi Weight	(130 955 lb)	(136 466 lb)	(139 773 lb)	(143 080 lb)	(146 387 lb)
(MTW)					
Maximum Take-Off Weight	59 000 kg	61 500 kg	63 000 kg	64 500 kg	66 000 kg
(MTOW)	(130 073 lb)	(135 584 lb)	(138 891 lb)	(142 198 lb)	(145 505 lb)
Maximum Landing Weight	56 000 kg	56 000 kg	57 500 kg	57 500 kg	57 500 kg
(MLW)	(123 459 lb)	(123 459 lb)	(126 766 lb)	(126 766 lb)	(126 766 lb)
Maximum Zero Fuel Weight	53 000 kg	53 000 kg	54 500 kg	54 500 kg	54 500 kg
(MZFW)	(116 845 lb)	(116 845 lb)	(120 152 lb)	(120 152 lb)	(120 152 lb)

Aircraft Characteristics					
	WV004 ACJ	WV005	WV005 ACJ	WV006	WV007
Maximum Ramp Weight					
(MRW)	66 400 kg	68 400 kg	68 400 kg	56 400 kg	61 400 kg
Maximum Taxi Weight	(146 387 lb)	(150 796 lb)	(150 796 lb)	(124 341 lb)	(135 364 lb)
(MTW)					
Maximum Take-Off Weight	66 000 kg	68 000 kg	68 000 kg	56 000 kg	61 000 kg
(MTOW)	(145 505 lb)	(149 914 lb)	(149 914 lb)	(123 459 lb)	(134 482 lb)
Maximum Landing Weight	57 500 kg	57 500 kg	57 500 kg	56 000 kg	56 000 kg
(MLW)	(126 766 lb)	(126 766 lb)	(126 766 lb)	(123 459 lb)	(123 459 lb)
Maximum Zero Fuel Weight	54 500 kg	54 500 kg	54 500 kg	53 000 kg	53 000 kg
(MZFW)	(120 152 lb)	(120 152 lb)	(120 152 lb)	(116 845 lb)	(116 845 lb)

Aircraft Characteristics				
	WV008	WV009 ACJ	WV010 ACJ	
Maximum Ramp Weight				
(MRW)	64 400 kg	66 400 kg	68 400 kg	
Maximum Taxi Weight	(141 978 lb)	(146 387 lb)	(150 796 lb)	
(MTW)				
Maximum Take-Off	64 000 kg	66 000 kg	68 000 kg	
Weight (MTOW)	(141 096 lb)	(145 505 lb)	(149 914 lb)	
Maximum Landing	56 000 kg	57 500 kg	57 500 kg	
Weight (MLW)	(123 459 lb)	(126 766 lb)	(126 766 lb)	
Maximum Zero Fuel	53 000 kg	48 000 kg	48 000 kg	
Weight (MZFW)	(116 845 lb)	(105 822 lb)	(105 822 lb)	

2. The following table gives characteristics of A318-100 models, these data are common to each weight variant:

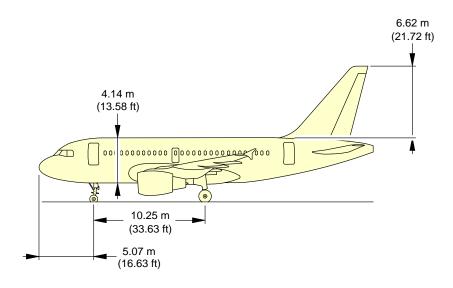
Aircraft Characteristics				
Standard Seating Capacity	132 (Single-Class)			
Usable Fuel Capacity		A318	ACJ318 (Elite)	
(density = 0.785 kg/l)	Total Wing Fuel	15 959 I	15 609 I	
		(4 216 US gal)	(4 123 US gal)	
	Center Tank fuel	8 250 I	8 250 I	
	Center rank idei	(2 179 US gal)	(2 179 US gal)	
	ACT 1	Х	2 000 I	
		^	(528 US gal)	
	Maximum Total	24 209 I	25 859 l	
	Aircraft-Fuel	(6 395 US gal)	(6 831 US gal)	
Pressurized Fuselage Volume (A/C non	257 m³			
equipped)	(9 076 ft ³)			
Passenger Compartment Volume	107 m³			
	(3 779 ft³)			
Cockpit Volume	9 m³			
	(318 ft³)			
Usable Volume, FWD CC	6.72 m³			
	(237 ft ³)			
Usable Volume, AFT CC	8.87 m³			
	(313 ft ³)			
Usable Volume, Bulk CC	5.71 m³			

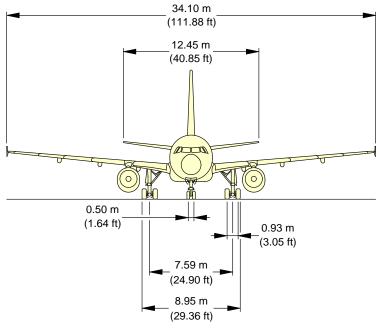
©A318

Aircraft Characteristics		
	(202 ft³)	
Water Volume, FWD CC	8.34 m³	
	(295 ft ³)	
Water Volume, AFT CC	10.38 m³	
	(367 ft ³)	
Water Volume, Bulk CC	5.97 m ³	
	(211 ft ³)	

@A318

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

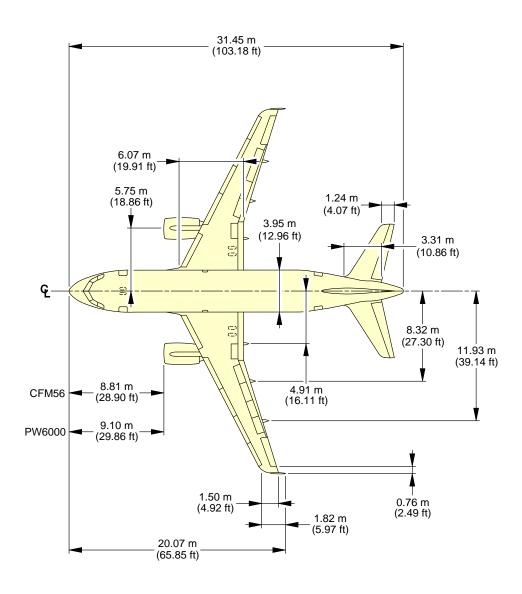

2-2-0 General Aircraft Dimensions


**ON A/C A318-100

General Aircraft Dimensions

1. This section provides general aircraft dimensions.

**ON A/C A318-100



NOTE:RELATED TO AIRCRAFT ATTITUDE AND WEIGHT.

N_AC_020200_1_0010101_01_04

General Aircraft Dimensions Wing Tip Fence (Sheet 1 of 2) FIGURE-2-2-0-991-001-A01

**ON A/C A318-100

NOTE:RELATED TO AIRCRAFT ATTITUDE AND WEIGHT.

N_AC_020200_1_0010107_01_02

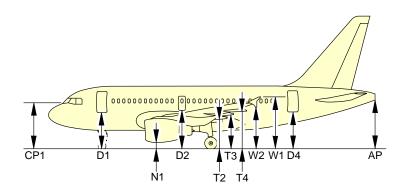
General Aircraft Dimensions Wing Tip Fence (Sheet 2 of 2) FIGURE-2-2-0-991-001-A01

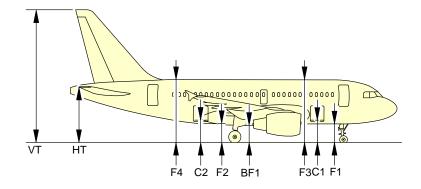
2-3-0 Ground Clearances

**ON A/C A318-100

Ground Clearances

1. This section provides the height of various points of the aircraft, above the ground, for different aircraft configurations.


Dimensions in the tables are approximate and will vary with tire type, weight and balance and other special conditions.


The dimensions are given for:

- A light weight, for an A/C in maintenance configuration with a mid
- An aircraft at Maximum Ramp Weight with a FWD CG and an AFT CG,
- Aircraft on jacks, FDL at 4.60 m (15.09 ft).

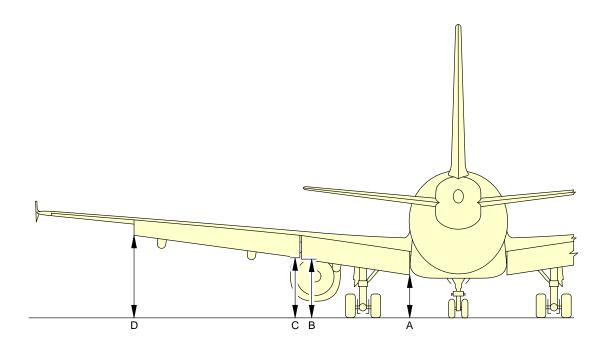
NOTE: Passenger and cargo door ground clearances are measured from the center of the door sill and from floor level.

**ON A/C A318-100

N_AC_020300_1_0010101_01_09

Ground Clearances Wing Tip Fence (Sheet 1 of 2) FIGURE-2-3-0-991-001-A01

Page 2

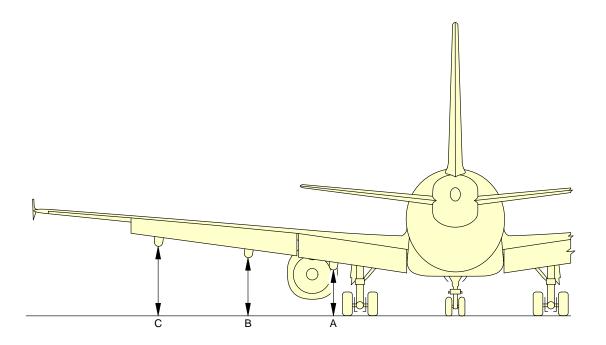

**ON A/C A318-100

g A/C JACKED	(15.09 ft)	ft m	11.322 4.132 13.556	13.028 4.535 14.878	12.214 4.132 13.556	6.227 2.532 8.307	6.633 2.532 8.307	13.854 4.959 16.269	5.859 2.434 7.985	6.335 2.434 7.985	19.468 6.575 21.571	19.944 6.575 21.571	2.256	8.963 3.248 10.656	10.396 3.677 12.063	11.528 4.005 13.139	16.056 5.353 17.562	12.864 4.383 14.379	18.425 5.930 19.455	16.115 5.203 17.070	42.299 13.195 43.290	2.168 1.239 4.064	
OEW 38 818 kg (85 579 lb)	CG (25%)	(%CZ) W	3.451 1	3.971 13	3.724 13	1.898 6	2.022 6	4.223	1.786 5	1.931 6	5.934	. 620.9		2.732 8	`	3.514 1	4.894	3.921	5.616 18	4.912 16	12.893	0.661	, ,
	90 %	(o)	11.220	12.798	11.820	6.072	6.345	13.812	5.721	6.040	19.320	19.642	5.419	8.681	10.108	11.220	15.711	12.522	17.923	15.590	12.736 41.784	1.955	,
MRW (WV8) 64 400 kg (141 978 lb)	AFT CG (32%)	E E	3.420	3.901	3.603	1.851	1.934	4.210	1.744	1.841	5.889	5.987	1.652	2.646	3.081	3.420	4.789	3.817	5.463	4.752		0.596	0
MRW 64 4((141 g	FWD CG (15.79%)	3.0) ft	3.369 11.053	3.900 12.795	12.043	5.971	6.423	13.566	5.600	6.125	19.209	19.737		8.750	10.187	11.325	15.862	12.667	18.280	15.980	42.162	1.935	070
	FWE (15.7	E			3.671	1.820	1.958	4.135	1.707	1.867	19.379 5.855 19.209	19.681 6.016 19.737		2.667	3.105	11.263 3.452	4.835	3.861	5.572		12.851	0.590	7 000
	AFT CG (33.95%)	(6/26) #	11.279	12.847	11.853	6.128	6.387	13.877	5.777	6.082		19.681	-	8.723	10.150	11.263	15.751	12.562	17.946	15.610 4.871	12.885 42.273 12.743 41.807 12.851 42.162	2.004	777
MRW (WV0) 59 400 kg (130 955 lb)	AFT (33.9	E	3.438	3.916	3.613	1.868	1.947	4.230	1.761	1.854	5.864 19.238 5.907	6.036 19.803 5.999		2.659	3.094	3.433	4.801	3.829	5.470	4.758	12.743	0.611	
MRW 59 4(FWD CG (15%)	(%) #	11.072	3.915 12.844	12.129	6.003	6.482	13.572	5.626	6.187	19.238	19.803		8.809	10.249	11.391	15.935	12.739	18.389	16.095	42.273	1.978	1 300
	FWD (15	<u>}</u> E	3.375	3.915	3.697	1.830	1.976	4.137	1.715	1.886	5.864	6.036	1.689	2.685	3.124	3.472	4.857	3.883	5.605	4.906	12.885	0.603	0 4 0 2
			7	D2	D4	C	C2	CP1	됴	F2	F3	F4	BF1	T2	Т3	Т4	W1	W2	눞	ЧΡ	₹	ž	Σ
i di	AC CONFIGURATION		DOOR 1	EMERGENCY HATCH	DOOR 2	FWD CARGO DOOR	AFT CARGO DOOR	PILOT VIEW	BOTTOM FWD	BOTTOM AFT	TOP FWD	TOP AFT	BELLY FAIRING	FLAP TRACK 2	FLAP TRACK 3	FLAP TRACK 4	WING TIP FENCE TOP	WING TIP FENCE BOTTOM	HORIZONTAL TAIL PLANE	APU EXHAUST	VERTICAL TAIL PLANE	CFM 5B NACELLE	0009/10
()	A/C CON			PASSENGER DOORS		CARGO	DOORS	REFERENCE POINT			FUSELAGE						WING			TAILPLANE) ANICINE	NACELE

NOTE: PASSENGER AND CARGO DOOR GROUND CLEARANCES ARE MEASURED FROM THE CENTER OF THE DOOR SILL AND FROM FLOOR LEVEL. N_AC_020300_1_0010103_01_01

Ground Clearances Wing Tip Fence (Sheet 2 of 2) FIGURE-2-3-0-991-001-A01

**ON A/C A318-100

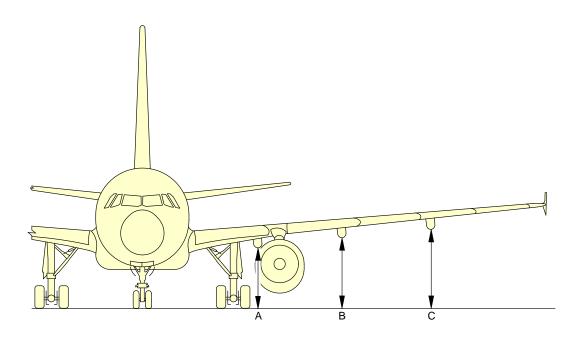


FLAPS EXTENDED												
DESCRIPTION	1	CONFIGU	NTENANCE JRATION CG		M RAMP FWD CG	MAXIMUM RAMP WEIGHT AFT CG						
		m	ft	m	ft	m	ft					
FLAP 1 INBD	Α	2.05	6.73	1.99	6.53	1.96	6.43					
FLAP 1 OUTBD	В	2.77	9.09	2.71	8.89	2.68	8.79					
FLAP 2 INBD	С	2.81	9.22	2.75	9.02	2.72	8.92					
FLAP 2 OUTBD	D	3.65	11.98	3.60	11.81	3.54	11.61					

N_AC_020300_1_0060101_01_01

Ground Clearances Trailing Edge Flaps - Extended FIGURE-2-3-0-991-006-A01

**ON A/C A318-100

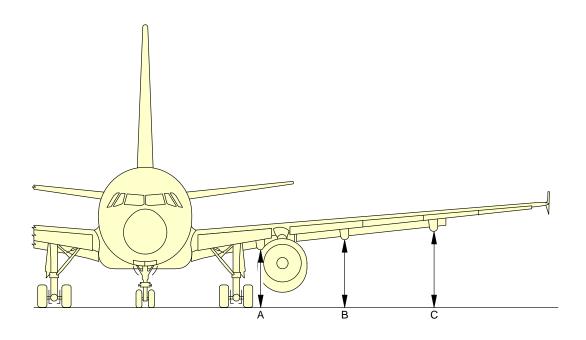


FLAP TRACKS EXTENDED												
DESCRIPTION	1	CONFIGU	NTENANCE JRATION CG		M RAMP FWD CG	MAXIMUM RAMP WEIGHT AFT CG						
		m	ft	m	ft	m	ft					
FLAP TRACK 2	Α	2.10	6.89	2.03	6.66	2.00	6.56					
FLAP TRACK 3	В	2.59	8.50	2.53	8.30	2.49	8.17					
FLAP TRACK 4	С	3.05	10.01	2.99	9.81	2.94	9.65					

N_AC_020300_1_0350101_01_00

Ground Clearances Flap Tracks - Extended FIGURE-2-3-0-991-035-A01

**ON A/C A318-100

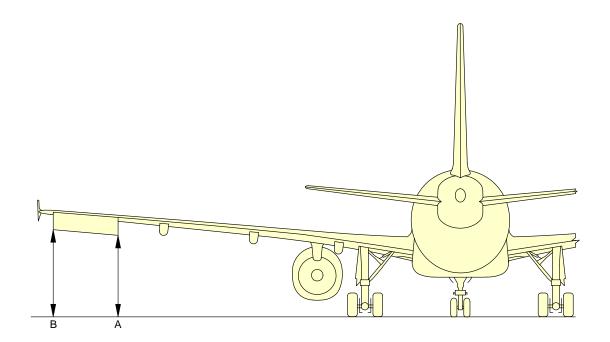


FLAP TRACKS RETRACTED												
DESCRIPTION	1	CONFIGU	NTENANCE JRATION CG	_	M RAMP FWD CG	MAXIMUM RAMP WEIGHT AFT CG						
		m	ft	m	ft	m	ft					
FLAP TRACK 2	Α	2.70	8.86	2.60	8.53	2.58	8.46					
FLAP TRACK 3	В	3.10	10.17	3.00	9.84	2.97	9.74					
FLAP TRACK 4	С	3.50	11.48	3.39	11.12	3.36	11.02					

N_AC_020300_1_0070101_01_01

Ground Clearances Flap Tracks - Retracted FIGURE-2-3-0-991-007-A01

**ON A/C A318-100

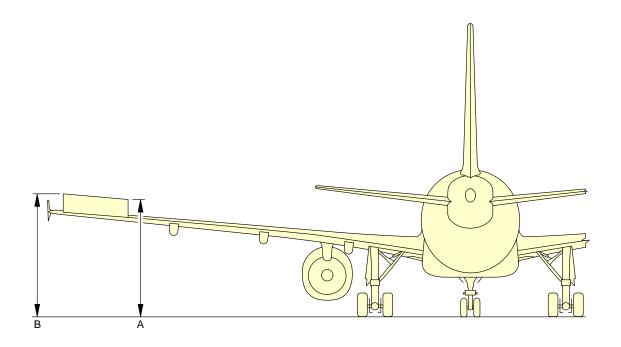


FLAP TRACKS 1+F												
DESCRIPTION		CONFIGU	NTENANCE JRATION CG	_	M RAMP FWD CG	MAXIMUM RAMP WEIGHT AFT CG						
		m	ft	m	ft	m	ft					
FLAP TRACK 2	Α	1.95	6.40	1.85	6.07	1.83	6.00					
FLAP TRACK 3	В	2.31	7.58	2.21	7.25	2.18	7.15					
FLAP TRACK 4	С	2.89	9.48	2.78	9.12	2.75	9.02					

N_AC_020300_1_0360101_01_00

Ground Clearances Flap Tracks - 1 + F FIGURE-2-3-0-991-036-A01

**ON A/C A318-100

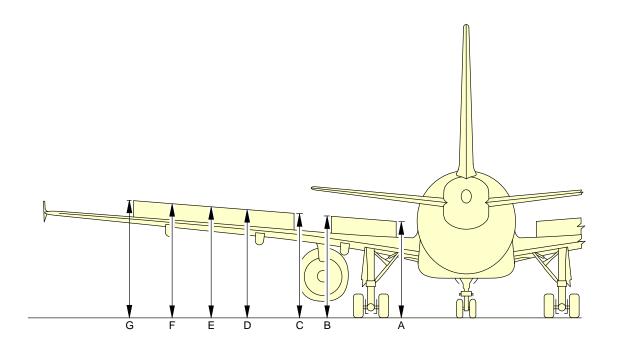


AILERON DOWN												
DESCRIPTION		CONFIGL	NTENANCE JRATION CG	_	M RAMP FWD CG	MAXIMUM RAMP WEIGHT AFT CG						
		m	ft	m	ft	m	ft					
AILERON INBD	Α	3.84	12.60	3.78	12.40	3.74	12.27					
AILERON OUTBD	В	4.19	13.75	4.13	13.55	4.07	13.35					

N_AC_020300_1_0080101_01_01

Ground Clearances Aileron Down FIGURE-2-3-0-991-008-A01

**ON A/C A318-100

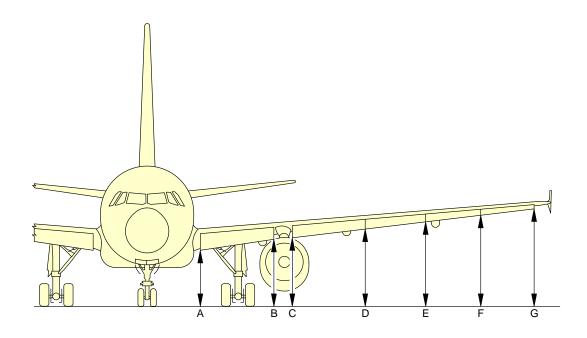


AILERON UP												
DESCRIPTION		CONFIGL	NTENANCE JRATION CG	_	M RAMP FWD CG	MAXIMUM RAMP WEIGHT AFT CG						
		m	ft	m	ft	m	ft					
AILERON INBD	Α	4.37	14.34	4.31	14.14	4.45	14.60					
AILERON OUTBD	В	4.57	14.99	4.51	14.80	4.26	13.98					

N_AC_020300_1_0370101_01_00

Ground Clearances Aileron Up FIGURE-2-3-0-991-037-A01

**ON A/C A318-100



SPOILERS EXTENDED											
DESCRIPTION	CONFIGU	NTENANCE JRATION CG		IM RAMP FWD CG	MAXIMUM RAMP WEIGHT AFT CG						
		m	ft	m	ft	m ft					
SPOILER 1 INBD	Α	3.75	12.30	3.69	12.11	3.66	12.01				
SPOILER 1 OUTBD	В	4.01	13.16	3.94	12.93	3.92	12.86				
SPOILER 2 INBD	С	4.07	13.35	4.01	13.16	3.98	13.06				
SPOILER 2/3	D	4.21	13.81	4.15	13.62	4.12	13.52				
SPOILER 3/4	Е	4.35	14.27	4.29	14.07	4.26	13.98				
SPOILER 4/5	F	4.48	14.70	4.42	14.50	4.38	14.37				
SPOILER 5 OUTBD	G	4.60	15.09	4.54	14.89	4.50	14.76				

N_AC_020300_1_0090101_01_01

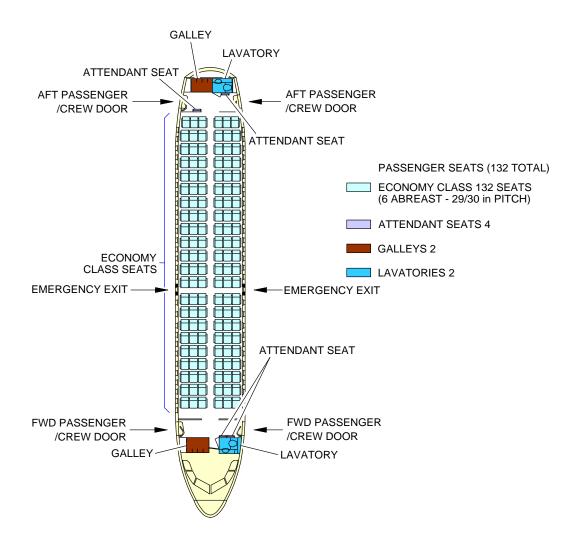
Ground Clearances Spoilers - Extended FIGURE-2-3-0-991-009-A01

**ON A/C A318-100

	LEADING EDGE SLATS EXTENDED												
DESCRIPTION	CONFIGU	NTENANCE JRATION CG	_	IM RAMP FWD CG	MAXIMUM RAMP WEIGHT AFT CG								
		m	ft	m	ft	m ft							
SLAT 1 INBD	А	2.54	8.33	2.48	8.14	2.50	8.20						
SLAT 1 OUTBD	В	2.96	9.71	2.90	9.51	2.91	9.55						
SLAT 2 INBD	С	3.05	10.01	2.99	9.81	2.99	9.81						
SLAT 2/3	D	3.35	10.99	3.29	10.79	3.28	10.76						
SLAT 3/4	Е	3.61	11.84	3.55	11.65	3.53	11.58						
SLAT 4/5	F	3.86	12.66	3.80	12.47	3.77	12.37						
SLAT 5 OUTBD	G	4.10	13.45	4.04	13.25	4.00	13.12						

N_AC_020300_1_0100101_01_01

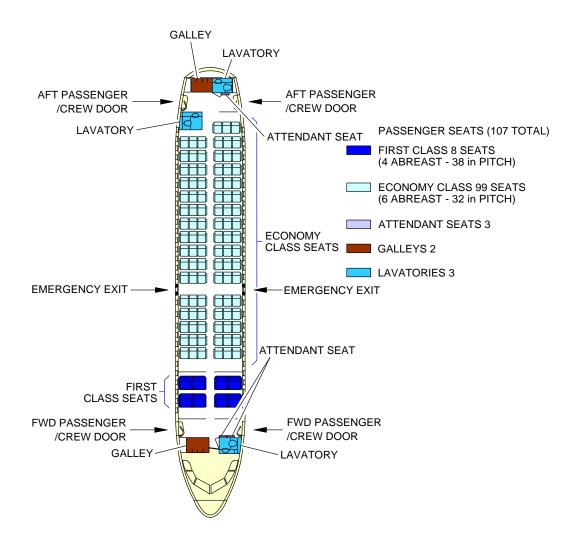
Ground Clearances Leading Edge Slats - Extended FIGURE-2-3-0-991-010-A01


2-4-1 Interior Arrangements - Plan View

**ON A/C A318-100

Interior Arrangements - Plan View

1. This section provides the typical interior configuration.


**ON A/C A318-100

N_AC_020401_1_0010101_01_02

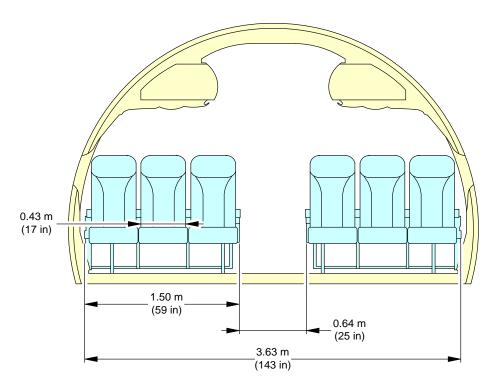
Interior Arrangements - Plan View
Typical Configuration - Single-Class, High Density
FIGURE-2-4-1-991-001-A01

**ON A/C A318-100

N_AC_020401_1_0070101_01_01

Interior Arrangements - Plan View Typical Configuration - Two-Class FIGURE-2-4-1-991-007-A01

2-5-0 Interior Arrangements - Cross Section


**ON A/C A318-100

Interior Arrangements - Cross Section

1. This section provides the typical configuration.

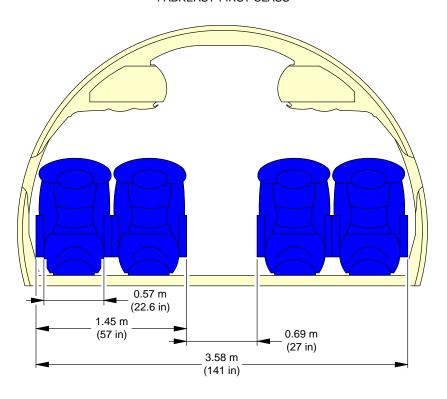
**ON A/C A318-100

6 ABREAST-WIDER AISLE

N_AC_020500_1_0050101_01_01

Interior Arrangements - Cross Section Economy Class, 6 Abreast - Wider Aisle (Sheet 1 of 2) FIGURE-2-5-0-991-005-A01

**ON A/C A318-100


0.46 m (18 in) 1.58 m (62 in) 0.48 m (19 in) 3.63 m (143 in)

N_AC_020500_1_0050102_01_03

Interior Arrangements - Cross Section Economy Class, 6 Abreast - Wider Seat (Sheet 2 of 2) FIGURE-2-5-0-991-005-A01

**ON A/C A318-100

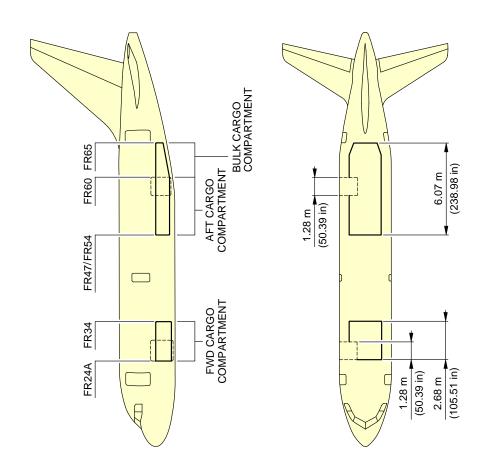
4 ABREAST-FIRST CLASS

N_AC_020500_1_0060101_01_01

Interior Arrangements - Cross Section First-Class FIGURE-2-5-0-991-006-A01

@A318

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING


2-6-0 Cargo Compartments

**ON A/C A318-100

Cargo Compartments

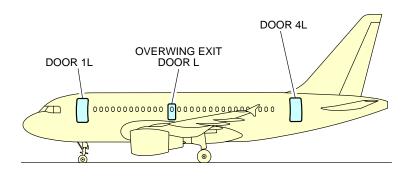
1. This section gives the cargo compartments locations, dimensions and loading combinations.

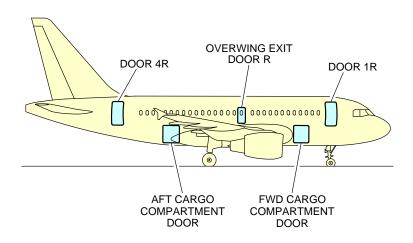
**ON A/C A318-100

N_AC_020600_1_0010101_01_00

Cargo Compartments Locations and Dimensions FIGURE-2-6-0-991-001-A01

2-7-0 Door Clearances and Location

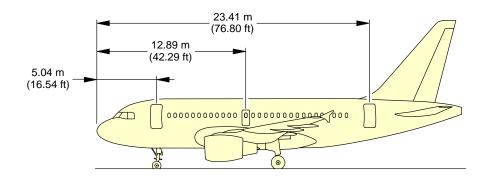

**ON A/C A318-100

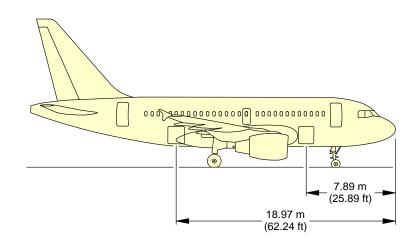

Door Clearances

1. This section gives door identification and location.

NOTE: Dimensions of the ground clearances are approximate and will change with tire type, weight and balance and other special conditions.

**ON A/C A318-100

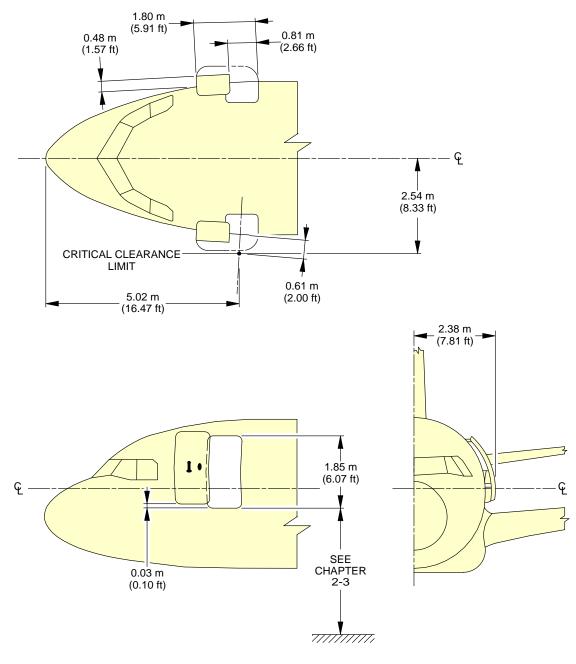




N_AC_020700_1_0010101_01_02

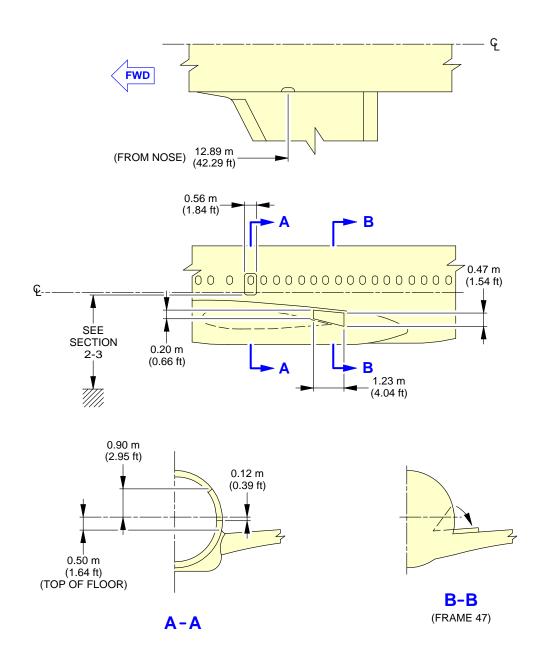
Door Identification and Location Door Identification (Sheet 1 of 2) FIGURE-2-7-0-991-001-A01

**ON A/C A318-100



N_AC_020700_1_0010102_01_01

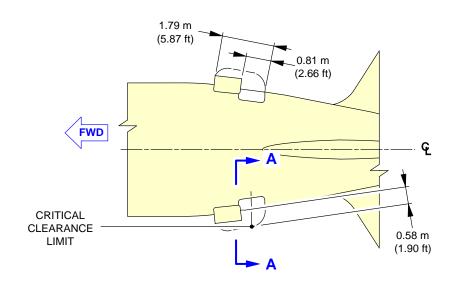
Door Identification and Location Door Location (Sheet 2 of 2) FIGURE-2-7-0-991-001-A01

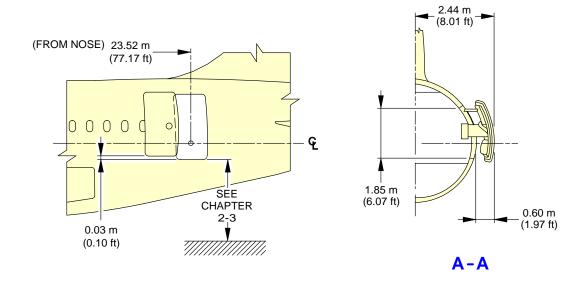

**ON A/C A318-100

N_AC_020700_1_0050101_01_00

Doors Clearances Forward Passenger/Crew Doors FIGURE-2-7-0-991-005-A01

**ON A/C A318-100

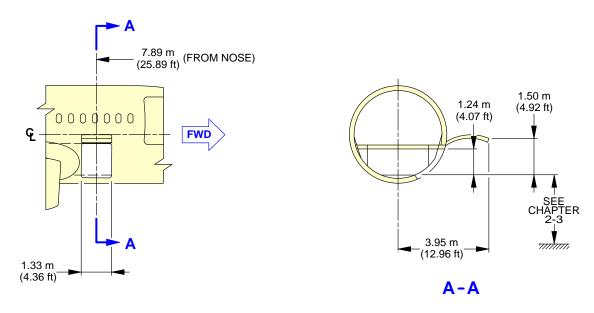

NOTE:

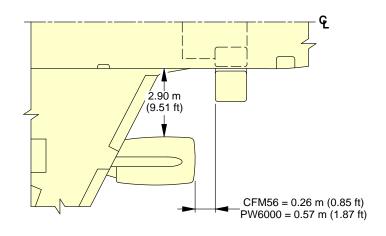

ESCAPE SLIDE COMPARTMENT DOOR OPENS ON WING UPPER SURFACE.

N_AC_020700_1_0060101_01_00

Doors Clearances Emergency Exits FIGURE-2-7-0-991-006-A01

**ON A/C A318-100

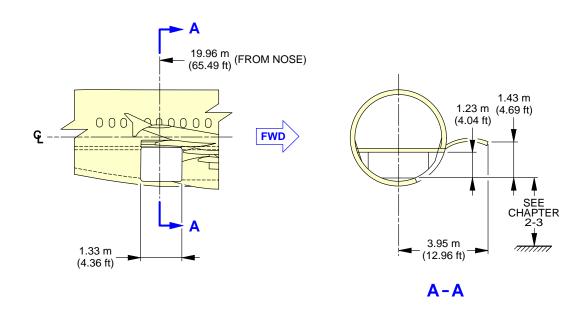


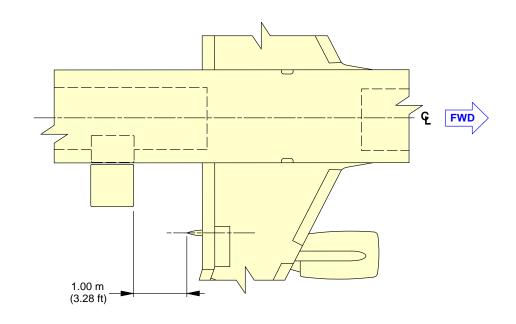


N_AC_020700_1_0070101_01_00

Doors Clearances Aft Passenger/Crew Doors FIGURE-2-7-0-991-007-A01

**ON A/C A318-100

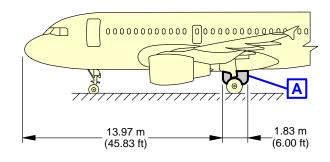


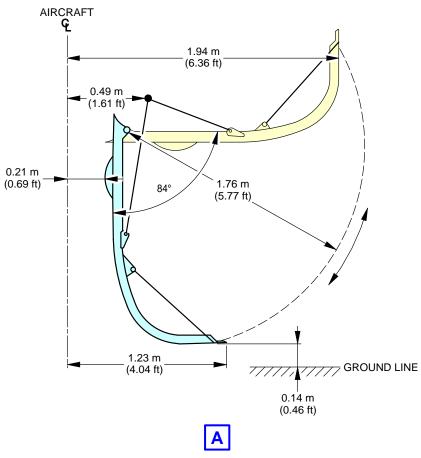


N_AC_020700_1_0080101_01_00

Doors Clearances Forward Cargo Compartment Door FIGURE-2-7-0-991-008-A01

**ON A/C A318-100

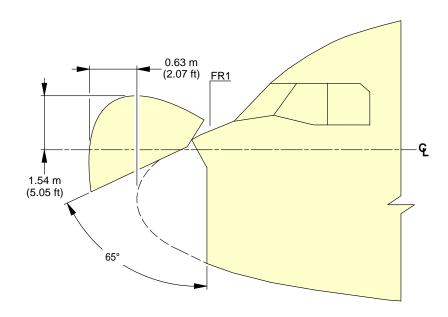




N_AC_020700_1_0090101_01_00

Doors Clearances Aft Cargo Compartment Door FIGURE-2-7-0-991-009-A01

**ON A/C A318-100



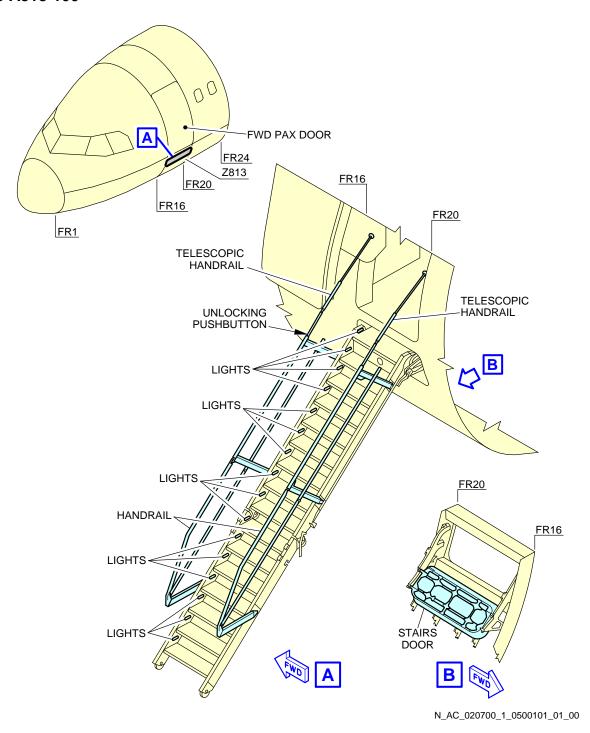
NOTE: VALUE OF CG: 25% RC.

N_AC_020700_1_0100101_01_00

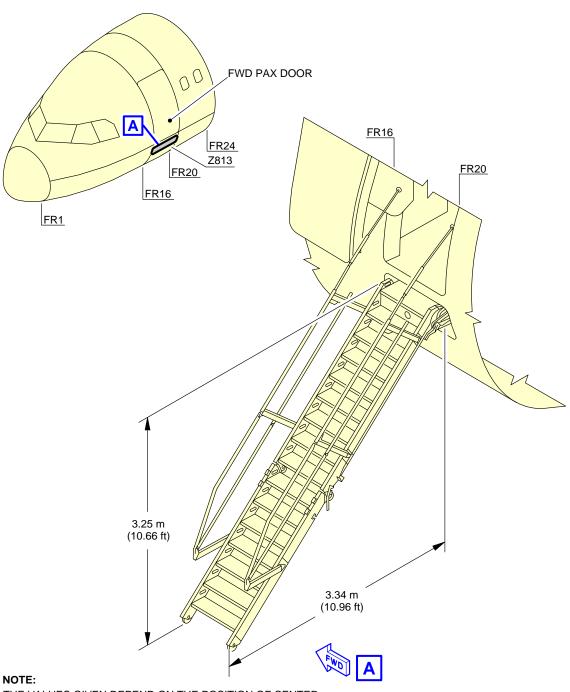
Doors Clearances Main Landing Gear Doors FIGURE-2-7-0-991-010-A01

**ON A/C A318-100

N_AC_020700_1_0110101_01_00


Doors Clearances Radome FIGURE-2-7-0-991-011-A01

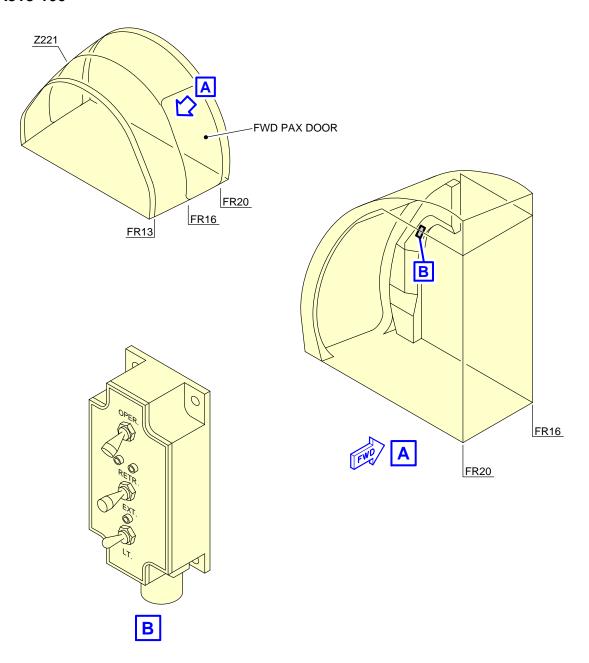
**ON A/C A318-100


Doors Clearances APU and Nose Landing Gear Doors FIGURE-2-7-0-991-012-A01

**ON A/C A318-100

Doors Clearances - Airstairs Location FIGURE-2-7-0-991-050-A01

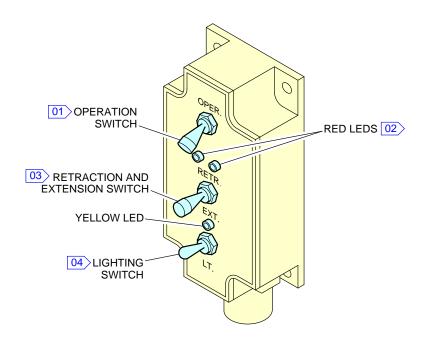
**ON A/C A318-100



THE VALUES GIVEN DEPEND ON THE POSITION OF CENTER OF GRAVITY (CG) AND THE AIRCRAFT WEIGHT.

N_AC_020700_1_0510101_01_00

Doors Clearances - Airstairs **Dimensions** FIGURE-2-7-0-991-051-A01


**ON A/C A318-100

N_AC_020700_1_0520101_01_00

Doors Clearances - Airstairs Location for Operating the Airstairs FIGURE-2-7-0-991-052-A01

**ON A/C A318-100

NOTE:

- 01 OPER.: WHEN THE FLIGHT CREW PUSHES THIS SWITCH TO THE OPER. POSITION AND HOLDS IT AGAINST THE SPRING, THE STAIRS WILL EXTEND OR RETRACT IF THE FLIGHT CREW ALSO HOLDS THE RETRACTION AND EXTENSION SWITCH IN THE RETR. OR EXT. POSITION. OFF: OPERATION OF THE STAIRS IS PREVENTED.
- 02 THE TWO RED LIGHTS ARE ON DURING THE EXTENSION AND RETRACTION.
- 03 NEUTRAL: THIS IS THE STABLE, LOCKED POSITION. OPERATION OF THE STAIRS IS PREVENTED. TO MOVE IT FROM THIS POSITION, THE FLIGHT CREW MUST PULL THE SWITCH OUT.

RETR.: WHEN THE FLIGHT CREW HOLDS THE SWITCH IN THIS POSITION AGAINST THE SPRING, THE STAIRS RETRACT IF:

- THE OPERATION SWITCH IS HELD AT OPER.
- THE TELESCOPIC HANDRAILS ARE FULLY STOWED.
- 04 UP: THE STAIR LIGHTS COMES ON ALONG WITH THE YELLOW CONTROL LIGHT, IF:
 - THE STAIRS ARE FULLY EXTENDED, AND
 - THE POWER IS AVAILABLE FROM DC BUS 2.

DOWN: THE STAIR LIGHTS AND THE YELLOW CONTROL LIGHT ARE OFF. N_AC_020700_1_0590101_01_00

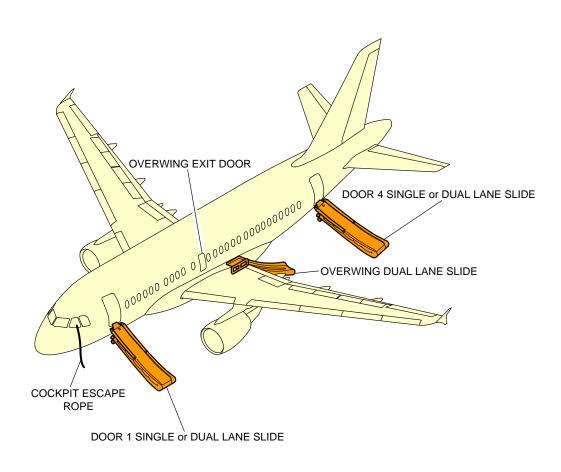
> Operation of the Airstairs FIGURE-2-7-0-991-059-A01

2-8-0 Escape Slides

**ON A/C A318-100

Escape Slides

1. General

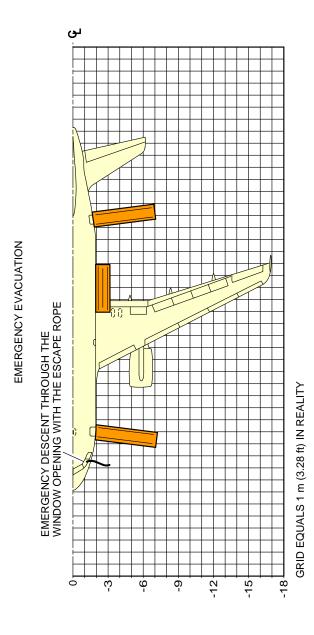

This section provides location of slides/rafts facilities and related clearances.

2. Location

Slides/rafts facilities are provided at the following locations:

- One single or dual lane slide at each door 1 & 4 (total four)
- Dual lane overwing slides are installed above the wings in the left and right wing-to-fuselage fairings for off-the-wing evacuation (total 2).

**ON A/C A318-100


NOTE:

LH SHOWN, RH SYMMETRICAL.

N_AC_020800_1_0010101_01_04

Escape Slides Location FIGURE-2-8-0-991-001-A01

**ON A/C A318-100

NOTE: - LH SHOWN, RH SYMMETRICAL. - DIMENSIONS ARE APPROXIMATE.

N_AC_020800_1_0020101_01_02

Escape Slides
Dimensions
FIGURE-2-8-0-991-002-A01

2-9-0 Landing Gear

**ON A/C A318-100

Landing Gear

1. General

The landing gear is of the conventional retractable tricycle type comprising:

- Two main gears with twin-wheel,
- A twin-wheel nose gear.

The main landing gears are located under the wing and retract sideways towards the fuselage centerline.

The nose landing gear retracts forward into a fuselage compartment located between FR9 and FR20.

The landing gears and landing gear doors are operated and controlled electrically and hydraulically.

In abnormal operation, the landing gear can be extended by gravity.

For landing gear footprint and tire size, refer to 07-02-00.

Main Landing Gear

A. Twin-Wheel

Each of the two main landing gear assemblies consists of a conventional two-wheel direct type with an integral shock absorber supported in the fore and aft directions by a fixed drag strut and laterally by a folding strut mechanically locked when in the DOWN position.

3. Nose Landing Gear

The nose landing gear consists of a leg with a built-in shock absorber strut, carrying twin wheels with adequate shimmy damping and a folding strut mechanically locked when in the DOWN position.

4. Nose Wheel Steering

©A318

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

Steering is controlled by two hand wheels in the cockpit. For steering angle controlled by the hand wheels, refer to AMM 32-51-00.

For steering angle limitation, refer to AMM 09-10-00.

A steering disconnection box is installed on the nose landing gear to allow steering deactivation for towing purposes.

5. Landing Gear Servicing Points

A. General

Filling of the landing-gear shock absorbers is done through MIL-PRF-6164 standard valves.

Charging of the landing-gear shock absorbers is accomplished with nitrogen through MIL-PRF-6164 standard valves.

B. Charging Pressure

For charging of the landing-gear shock absorbers, refer to AMM 12-14-32.

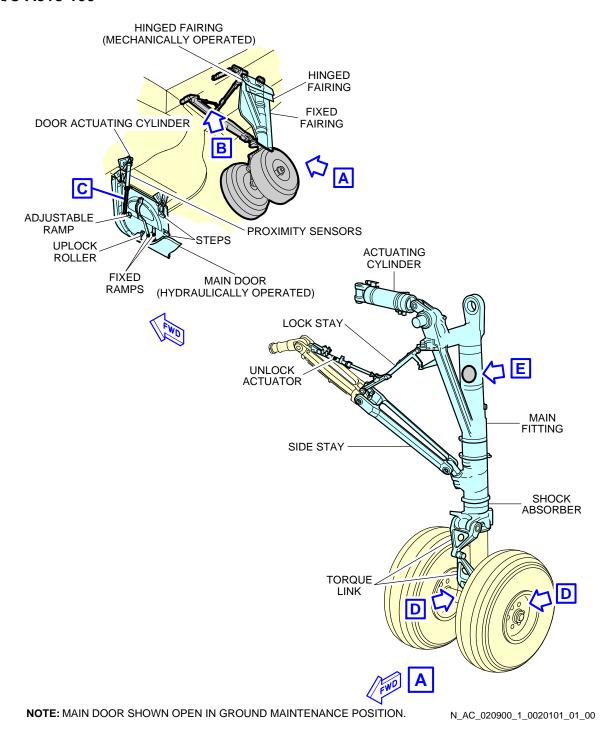
6. Braking

A. General

The four main wheels are equipped with carbon multidisc brakes.

The braking system is electrically controlled and hydraulically operated.

The braking system has four braking modes plus autobrake and anti-skid systems:

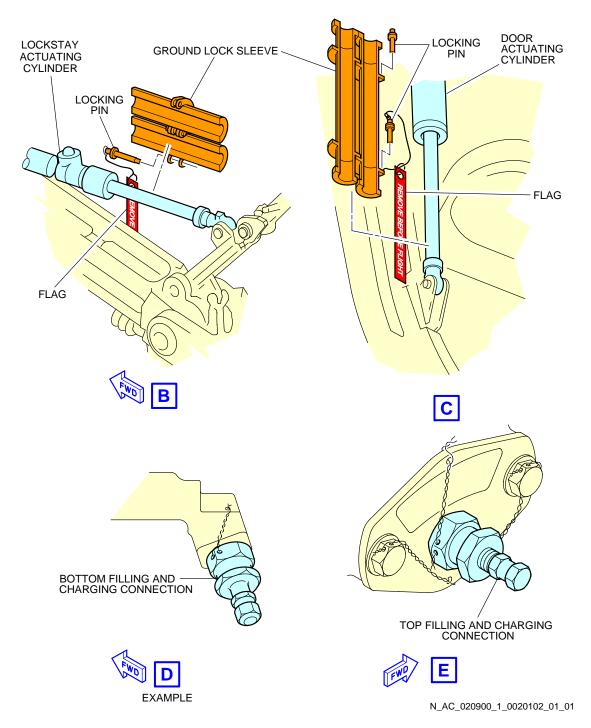

- Normal braking with anti-skid capability,
- Alternative braking with anti-skid capability,
- Alternative braking without anti-skid capability,
- Parking brake with full pressure application capability only.

B. In-Flight Wheel Braking

The main gear wheels are braked automatically before the wheels enter the wheel bay.

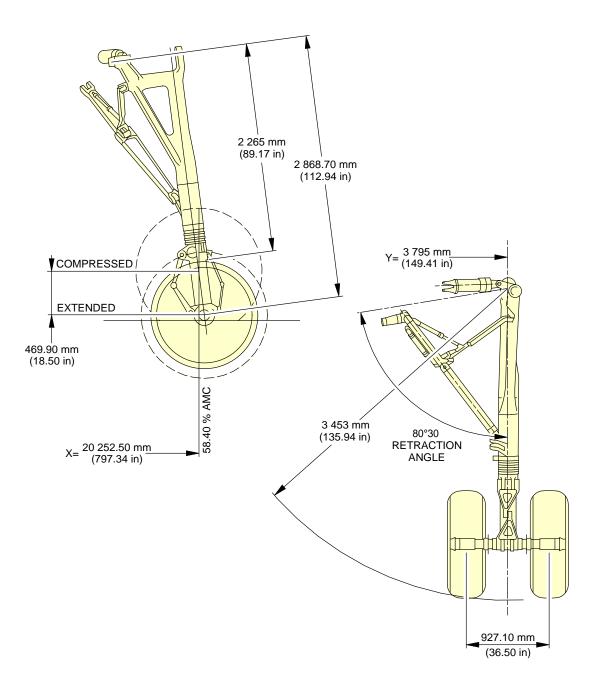
The nose gear wheels are stopped by the wheels contacting a rubbing strip (the brake band) when the gear is in the retracted position.

**ON A/C A318-100



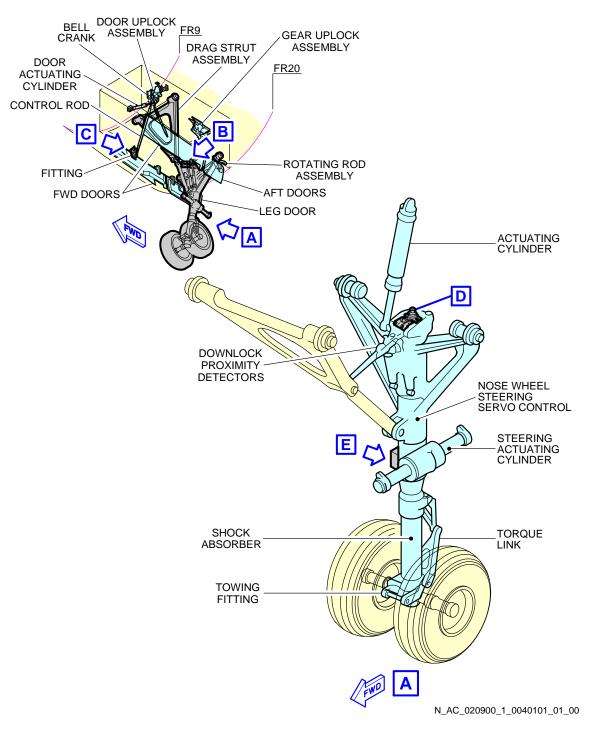
Landing Gear
Main Landing Gear - Twin-Wheel (Sheet 1 of 2)
FIGURE-2-9-0-991-002-A01

@A318

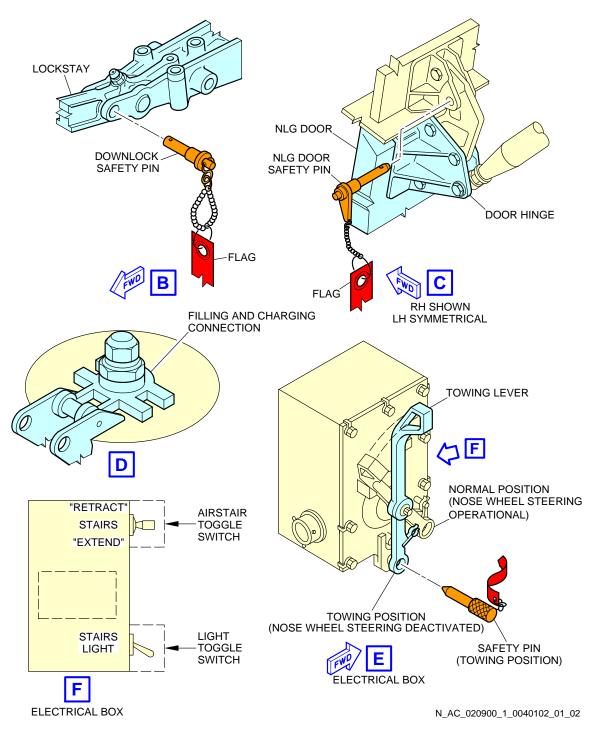

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

**ON A/C A318-100

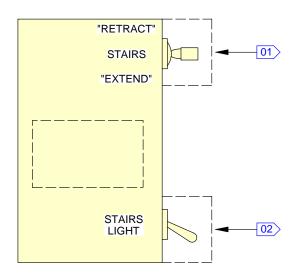
Landing Gear Main Landing Gear - Twin-Wheel (Sheet 2 of 2) FIGURE-2-9-0-991-002-A01


**ON A/C A318-100

N_AC_020900_1_0030101_01_00


Landing Gear Main Landing Gear Dimensions - Twin-Wheel FIGURE-2-9-0-991-003-A01

**ON A/C A318-100


Landing Gear Nose Landing Gear (Sheet 1 of 2) FIGURE-2-9-0-991-004-A01

**ON A/C A318-100

Landing Gear Nose Landing Gear of ACJ (Sheet 2 of 2) FIGURE-2-9-0-991-004-A01

**ON A/C A318-100

NOTE:

01 STAIRS SW

NEUTRAL: THIS STABLE AND LOCKED POSITION PREVENTS OPERATION OF THE AIRSTAIRS. THE FLIGHT CREW MUST PULL THE SWITCH OUT TO MOVE IT FROM THE

NEUTRAL POSITION.

RETRACT: WHEN GROUND CREW HOLDS THE SWITCH AGAINST THE SPRING IN THIS POSITION, THE AIRSTAIRS RETRACT IF THE TELESCOPIC HANDRAILS ARE FULLY STOWED.

EXTEND: WHEN GROUND CREW HOLDS THE SWITCH AGAINST THE SPRING IN THIS POSITION, THE AIRSTAIRS EXTEND.

02 STAIRS LIGHT

UP: STAIR LIGHTS COME ON, AS DOES THE YELLOW CONTROL LIGHT IN THE CABIN, IF:

- THE STAIRS ARE FULLY EXTENDED, AND
- POWER IS AVAILABLE FROM DC BUS 2.

DOWN: STAIR LIGHTS AND YELLOW CONTROL LIGHT ARE OFF.

N_AC_020900_1_0280101_01_00

Operation of Airstairs for ACJ FIGURE-2-9-0-991-028-A01

**ON A/C A318-100

N_AC_020900_1_0050101_01_00

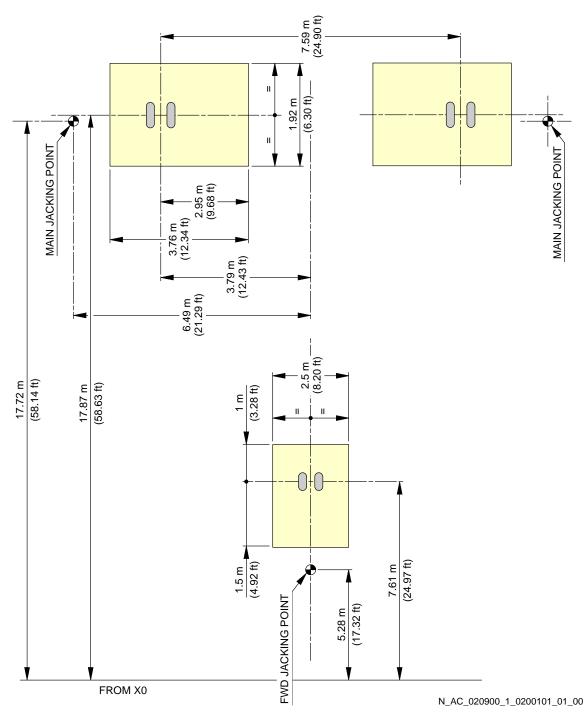
Landing Gear Nose Landing Gear Dimensions FIGURE-2-9-0-991-005-A01

**ON A/C A318-100

Landing Gear Maintenance Pits

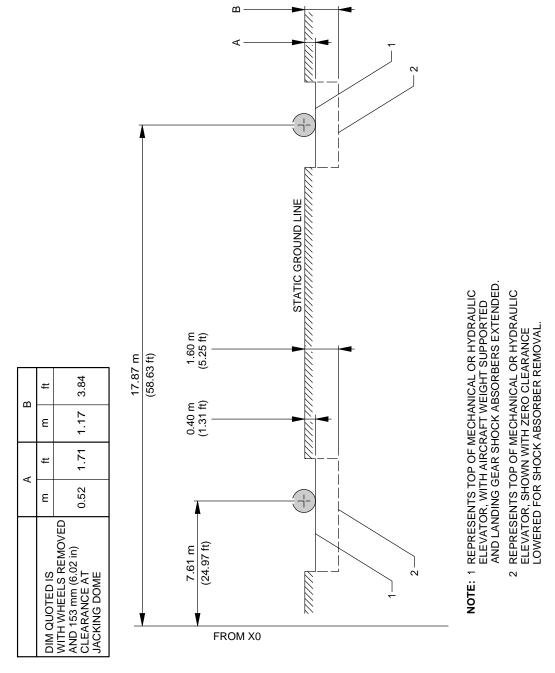
1. Description

The minimum maintenance pit envelopes for the landing-gear shock absorber removal are shown in FIGURE 2-9-0-991-020-A and FIGURE 2-9-0-991-021-A.


All dimensions shown are minimum dimensions with zero clearances.

The dimensions for the pits have been determined as follows:

- The length and width of the pits allow the gear to rotate as the weight is taken off the landing gear.
- The depth of the pits allows the shock absorber to be removed when all the weight is taken off the landing gear.


Dimensions for elevators and associated mechanisms must be added to those in FIGURE 2-9-0-991-020-A and FIGURE 2-9-0-991-021-A.

**ON A/C A318-100

Landing Gear Maintenance Pits Maintenance Pit Envelopes FIGURE-2-9-0-991-020-A01

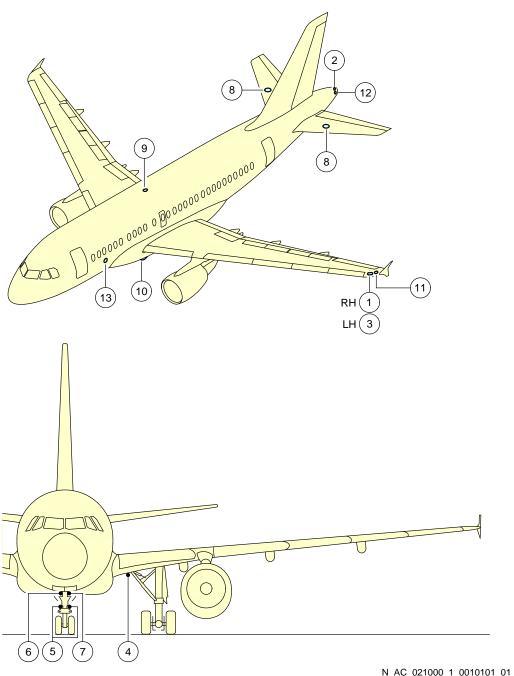
**ON A/C A318-100

N_AC_020900_1_0210101_01_00

Landing Gear Maintenance Pits Maintenance Pit Envelopes FIGURE-2-9-0-991-021-A01

2-10-0 Exterior Lighting

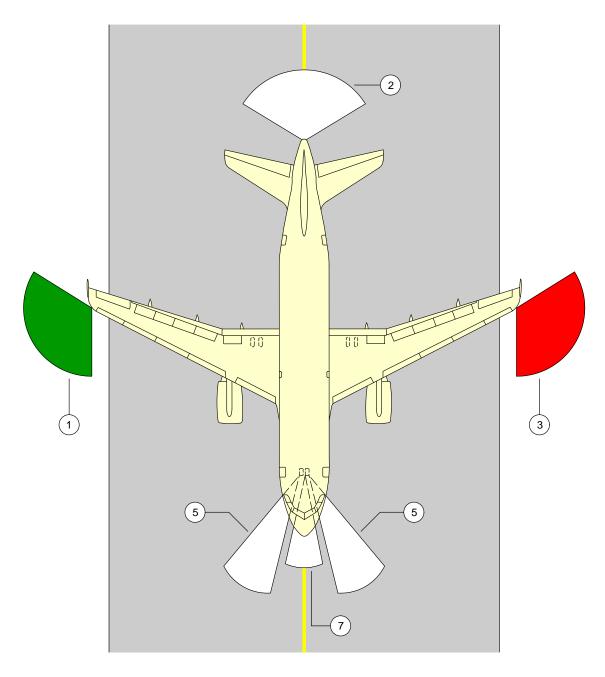
**ON A/C A318-100


Exterior Lighting

1. General

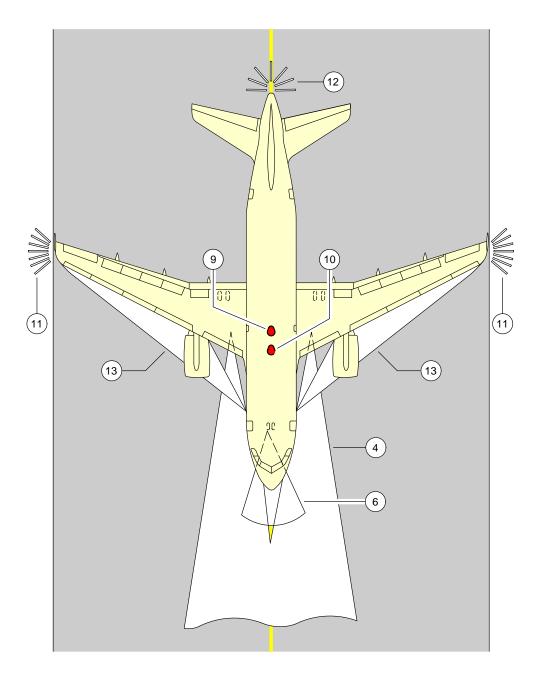
This section provides the location of the aircraft exterior lighting.

EXTERIOR LIGHTING			
ITEM	DESCRIPTION		
1	RIGHT NAVIGATION LIGHT (GREEN)		
2	TAIL NAVIGATION LIGHT (WHITE)		
3	LEFT NAVIGATION LIGHT (RED)		
4	RETRACTABLE LANDING LIGHT		
5	RUNWAY TURN OFF LIGHT		
6	TAXI LIGHT		
7	TAKE-OFF LIGHT		
8	LOGO LIGHT		
9	UPPER ANTI-COLLISION LIGHT/BEACON (RED)		
10	LOWER ANTI-COLLISION LIGHT/BEACON (RED)		
11	WING STROBE LIGHT (HIGH INTENSITY, WHITE)		
12	TAIL STROBE LIGHT (HIGH INTENSITY, WHITE)		
13	WING/ENGINE SCAN LIGHT		
14	14 WHEEL WELL LIGHT (DOME)		
15	CARGO COMPARTMENT FLOOD LIGHT		


**ON A/C A318-100

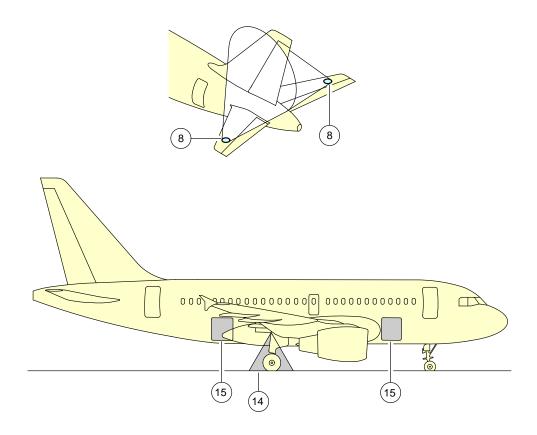
N_AC_021000_1_0010101_01_01

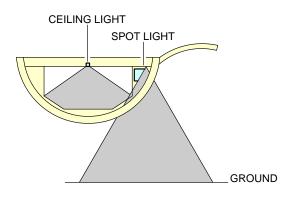
Exterior Lighting FIGURE-2-10-0-991-001-A01


**ON A/C A318-100

N_AC_021000_1_0020101_01_01

Exterior Lighting FIGURE-2-10-0-991-002-A01


**ON A/C A318-100


N_AC_021000_1_0030101_01_01

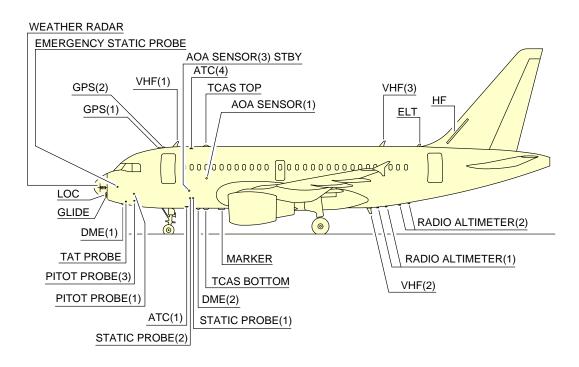
Exterior Lighting FIGURE-2-10-0-991-003-A01

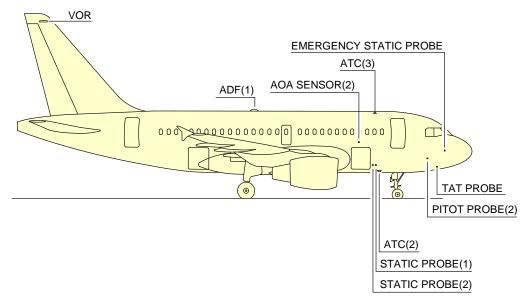
**ON A/C A318-100

EXAMPLE FOR LIGHT N° 15

N_AC_021000_1_0170101_01_01

Exterior Lighting FIGURE-2-10-0-991-017-A01


2-11-0 Antennas and Probes Location


**ON A/C A318-100

Antennas and Probes Location

1. This section gives the location of antennas and probes.

**ON A/C A318-100

NOTE: DEPENDING ON AIRCRAFT CONFIGURATION

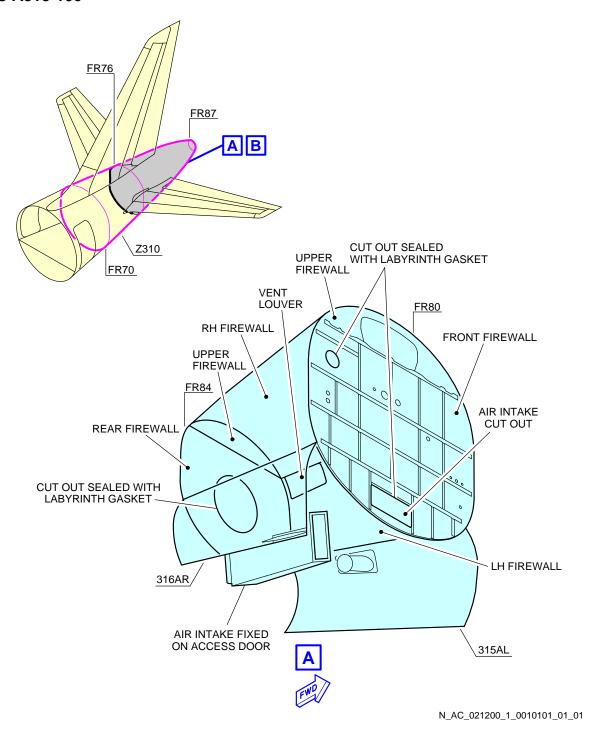
N_AC_021100_1_0010101_01_00

Antennas and Probes Location FIGURE-2-11-0-991-001-A01

2-12-0 Power Plant

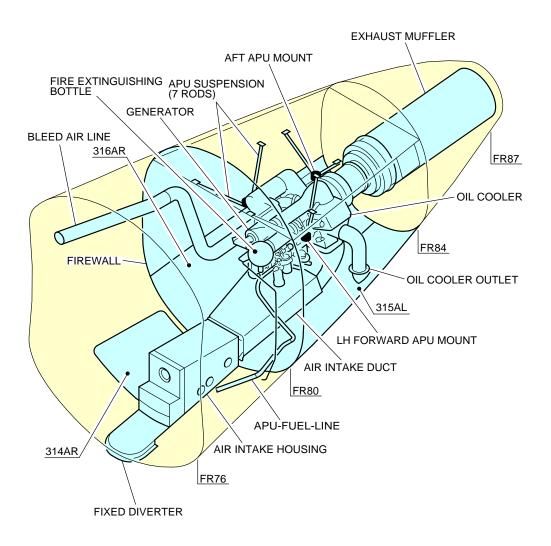
**ON A/C A318-100

Auxiliary Power Unit


1. General

The APU is installed at the rear part of the fuselage in the tail cone. An air intake system with a flap-type door is installed in front of the APU compartment. The exhaust gases pass overboard at the end of the fuselage cone.

2. Controls and Indication


The primary APU controls and indications are installed on the overhead panel, on the center pedestal and on the center instrument panel. Additionally, an external APU panel is installed on the nose landing gear to initiate an APU emergency shutdown.

**ON A/C A318-100

Auxiliary Power Unit Access Doors FIGURE-2-12-0-991-001-A01

**ON A/C A318-100

N_AC_021200_1_0020101_01_01

Auxiliary Power Unit General Layout FIGURE-2-12-0-991-002-A01

**ON A/C A318-100

Engine and Nacelle

1. Engine and Nacelle - CFM56 Engine

A. Engine

The aircraft has two CFM International CFM56 engines that supply power to the aircraft. The engines are turbofan engines that have:

- A high bypass ratio,
- A Full Authority Digital Engine Control (FADEC),
- A fuel system,
- An oil system,
- An air system,
- A thrust reverser system,
- An ignition system and a start system.

The engine has:

Two compressor turbine assemblies:

- The Low Pressure (LP) compressor turbine assembly,
- The High Pressure (HP) compressor turbine assembly.

Each turbine operates its associated compressor via a shaft.

- One accessory gearbox,
- One combustion chamber.

The engine operates as follows:

- (1) The LP compressor, compresses the air.
- (2) Then, the air is divided into two flows:
 - Most of the air flows out of the core engine, and provides most of the engine thrust
 - The remaining air enters the core engine.
- (3) The HP compressor compresses the air that enters the core engine.
- (4) The fuel is added to and mixed with the compressed air of the core engine. The mixture is ignited in the combustion chamber.
- (5) The gas that results from combustion drives the HP and the LP turbines.
 - The rotation speed of the fan provides the N1 engine parameter.
 - The rotation speed of the HP rotor provides the N2 engine parameter.
 - The N1 and N2 engine parameters appear on the Engine/Warning Display (E/WD).
 - The N1 and N2 engine parameters are current rotation speeds displayed in percentage.

The FADEC uses:

- The N1 engine parameter to compute the applicable engine thrust,
- The N1 and N2 engine parameters for engine control and monitoring.

B. Nacelle

The cowls enclose the periphery of the engine so as to form the engine nacelle. Each engine is housed in a nacelle suspended from a pylon attached below the wing. The nacelle installation is designed to provide cooling and ventilation air for engine accessories mounted along the fan and core casing. The nacelle provides:

- Protection for the engine and the accessories
- Airflow around the engine during its operation
- Lighting protection
- HIRF and EMI attenuation.

2. Engine and Nacelle - PW6000 Engine

A. Engine

The aircraft has two Pratt & Whitney PW6000 engines that supply power to the aircraft. The engines are turbofan engines that have:

- A high bypass ratio,
- A Full Authority Digital Engine Control (FADEC),
- A fuel system,
- An oil system,
- An air system,
- A thrust reverser system,
- An ignition system and a start system.

The engine has:

Two compressor turbine assemblies:

- The Low Pressure (LP) compressor turbine assembly,
- The High Pressure (HP) compressor turbine assembly.

Each turbine operates its associated compressor via a shaft.

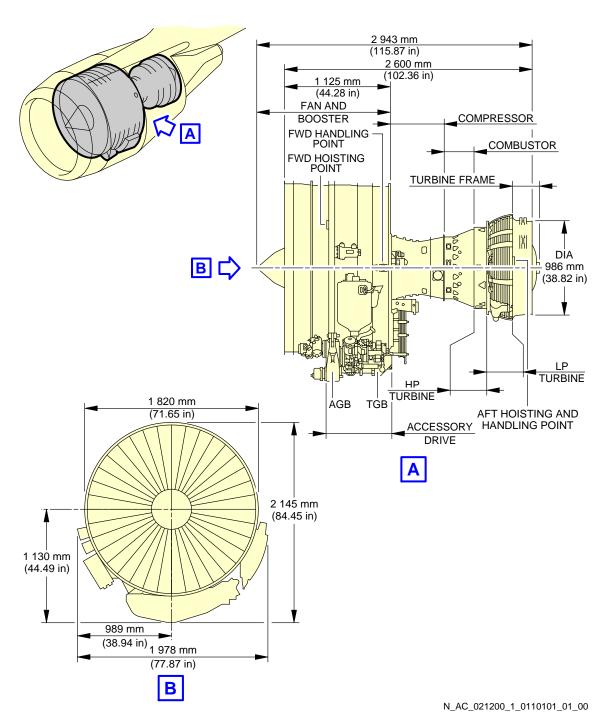
- One accessory gearbox,
- One combustion chamber.

The engine operates as follows:

- (1) The LP compressor, compresses the air.
- (2) Then, the air is divided into two flows:
 - Most of the air flows out of the core engine, and provides most of the engine thrust.
 - The remaining air enters the core engine.
- (3) The HP compressor compresses the air that enters the core engine.

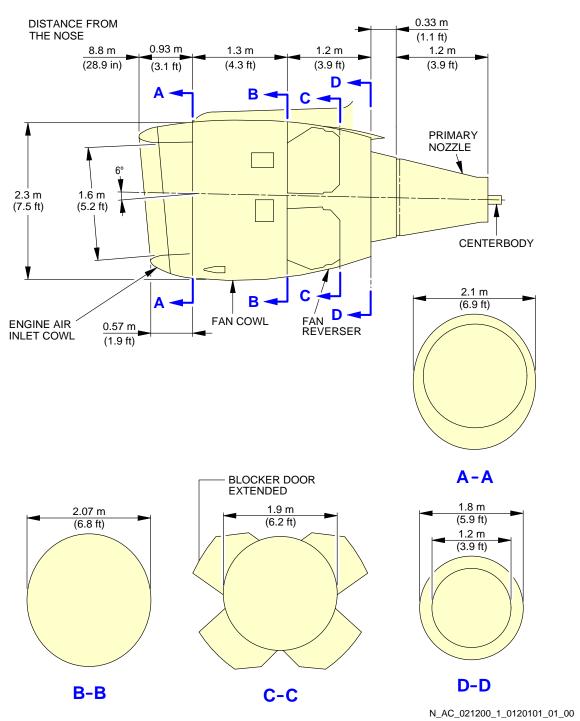
- (4) The fuel is added to and mixed with the compressed air of the core engine. The mixture is ignited in the combustion chamber.
- (5) The gas that results from combustion drives the HP and the LP turbines.
 - The rotation speed of the fan provides the N1 engine parameter.
 - The rotation speed of the HP rotor provides the N2 engine parameter.
 - The N1 and N2 engine parameters appear on the Engine/Warning Display (E/WD).
 - The N1 and N2 engine parameters are current rotation speeds displayed in percentage.

The FADEC uses:

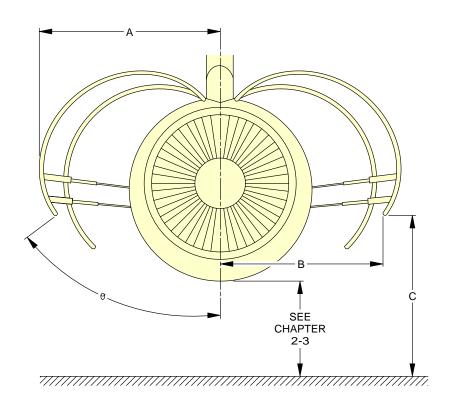

- The N1 engine parameter to compute the applicable engine thrust,
- The N1 and N2 engine parameters for engine control and monitoring.

B. Nacelle

The cowls enclose the periphery of the engine so as to form the engine nacelle. Each engine is housed in a nacelle suspended from a pylon attached below the wing. The nacelle installation is designed to provide cooling and ventilation air for engine accessories mounted along the fan and core casing. The nacelle provides:


- Protection for the engine and the accessories
- Airflow around the engine during its operation
- Lighting protection
- HIRF and EMI attenuation.

**ON A/C A318-100


Power Plant Handling Major Dimensions - CFM56 Series Engine FIGURE-2-12-0-991-011-A01

**ON A/C A318-100

Power Plant Handling
Major Dimensions - CFM56 Series Engine
FIGURE-2-12-0-991-012-A01

**ON A/C A318-100

NOTE: APPROXIMATE DIMENSIONS.

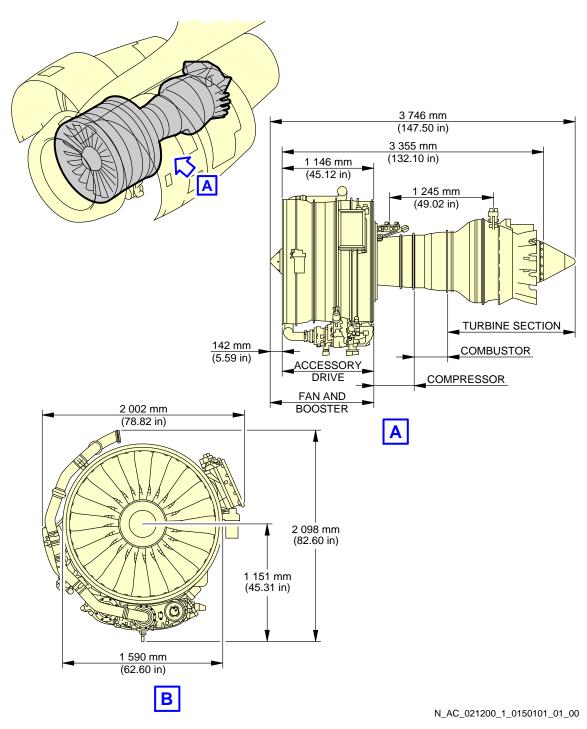
m (ft)	8	Α	В	С
VIEW COWLING	42°27	1.8 (5.9)	1.5 (4.9)	1.3 (4.3)
AFT	55°15	2.0 (6.6)	1.8 (5.9)	1.7 (5.6)
VIEW COWLING	40°40	1.8 (5.9)	1.4 (4.6)	1.3 (4.3)
FWD	52°56	2.0 (6.6)	1.7 (5.6)	1.6 (5.2)

N_AC_021200_1_0130101_01_01

Power Plant Handling Fan Cowls - CFM56 Series Engine FIGURE-2-12-0-991-013-A01

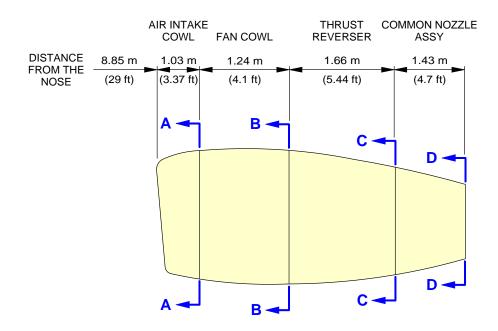
**ON A/C A318-100

NOTE: APPROXIMATE DIMENSIONS.

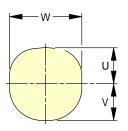

CAUTION DO NOT ACTUATE SLATS:

- WITH THRUST REVERSER COWLS 45° OPEN POSITION
- WITH BLOCKER DOORS OPEN AND THRUST REVERSER COWLS AT 35° AND 45° OPEN POSITION.

N_AC_021200_1_0140101_01_01


Power Plant Handling Thrust Reverser Cowls - CFM56 Series Engine FIGURE-2-12-0-991-014-A01

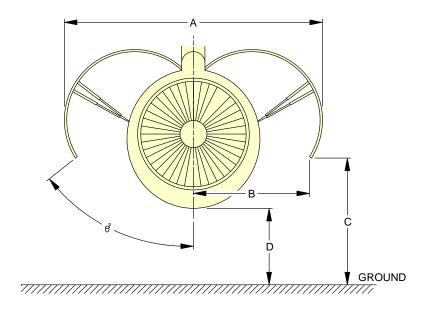
**ON A/C A318-100



Power Plant Handling
Major Dimensions - PW 6000 Series Engine
FIGURE-2-12-0-991-015-A01

**ON A/C A318-100

	W	U	V
A-A	2 m	0.9 m	1.05 m
	(6.6 ft)	(3 ft)	(3.4 ft)
В-В	2.08 m	0.96 m	1.07 m
	(6.8 ft)	(3.1 ft)	(3.5 ft)
C-C	1.63 m	0.76 m	0.81 m
	(5.3 ft)	(2.5 ft)	(2.7 ft)
D-D	1.12 m	0.56 m	0.56 m
	(3.7 ft)	(1.8 ft)	(1.8 ft)

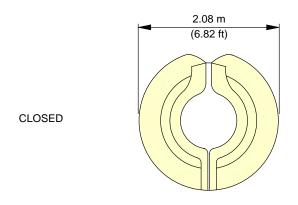


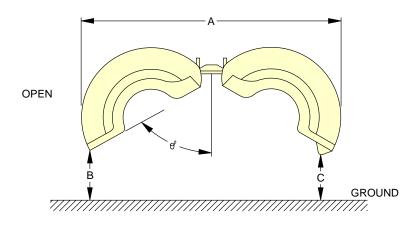
NOTE: ALL SIZES GIVEN ON THIS ILLUSTRATION ARE APPROXIMATE

N_AC_021200_1_0160101_01_00

Power Plant Handling
Nacelle Dimensions - PW 6000 Series Engine
FIGURE-2-12-0-991-016-A01

**ON A/C A318-100


6	Α	В	С	D
27°	3.05 m (10 ft)	0.90 m (2.95 ft)	D + 0.2 m (D + 0.7 ft)	SEE
53°	3.85 m (12.63 ft)	1.65 m (5.41 ft)	D + 0.84 m (D + 2.8 ft)	CHAPTER 2-3


NOTE: APPROXIMATE DIMENSIONS.
ONLY MAIN DIMENSIONS SHOWN.

N_AC_021200_1_0170101_01_01

Power Plant Handling Fan Cowls - PW 6000 Series Engine FIGURE-2-12-0-991-017-A01

**ON A/C A318-100

8	А	В	С
45°	3.5 m (11.48 ft)	1.1 m (3.6 ft)	1.08 m (3.5 ft)

N_AC_021200_1_0180101_01_00

Power Plant Handling Thrust Reverser Halves - PW 6000 Series Engine FIGURE-2-12-0-991-018-A01

2-13-0 Leveling, Symmetry and Alignment

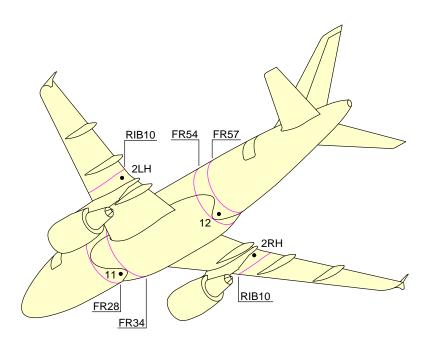
**ON A/C A318-100

Leveling, Symmetry and Alignment

1. Quick Leveling

There are three alternative procedures to level the aircraft:

- Quick leveling procedure with Air Data/Inertial Reference Unit (ADIRU).
- Quick leveling procedure with a spirit level in the passenger compartment.
- Quick leveling procedure with a spirit level in the FWD cargo compartment.


2. Precise Leveling

For precise leveling, it is necessary to install sighting rods in the receptacles located under the fuselage (points 11 and 12 for longitudinal leveling) and under the wings (points 2LH and 2RH for lateral leveling) and use a sighting tube. With the aircraft on jacks, adjust the jacks until the reference marks on the sighting rods are aligned in the sighting plane (aircraft level).

3. Symmetry and Alignment Check

Possible deformation of the aircraft is measured by photogrammetry.

**ON A/C A318-100

N_AC_021300_1_0010101_01_00

Location of the Leveling Points FIGURE-2-13-0-991-001-A01

2-14-0 Jacking

**ON A/C A318-100

Jacking for Maintenance

1. Aircraft Jacking Points for Maintenance

A. General

- (1) The A318 can be jacked:
 - At not more than 53 000 kg (116 845 lb),
 - Within the limits of the permissible wind speed when the aircraft is not in a closed environment.

B. Primary Jacking Points

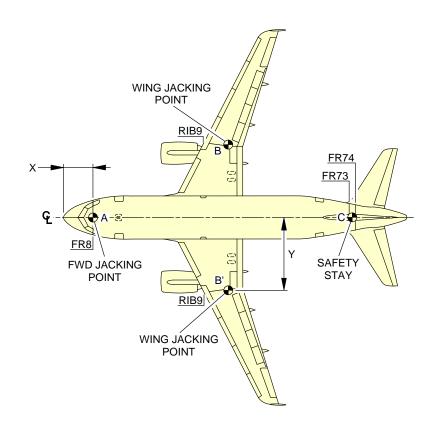
- (1) The aircraft is provided with three primary jacking points:
 - One located under the forward fuselage (FR8),
 - Two located under the wings (one under each wing, located at the intersection of RIB9 and the datum of the rear spar).
- (2) Three jack adapters are used as intermediary parts between the aircraft and the jacks:
 - One male spherical jack adapter of 19 mm (0.75 in) radius, forming part of the aircraft structure (FR8),
 - Two wing jack pads (one attached to each wing at RIB9 with 2 bolts) for the location of the jack adaptor.
 Wing jack pads are ground equipment.

C. Auxiliary Jacking Points (Safety Stay)

- (1) When the aircraft is on jacks, it is recommended that a safety stay be placed under the fuselage, between FR73 and FR74, to prevent tail tipping caused by accidental displacement of the center of gravity.
- (2) The safety stay must not be used to lift the aircraft.
- (3) A male spherical ball pad with a 19 mm (0.75 in) radius, forming part of the aircraft structure, is provided for using the safety stay.

2. Jacks and Safety Stay

A. Jack Design


(1) The maximum permitted loads given in the table in FIGURE 2-14-0-991-001-A are the maximum loads applicable on jack fittings.

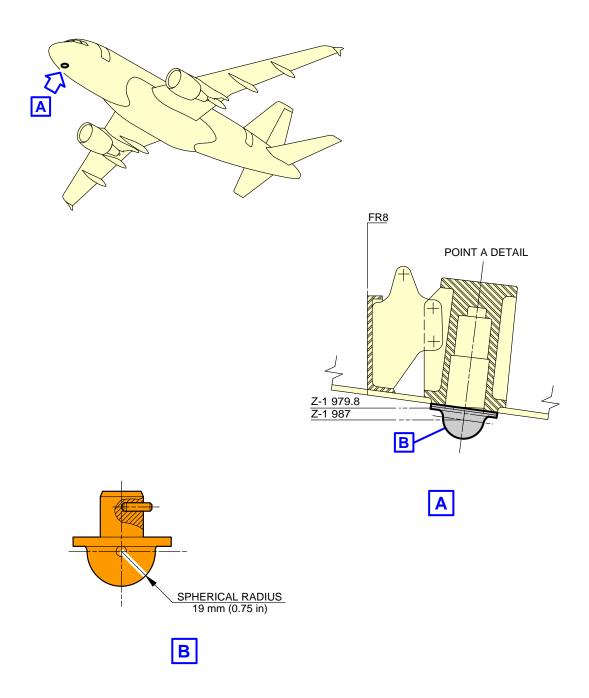
SA318

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

- (2) In the fully retracted position (jack stroke at minimum), the height of the jack is such that the jack may be placed beneath the aircraft in the most adverse conditions, namely, tires deflated and shock absorbers depressurized. In addition, there must be a clearance of approximately 50 mm (1.97 in) between the aircraft jacking point and the jack upper end.
- (3) The lifting jack stroke enables the aircraft to be jacked up so that the fuselage longitudinal datum line (aircraft center line) is parallel to the ground, with a clearance of 100 mm (3.94 in) between the main landing gear wheels and the ground. This enables the landing gear extension/retraction tests to be performed.

**ON A/C A318-100

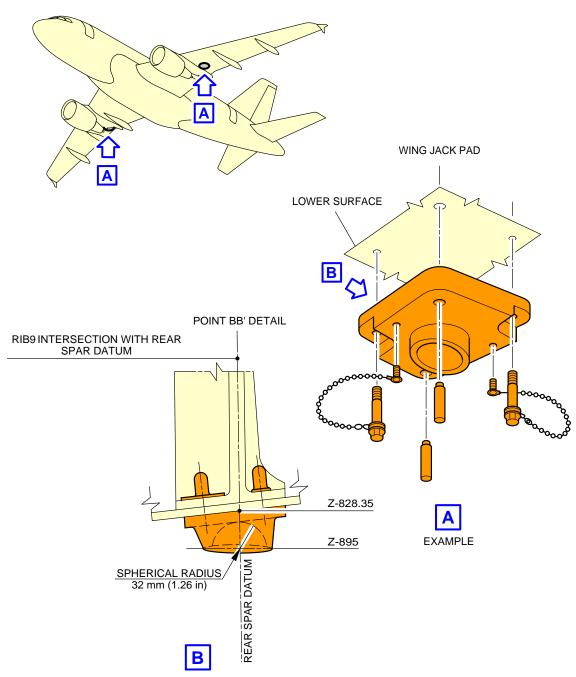
)	<	`	(MAXIMUM LOAD ELIGIBLE		
		m	ft	m	ft	daN	
FORWARD FUSEL/ JACKING POINT	AGE A	2.74	8.99	0	0	6 800	
WING JACKING	В	15.18	49.80	6.50	21.33	28 500	
POINT	B'	15.18	49.80	-6.50	-21.33	28 500	
SAFETY STAY C		26.44	86.75	0	0	2 000	


NOTE:

SAFETY STAY IS NOT USED FOR JACKING.

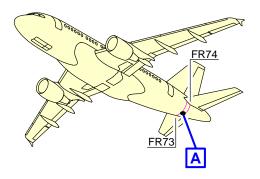
N_AC_021400_1_0010101_01_02

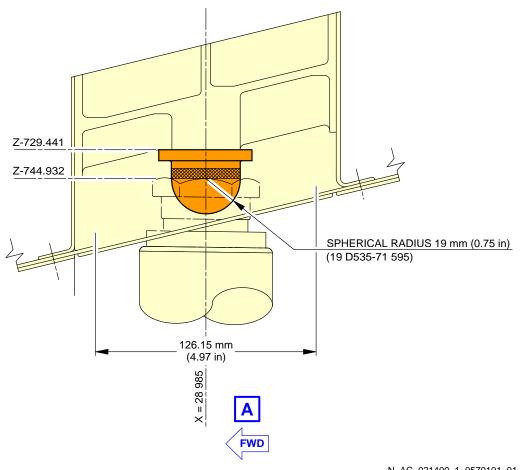
Jacking for Maintenance Jacking Point Locations FIGURE-2-14-0-991-001-A01


**ON A/C A318-100

N_AC_021400_1_0030101_01_00

Jacking for Maintenance Forward Jacking Point FIGURE-2-14-0-991-003-A01

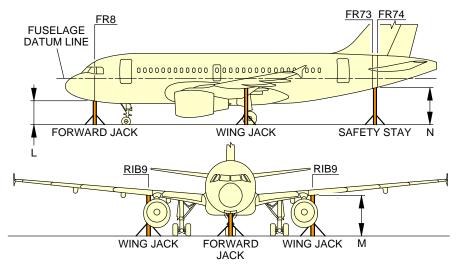

**ON A/C A318-100



N_AC_021400_1_0560101_01_00

Jacking for Maintenance Wing Jacking Points FIGURE-2-14-0-991-056-A01

**ON A/C A318-100



N_AC_021400_1_0570101_01_01

Jacking for Maintenance Safety Stay FIGURE-2-14-0-991-057-A01

**ON A/C A318-100

TYPICAL JACK INSTALLATION SHOWN

CONFIGURATION	DECORPORTION	DISTANCE BETWEEN JACKING/SAFETY POINTS AND THE GROUND				
CONFIGURATION	DESCRIPTION	L (FORWARD JACK)	M (WING JACK)	N (SAFETY STAY)		
	- NLG SHOCK ABSORBER DEFLATED AND NLG TIRES FLAT - MLG STANDARD TIRES, WITH STANDARD SHOCK ABSORBERS	1 565 mm (61.61 in)		3 685 mm (145.08 in)		
- AIRCRAFT ON WHEELS	TIRES FLAT SHOCK ABSORBERS DEFLATED	1 660 mm (65.35 in)		2 836 mm (111.65 in)		
	STANDARD TIRES STANDARD SHOCK ABSORBERS	1 851 mm (72.87 in)	3 138 mm (123.54 in)	3 430 mm (135.04 in)		
- AIRCRAFT ON JACKS (FORWARD JACK AND WING JACKS) - FUSELAGE DATUM LINE	STANDARD TIRES MLG SHOCK ABSORBERS EXTENDED WITH WHEEL CLEARANCE OF 120 mm (4.72 in) FOR MLG RETRACTION OR EXTENSION	2 554 mm (100.55 in)		3 779 mm (148.78 in)		
PARALLEL TO THE GROUND	STANDARD TIRES MLG SHOCK ABSORBERS EXTENDED WITH WHEEL CLEARANCE OF 770 mm (30.31 in) FOR REPLACEMENT OF THE MLG	3 204 mm (126.14 in)		4 429 mm (174.37 in)		
- AIRCRAFT ON FORWARD JACK - MLG WHEELS ON THE GROUND	STANDARD TIRES NLG SHOCK ABSORBERS EXTENDED WITH WHEEL CLEARANCE OF 60 mm (2.36 in) FOR NLG RETRACTION OR EXTENSION	2 395 mm (94.29 in)	NA	2 939 mm (115.71 in)		

NOTE:

THE SAFETY STAY IS NOT USED FOR JACKING.

N_AC_021400_1_0040101_01_02

Jacking for Maintenance Jacking Design FIGURE-2-14-0-991-004-A01

©A318

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

**ON A/C A318-100

Jacking of the Landing Gear

1. General

Landing gear jacking will be required to lift the landing gear wheels off the ground.

<u>NOTE</u>: You can lift the aircraft at Maximum Ramp Weight (MRW).

NOTE: The load at each jacking position is the load required to give a 25.4 mm (1 in)

clearance between the ground and the tire.

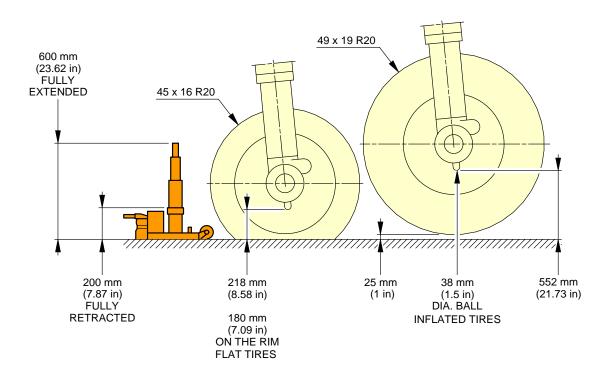
2. Main Gear Jacking

The main gears are normally jacked up by placing a jack directly under the ball pad.

The ball spherical radius is 19 mm (0.75 in).

It is also possible to jack the main gear using a cantilever jack.

The reactions at each of the jacking points are shown in the table, see FIGURE 2-14-0-991-058-A.


Nose Gear Jacking

For nose gear jacking, a 19 mm (0.75 in) radius ball pad is fitted under the lower end of the shock-absorber sliding tube. Jacking can be accomplished either by placing a jack directly under the ball pad, or using an adapter fitting provided with an identical ball pad.

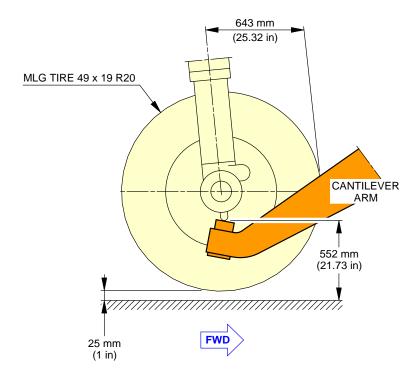
The reactions at each of the jacking points are shown in the table, see FIGURE 2-14-0-991-058-A.

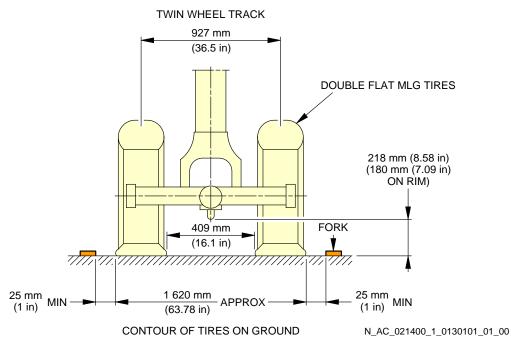
2-14-0

**ON A/C A318-100

NOTE: TWIN WHEEL TRACK IS 927 mm (36.5 in).

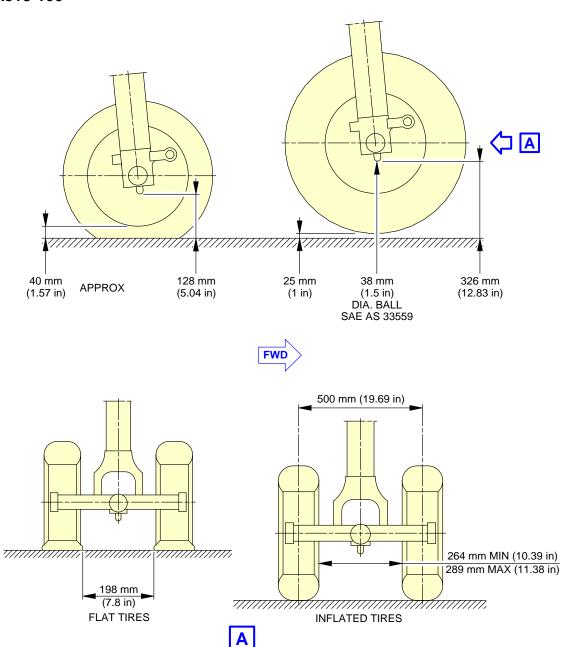
THE FLAT TIRES VIEW SHOWS THE MINIMUM HEIGHT TO ENGAGE JACK WITH 2 FLAT TIRES. THE INFLATED TIRES VIEW SHOWS THE JACKING HEIGHT TO GIVE 25 mm (1 in)


CLEARANCE BETWEEN THE TIRE AND GROUND.


N_AC_021400_1_0120101_01_00

Jacking of the Landing Gear MLG Jacking Point Location - Twin Wheels FIGURE-2-14-0-991-012-A01

2-14-0


**ON A/C A318-100

Jacking of the Landing Gear MLG Jacking with Cantilever Jack - Twin Wheels FIGURE-2-14-0-991-013-A01

**ON A/C A318-100

NOTE: THE FLAT TIRES VIEW SHOWS THE MINIMUM HEIGHT TO ENGAGE JACK WITH 2 FLAT TIRES. THE INFLATED TIRES VIEW SHOWS THE JACKING HEIGHT TO GIVE 25 mm (1 in) CLEARANCE BETWEEN THE TIRE AND GROUND.

N_AC_021400_1_0150101_01_00

Jacking of the Landing Gear NLG Jacking - Point Location FIGURE-2-14-0-991-015-A01

**ON A/C A318-100

A318-100 WV005								
MAXIMUM DESIGN TAXI WEIGHT (MTW)	68 400 kg (150 796 lb)							
MAXIMUM DESIGN TAKE-OFF WEIGHT (MTOW)	68 000 kg (149 914 lb)							
MAXIMUM LOAD VALUE TO BE APPLIED ON NLG JACKING POINT	11 400 kg (25 133 lb)							
NUMBER OF JACKING POINTS ON ONE MLG	1							
MAXIMUM LOAD VALUE TO BE APPLIED ON MLG JACKING POINT (LEFT OR RIGHT)	30 500 kg (67 241 lb)							

N_AC_021400_1_0580101_01_00

Jacking of the Landing Gear Maximum Load Capacity to Lift Each Jacking Point FIGURE-2-14-0-991-058-A01

AIRCRAFT PERFORMANCE

3-1-0 General Information

**ON A/C A318-100

General Information

1. Standard day temperatures for the altitudes shown are tabulated below:

Standard Day Temperatures for the Altitudes										
Altitude Standard Day Temperature										
FEET	METERS	°F	°C							
0	0	59.0	15.0							
2 000	610	51.9	11.1							
4 000	1 220	44.7	7.1							
6 000	1 830	37.6	3.1							
8 000	2 440	30.5	-0.8							


3-2-1 Payload / Range - ISA Conditions

**ON A/C A318-100

Payload/Range - ISA Conditions

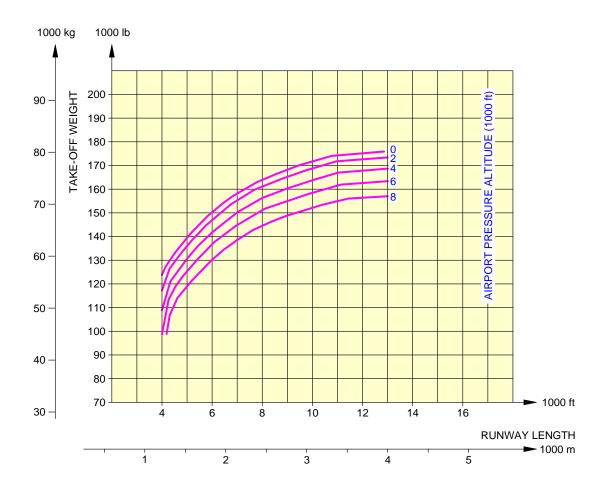
1. This section provides the payload/range at ISA conditions.

**ON A/C A318-100

N_AC_030201_1_0120101_01_00

Payload/Range - ISA Conditions FIGURE-3-2-1-991-012-A01

3-3-1 Take-off Weight Limitation - ISA Conditions

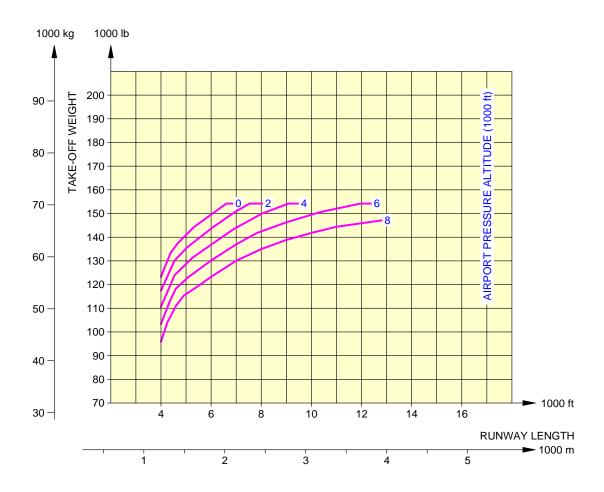

**ON A/C A318-100

Take-Off Weight Limitation - ISA Conditions

1. This section gives the take-off weight limitation at ISA conditions.

**ON A/C A318-100

NOTE: THESE CURVES ARE GIVEN FOR INFORMATION ONLY
THE APPROVED VALUES ARE STATED IN THE "OPERATING
MANUALS" SPECIFIC TO THE AIRLINE OPERATING THE AIRCRAFT.



N_AC_030301_1_0010101_01_00

Take-Off Weight Limitation - ISA Conditions CFM56 Series Engine FIGURE-3-3-1-991-001-A01

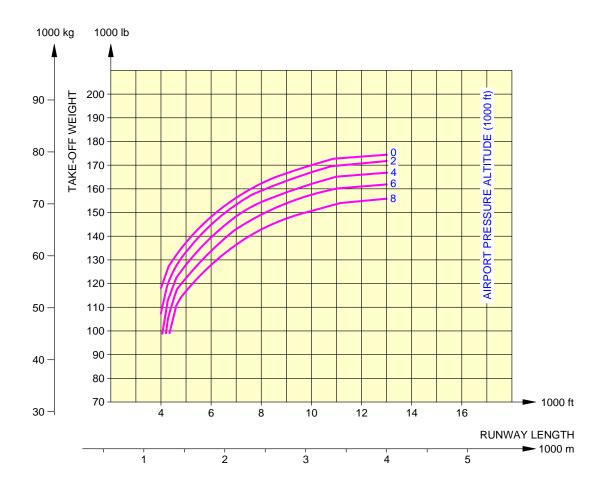
**ON A/C A318-100

NOTE: THESE CURVES ARE GIVEN FOR INFORMATION ONLY
THE APPROVED VALUES ARE STATED IN THE "OPERATING
MANUALS" SPECIFIC TO THE AIRLINE OPERATING THE AIRCRAFT.

N_AC_030301_1_0020101_01_00

Take-Off Weight Limitation - ISA Conditions PW 6000 Series Engine FIGURE-3-3-1-991-002-A01

3-3-2 Take-off Weight Limitation - ISA +15°C (+59°F) Conditions

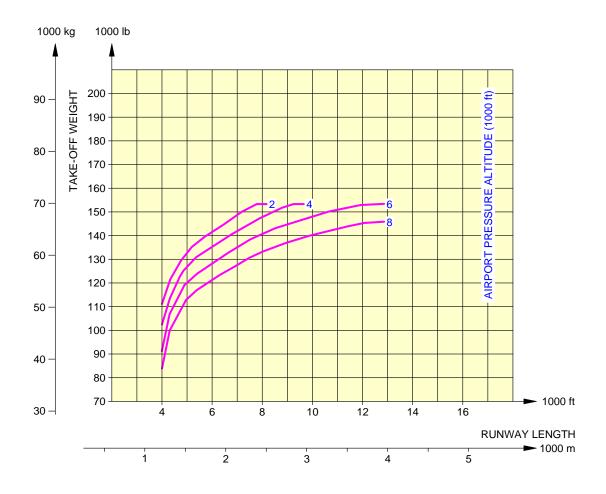

**ON A/C A318-100

Take-Off Weight Limitation - ISA +15°C (+27°F) Conditions

1. This section gives the take-off weight limitation at ISA +15°C (+27°F) conditions.

**ON A/C A318-100

NOTE: THESE CURVES ARE GIVEN FOR INFORMATION ONLY
THE APPROVED VALUES ARE STATED IN THE "OPERATING
MANUALS" SPECIFIC TO THE AIRLINE OPERATING THE AIRCRAFT.



N_AC_030302_1_0010101_01_00

Take-Off Weight Limitation - ISA +15°C (+27°F) Conditions CFM56 Series Engine FIGURE-3-3-2-991-001-A01

**ON A/C A318-100

NOTE: THESE CURVES ARE GIVEN FOR INFORMATION ONLY
THE APPROVED VALUES ARE STATED IN THE "OPERATING
MANUALS" SPECIFIC TO THE AIRLINE OPERATING THE AIRCRAFT.

N_AC_030302_1_0020101_01_00

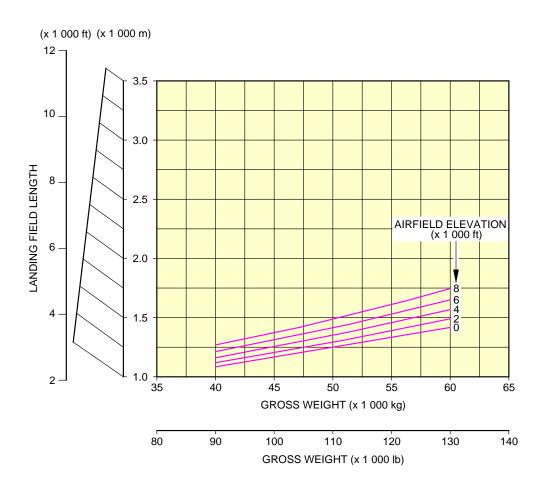
Take-Off Weight Limitation - ISA +15°C (+27°F) Conditions PW 6000 Series Engine FIGURE-3-3-2-991-002-A01

3-3-3 Aerodrome Reference Code

**ON A/C A318-100

Aerodrome Reference Code

1. A318-100 is classified as code 3C as per ICAO Aerodrome Reference Code.

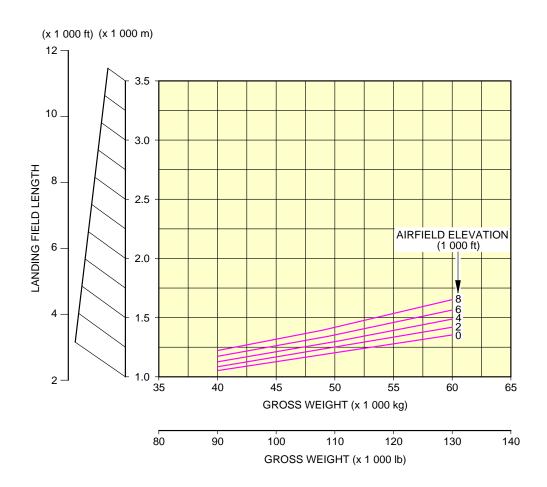

3-4-1 Landing Field Length - ISA Conditions

**ON A/C A318-100

Landing Field Length - ISA Conditions

1. This section provides the landing field length.

**ON A/C A318-100


NOTE:

THESE CURVES ARE GIVEN FOR INFORMATION ONLY.
THE APPROVED VALUES ARE STATED IN THE "OPERATING
MANUALS" SPECIFIC TO THE AIRLINE OPERATING THE AIRCRAFT.

N_AC_030401_1_0010101_01_01

Landing Field Length - ISA Conditions CFM56-5B Series Engine FIGURE-3-4-1-991-001-A01

**ON A/C A318-100

NOTE:

THESE CURVES ARE GIVEN FOR INFORMATION ONLY. THE APPROVED VALUES ARE STATED IN THE "OPERATING MANUALS" SPECIFIC TO THE AIRLINE OPERATING THE AIRCRAFT.

N_AC_030401_1_0020101_01_01

Landing Field Length - ISA Conditions PW 6000 Series Engine FIGURE-3-4-1-991-002-A01

3-5-0 Final Approach Speed

**ON A/C A318-100

Final Approach Speed

- This section provides the final approach speed. It is defined as the indicated airspeed at threshold in the landing configuration, at the certificated maximum flap setting and Maximum Landing Weight (MLW), in standard atmospheric conditions. The approach speed is used to classify the aircraft into an Aircraft Approach Category, a grouping of aircraft based on the indicated airspeed at threshold.
- 2. The final approach speed is 121 kt at a MLW of 57 500 kg (126 766 lb) and classifies the aircraft into the Aircraft Approach Category C.

<u>NOTE</u>: This value is given for information only.

GROUND MANEUVERING

4-1-0 General Information

**ON A/C A318-100

General Information

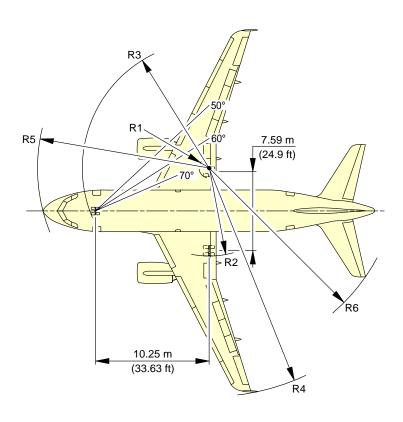
1. This section provides aircraft turning capability and maneuvering characteristics.

For ease of presentation, this data has been determined from the theoretical limits imposed by the geometry of the aircraft, and where noted, provides for a normal allowance for tire slippage. As such, it reflects the turning capability of the aircraft in favorable operating circumstances. This data should only be used as a guideline for the method of determination of such parameters and for the maneuvering characteristics of this aircraft type.

In ground operating mode, varying airline practices may demand that more conservative turning procedures be adopted to avoid excessive tire wear and reduce possible maintenance problems. Airline operating techniques will vary in the level of performance, over a wide range of operating circumstances throughout the world. Variations from standard aircraft operating patterns may be necessary to satisfy physical constraints within the maneuvering area, such as adverse grades, limited area or a high risk of jet blast damage. For these reasons, ground maneuvering requirements should be coordinated with the airlines in question prior to layout planning.

@A318

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING


4-2-0 Turning Radii

**ON A/C A318-100

Turning Radii

1. This section provides the turning radii.

**ON A/C A318-100

NOTE: FOR STEERING DIMENSION TABLE SEE SHEET 2.

TURN TYPE:

- 1. ASYMMETRIC THRUST DIFFERENTIAL BRAKING (PIVOTTING ON ONE MAIN GEAR).
- 2. SYMMETRIC THRUST NO BRAKING.

N_AC_040200_1_0010101_01_02

Turning Radii, No Slip Angle (Sheet 1) FIGURE-4-2-0-991-001-A01

**ON A/C A318-100

R6 THS	Ħ	127	108	92	87	80	75	71	89	92	63	61	09	71	89	65	63	61	29
 X	Е	38.6	32.9	29.1	26.4	24.5	22.9	21.7	20.7	19.9	19.2	18.7	18.2	21.7	20.7	19.9	19.2	18.6	18.1
5 SE	ft	108	90	79	71	99	62	59	99	22	53	52	52	58	99	55	53	52	51
R5 NOSE	E	33.0	27.5	24.0	21.7	20.0	18.8	17.9	17.2	16.6	16.2	16.0	15.8	17.8	17.1	16.6	16.2	15.9	15.7
4 STIP ICE	ft	152	132	118	107	66	93	87	83	79	75	72	69	87	82	78	75	71	89
R4 WINGTIP FENCE	٤	46.5	40.2	35.8	32.7	30.2	28.2	26.6	25.2	24.0	22.9	21.9	21.2	26.5	25.1	23.9	22.7	21.8	20.9
3 G	ft	103	83	70	61	55	20	46	43	40	39	37	36	46	43	40	38	37	36
R3 NLG	٤	31.3	25.4	21.5	18.7	16.7	15.2	14.0	13.1	12.3	11.8	11.3	11.0	14.0	13.0	12.3	11.7	11.3	10.9
2 -G	Ħ	111	06	75	65	22	20	45	40	36	32	29	27	45	40	36	32	29	26
R2 LMLG	٤	33.7	27.3	23.0	19.8	17.3	15.3	13.7	12.2	11.0	9.6	8.9	8.2	13.6	12.2	10.9	9.7	8.8	7.8
R1 RMLG	ft	98	65	51	40	32	25	20	15	1	∞	4	2	20	15	1	7	4	-
R1 RML	٤	26.1	19.8	15.4	12.2	9.7	7.7	6.1	4.6	3.4	2.3	1.3	9.0	0.9	4.6	3.3	2.2	1.2	0.3
MAXIMUM RAMP WEIGHT	EFFECTIVE STEERING ANGLE (deg)	19.3	24.1	29.0	33.8	38.6	43.4	48.2	52.9	57.6	62.2	9.99	70.3	48.3	53.1	57.9	62.8	67.3	71.8
MAXIMUN	STEERING ANGLE (deg)	20	25	30	35	40	45	50	55	09	65	70	75 (MAX)	50	55	09	65	70	75 (MAX)
, L	TURN	2	2	2	2	2	2	2	2	2	2	2	2	-	-	-	-	-	_

NOTE

ABOVE 50°, AIRLINES MAY USE TYPE 1 OR TYPE 2 TURNS DEPENDING ON THE SITUATION.

TYPE 1 TURNS USE: ASYMMETRIC THRUST DURING THE WHOLE TURN; AND DIFFERENTIAL BRAKING TO INITIATE
THE TURN ONLY.

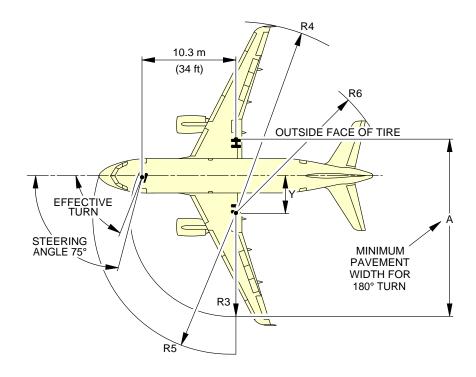
TYPE 2 TURNS USE: SYMMETRIC THRUST DURING THE WHOLE TURN; AND NO DIFFERENTIAL BRAKING AT ALL.
IT IS POSSIBLE TO GET LOWER VALUES THAN THOSE FROM TYPE 1 BY APPLYING DIFFERENTIAL BRAKING DURING
THE WHOLE TURN.

N_AC_040200_1_0020101_01_02

Turning Radii, No Slip Angle (Sheet 2) FIGURE-4-2-0-991-002-A01

@A318

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING


4-3-0 Minimum Turning Radii

**ON A/C A318-100

Minimum Turning Radii

1. This section provides the minimum turning radii.

**ON A/C A318-100

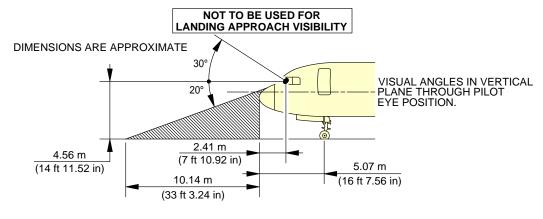
NOTE: NOSE GEAR RADII TRACK R3,
MEASURED FROM OUTSIDE FACE OF TIRE.
MODEL 100 TURN DIMENSION SHOWN.
THEORETICAL CENTER OF TURN
FOR MINIMUM TURNING RADIUS.
SLOW CONTINUOUS TURNING.
APPROXIMATELY IDLE THRUST
ON BOTH ENGINES.
NO DIFFERENTIAL BRAKING.
DRY SURFACE.

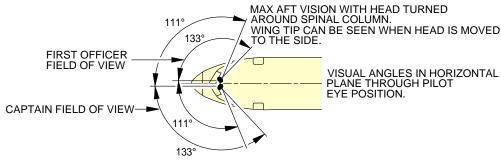
TYPE OF TURN	STEERING ANGLE (DEG)	EFFECTIVE STEERING ANGLE		Y	А	R3 NLG	R4 WING TIP FENCE	R5 NOSE	R6 THS
4	75 (MAX)	71.8°	m	3.4	19.0	10.9	20.9	15.7	18.1
7 75 (WAX)	71.0	ft	11	62	36	68	51	59	
2 75 (MAX)	75 (MAY)	70.3°	m	3.7	19.4	11.0	21.2	15.8	18.2
	75 (IVIAX)	70.3	ft	12	64	36	69	52	60

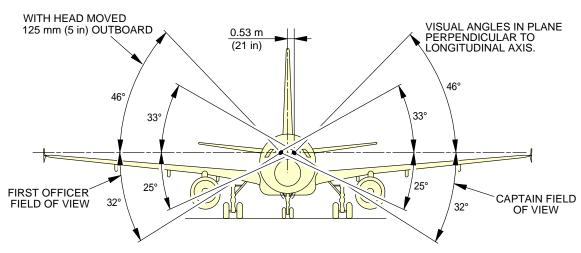
NOTE: IT IS POSSIBLE TO GET LOWER VALUES THAN THOSE FROM TYPE 1 BY APPLYING DIFFERENTIAL BRAKING DURING THE WHOLE TURN.

N_AC_040300_1_0010101_01_03

Minimum Turning Radii FIGURE-4-3-0-991-001-A01


4-4-0 Visibility from Cockpit in Static Position


**ON A/C A318-100

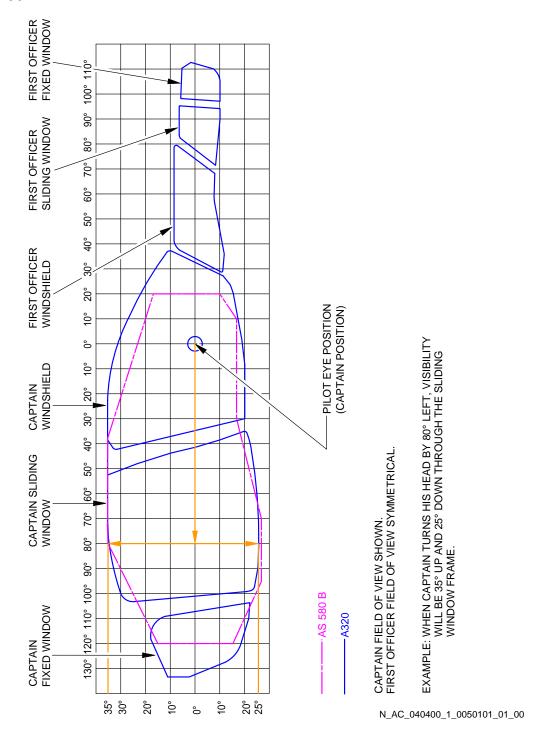

Visibility from Cockpit in Static Position

1. This section gives the visibility from cockpit in static position.

**ON A/C A318-100

NOTE:

• PILOT EYE POSITION WHEN PILOT'S EYES ARE IN LINE WITH THE RED AND WHITE BALLS.



ZONE THAT CANNOT BE SEEN

N_AC_040400_1_0010101_01_04

Visibility from Cockpit in Static Position FIGURE-4-4-0-991-001-A01

**ON A/C A318-100

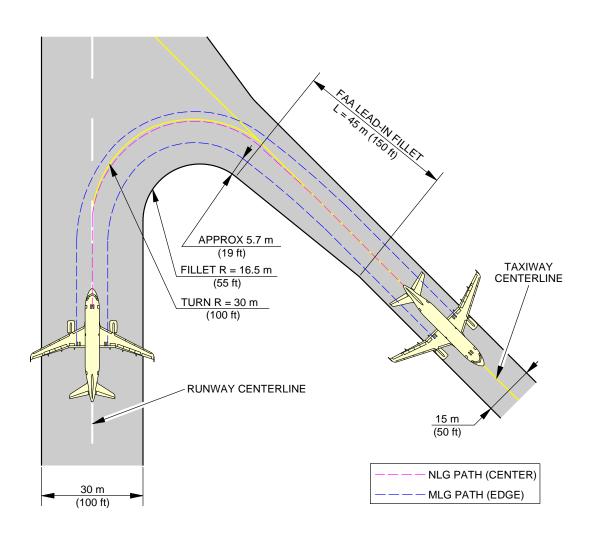
Binocular Visibility Through Windows from Captain Eye Position FIGURE-4-4-0-991-005-A01

4-5-0 Runway and Taxiway Turn Paths

**ON A/C A318-100

Runway and Taxiway Turn Paths

1. Runway and Taxiway Turn Paths.

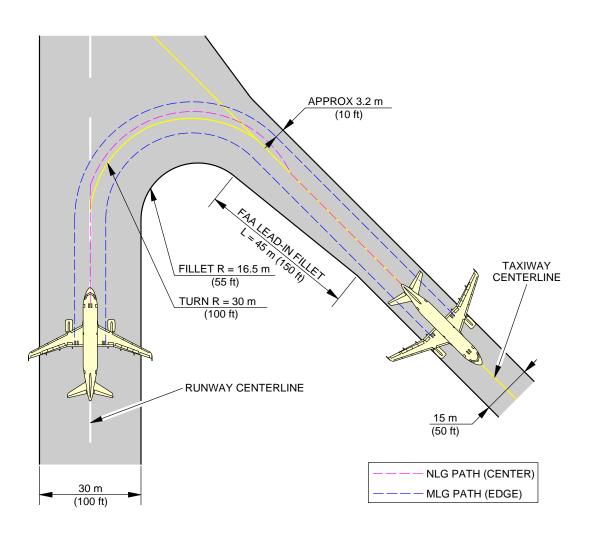

4-5-1 135° Turn - Runway to Taxiway

**ON A/C A318-100

135° Turn - Runway to Taxiway

1. This section gives the 135° turn - runway to taxiway.

**ON A/C A318-100



NOTE: FAA GROUP III FACILITIES.

N_AC_040501_1_0010101_01_03

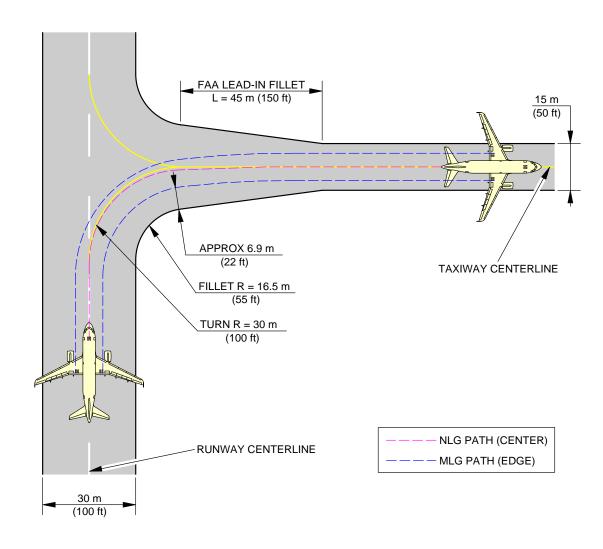
135° Turn - Runway to Taxiway Cockpit Over Centerline Method FIGURE-4-5-1-991-001-A01

**ON A/C A318-100

NOTE: FAA GROUP III FACILITIES.

N_AC_040501_1_0110101_01_01

135° Turn - Runway to Taxiway Judgemental Oversteering Method FIGURE-4-5-1-991-011-A01

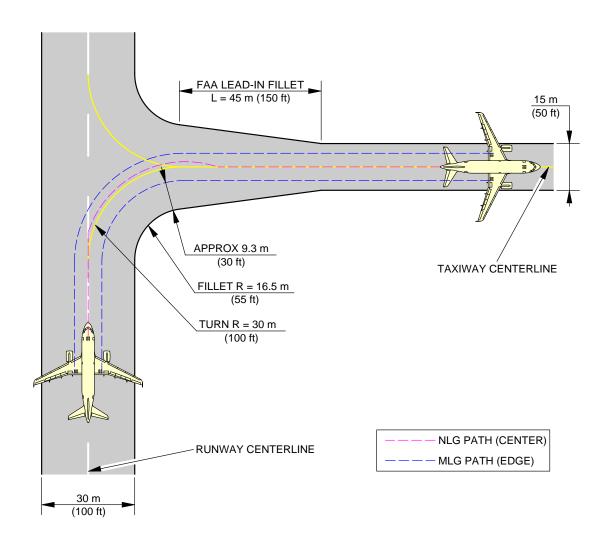

4-5-2 90° Turn - Runway to Taxiway

**ON A/C A318-100

90° Turn - Runway to Taxiway

1. This section gives the 90° turn - runway to taxiway.

**ON A/C A318-100



NOTE: FAA GROUP III FACILITIES.

N_AC_040502_1_0010101_01_03

90° Turn - Runway to Taxiway Cockpit Over Centerline Method FIGURE-4-5-2-991-001-A01

**ON A/C A318-100

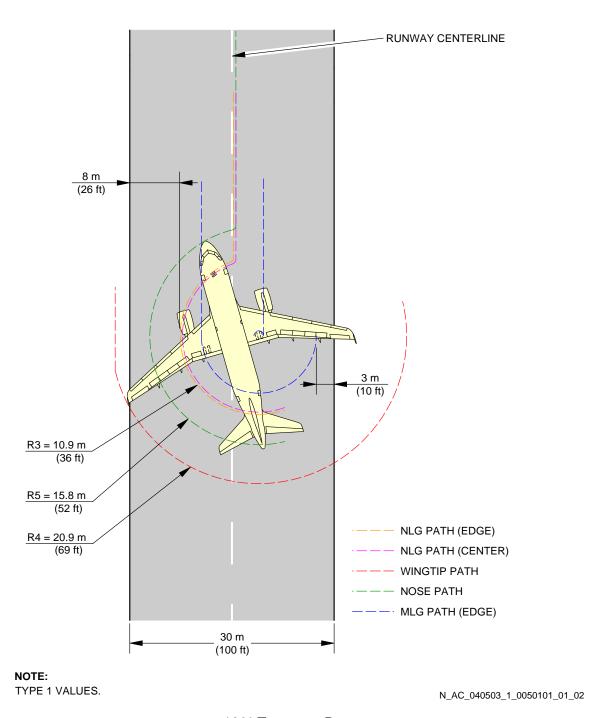
NOTE: FAA GROUP III FACILITIES.

N_AC_040502_1_0080101_01_01

90° Turn - Runway to Taxiway Judgemental Oversteering Method FIGURE-4-5-2-991-008-A01

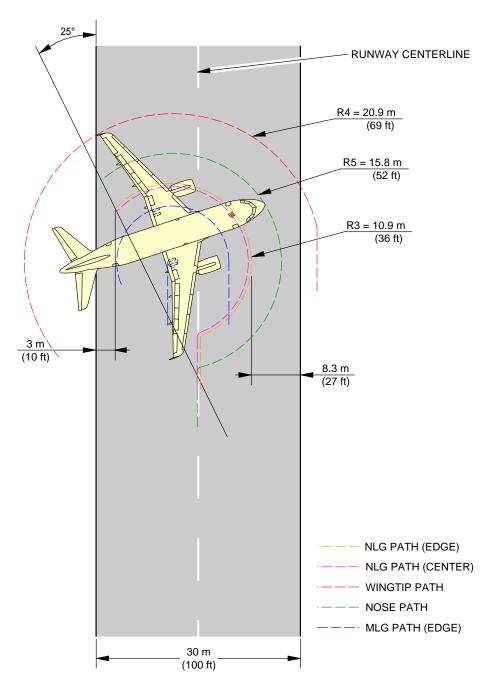
@A318

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING


4-5-3 180° Turn on a Runway

**ON A/C A318-100

180° Turn on a Runway


1. This section provides the 180° turn on a runway.

**ON A/C A318-100

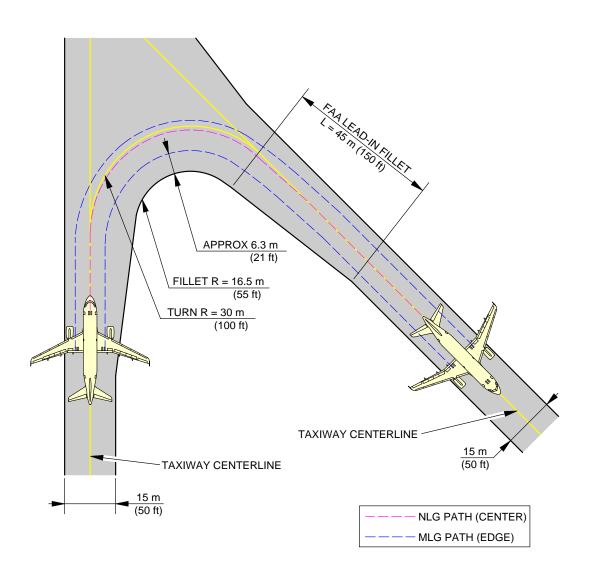
180° Turn on a Runway Edge of Runway Method (Sheet 1 of 2) FIGURE-4-5-3-991-005-A01

**ON A/C A318-100

NOTE: TYPE 1 VALUES.

N_AC_040503_1_0050102_01_02

180° Turn on a Runway Center of Runway Method (Sheet 2 of 2) FIGURE-4-5-3-991-005-A01

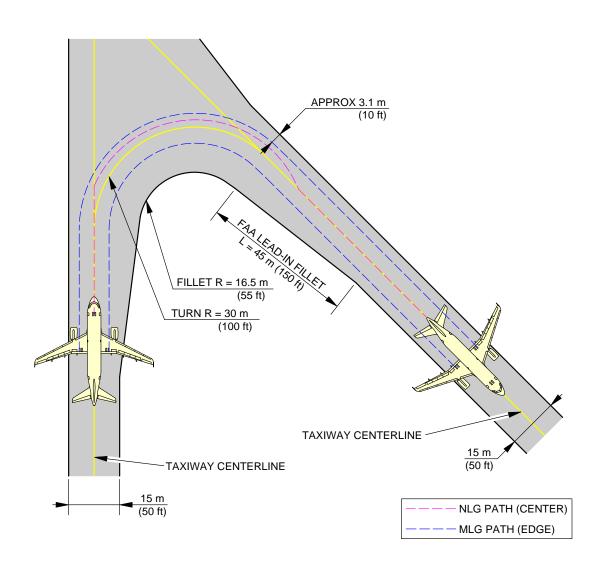

4-5-4 135° Turn - Taxiway to Taxiway

**ON A/C A318-100

135° Turn - Taxiway to Taxiway

1. This section gives the 135° turn - taxiway to taxiway.

**ON A/C A318-100



NOTE: FAA GROUP III FACILITIES.

N_AC_040504_1_0010101_01_03

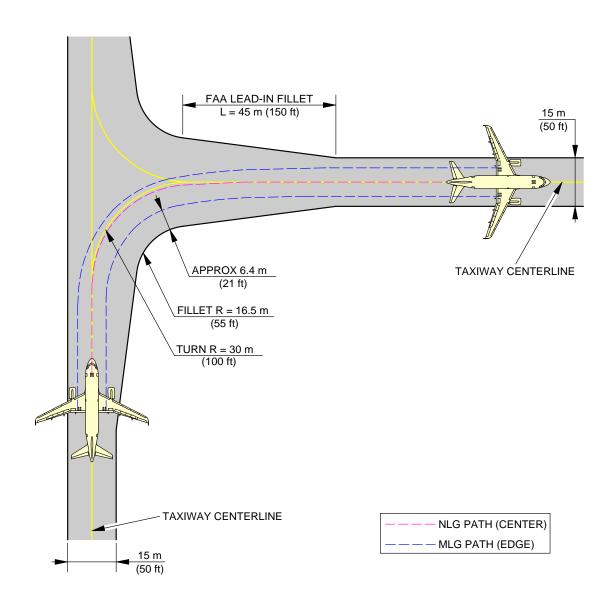
135° Turn - Taxiway to Taxiway Cockpit Over Centerline Method (Sheet 1 of 2) FIGURE-4-5-4-991-001-A01

**ON A/C A318-100

NOTE: FAA GROUP III FACILITIES.

N_AC_040504_1_0010102_01_01

135° Turn - Taxiway to Taxiway Judgemental Oversteering Method (Sheet 2 of 2) FIGURE-4-5-4-991-001-A01

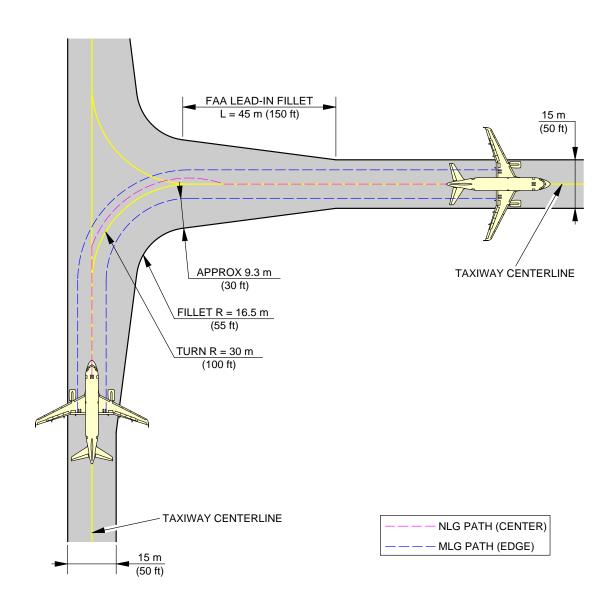

4-5-5 90° Turn - Taxiway to Taxiway

**ON A/C A318-100

90° Turn - Taxiway to Taxiway

1. This section gives the 90° turn - taxiway to taxiway.

**ON A/C A318-100



NOTE: FAA GROUP III FACILITIES.

N_AC_040505_1_0010101_01_03

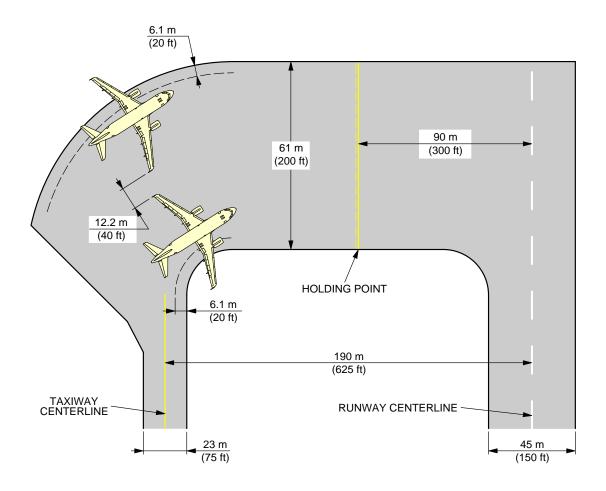
90° Turn - Taxiway to Taxiway Cockpit Over Centerline Method (Sheet 1 of 2) FIGURE-4-5-5-991-001-A01

**ON A/C A318-100

NOTE: FAA GROUP III FACILITIES.

N_AC_040505_1_0010102_01_01

90° Turn - Taxiway to Taxiway Judgemental Oversteering Method (Sheet 2 of 2) FIGURE-4-5-5-991-001-A01


4-6-0 Runway Holding Bay (Apron)

**ON A/C A318-100

Runway Holding Bay (Apron)

1. This section gives the runway holding bay (Apron).

**ON A/C A318-100

N_AC_040600_1_0010101_01_02

Runway Holding Bay (Apron) FIGURE-4-6-0-991-001-A01

4-7-0 Minimum Line-Up Distance Corrections

**ON A/C A318-100

Minimum Line-Up Distance Corrections

1. The ground maneuvers were performed using asymmetric thrust and differential braking only to initiate the turn.

TODA: Take-Off Distance Available

ASDA: Acceleration-Stop Distance Available

2. 90° Turn on Runway Entry

This section gives the minimum line-up distance correction for a 90° turn on runway entry. This maneuver consists in a 90° turn at minimum turn radius. It starts with the edge of the MLG at a distance of 3 m (10 ft) from the taxiway edge, and finishes with the aircraft aligned on the centerline of the runway, see FIGURE 4-7-0-991-014-A.

During the turn, all the clearances must meet the minimum value of 3 m (10 ft) for this category of aircraft as recommended in ICAO Annex 14.

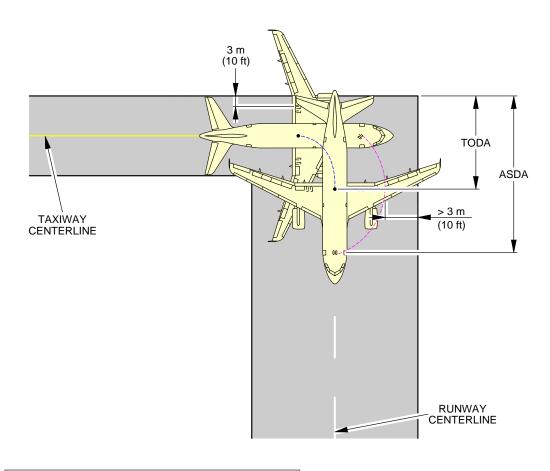
3. 180° Turn on Runway Turn Pad

This section gives the minimum line-up distance correction for a 180° turn on the runway turn pad.

This maneuver consists in a 180° turn at minimum turn radius on a runway turn pad with standard ICAO geometry.

It starts with the edge of the MLG at a distance of 3 m (10 ft) from the pavement edge, and it finishes with the aircraft aligned on the centerline of the runway, see FIGURE 4-7-0-991-015-A. During the turn, all the clearances must meet the minimum value of 3 m (10 ft) for this category of aircraft as recommended in ICAO Annex 14.

4. 180° Turn on Runway Width

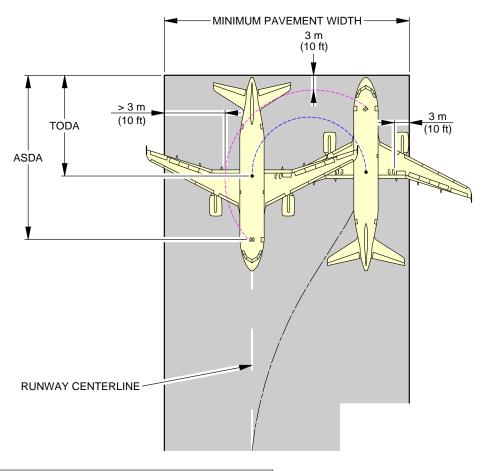

This section gives the minimum line-up distance correction for a 180° turn on the runway width. For this maneuver, the pavement width is considered to be the runway width, which is a frozen parameter (30 m (100 ft), 45 m (150 ft) and 60 m (200 ft)).

As per the standard operating procedures for the "180° turn on runway" (described in the Flight Crew Operating Manual), the aircraft is initially angled with respect to the runway centerline when starting the 180° turn, see FIGURE 4-7-0-991-016-A.

The value of this angle depends on the aircraft type and is mentioned in the FCOM.

During the turn, all the clearances must meet the minimum value of 3 m (10 ft) for this category of aircraft as recommended in ICAO Annex 14.

**ON A/C A318-100

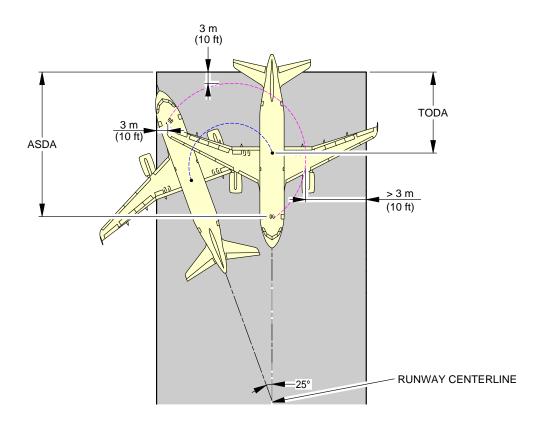

--- ASDA: ACCELERATION-STOP DISTANCE AVAILABLE --- TODA: TAKE-OFF DISTANCE AVAILABLE

90° TURN ON RUNWAY ENTRY						
	MAX STEERING ANGLE	30 m (100 ft)/45 m (150 ft)/60 m (200 ft) WIDE RUNWAY				
AIRCRAFT TYPE		MINIMUM LINE-UP DISTANCE CORRECTION				
		ON TODA		ON ASDA		
A318	75°	10.8 m	35 ft	21.1 m	69 ft	

N_AC_040700_1_0140101_01_00

Minimum Line-Up Distance Corrections 90° Turn on Runway Entry FIGURE-4-7-0-991-014-A01

**ON A/C A318-100


--- ASDA: ACCELERATION-STOP DISTANCE AVAILABLE --- TODA: TAKE-OFF DISTANCE AVAILABLE

180° TURN ON RUNWAY TURN PAD							
AIRCRAFT TYPE ANGLE		30 m (100 ft)/45 m (150 ft)/60 m (200 ft) WIDE RUNWAY					
	STEERING	MINIMUM LINE-UP DISTANCE CORRECTION			REQUIRED MINIMUM PAVEMENT		
		ON TODA ON ASDA		SDA	WIDTH		
A318	75°	14.1 m	46 ft	24.4 m	80 ft	29.2 m	96 ft

N_AC_040700_1_0150101_01_00

Minimum Line-Up Distance Corrections 180° Turn on Runway Turn Pad FIGURE-4-7-0-991-015-A01

**ON A/C A318-100

--- ASDA: ACCELERATION-STOP DISTANCE AVAILABLE --- TODA: TAKE-OFF DISTANCE AVAILABLE

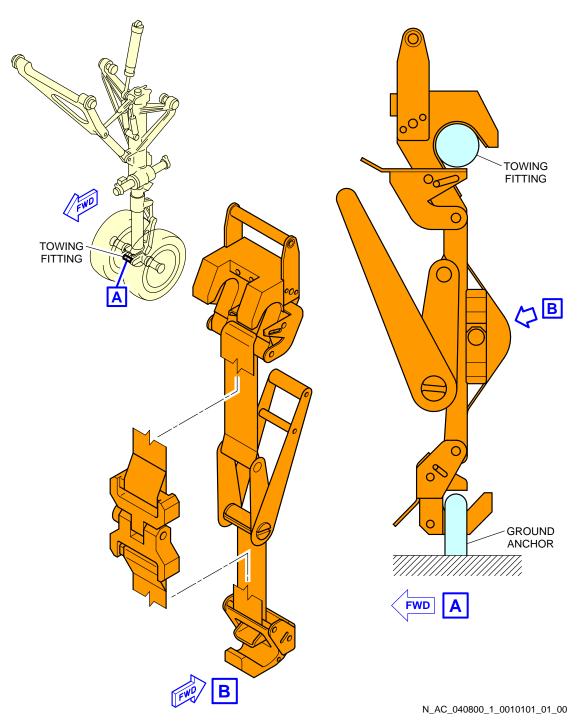
180° TURN ON RUNWAY WIDTH						
		30 m (100 ft)/45 m (150 ft)/60 m (200 ft) WIDE RUNWAY				
AIRCRAFT TYPE	C STEERING WIII		_	MINIMUM LINE-UP TANCE CORRECTION		
		ON TODA ON ASD		SDA		
A318	75°	14.1 m	46 ft	24.4 m	80 ft	

N_AC_040700_1_0160101_01_00

Minimum Line-Up Distance Corrections 180° Turn on Runway Width FIGURE-4-7-0-991-016-A01

@A318

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING


4-8-0 Aircraft Mooring

**ON A/C A318-100

Aircraft Mooring

1. This section provides information on aircraft mooring.

**ON A/C A318-100

Aircraft Mooring FIGURE-4-8-0-991-001-A01

TERMINAL SERVICING

5-1-1 Aircraft Servicing Arrangements

**ON A/C A318-100

Aircraft Servicing Arrangements

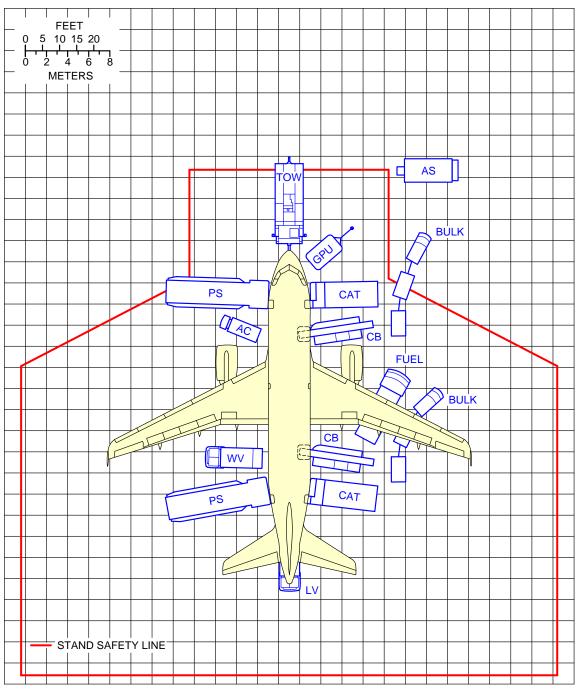
1. This section provides typical ramp layouts, showing the various GSE items in position during typical turn-round scenarios.

These ramp layouts show typical arrangements only. Each operator will have its own specific requirements/regulations for positioning and operation on the ramp.

This table gives the symbols used on servicing diagrams.

Ground Support Equipment				
AC	AIR CONDITIONING UNIT			
AS	AIR START UNIT			
BULK	BULK TRAIN			
CAT	CATERING TRUCK			
СВ	CONVEYOR BELT			
CLEAN	CLEANING TRUCK			
FUEL	FUEL HYDRANT DISPENSER or TANKER			
GPU	GROUND POWER UNIT			
LDCL	LOWER DECK CARGO LOADER			
LV	LAVATORY VEHICLE			
PBB	PASSENGER BOARDING BRIDGE			
PS	PASSENGER STAIRS			
TOW	TOW TRACTOR			
ULD	ULD TRAIN			
WV	POTABLE WATER VEHICLE			

5-1-2 Typical Ramp Layout - Open Apron


**ON A/C A318-100

Typical Ramp Layout - Open Apron

1. This section gives the typical servicing arrangement for pax version (Open Apron).

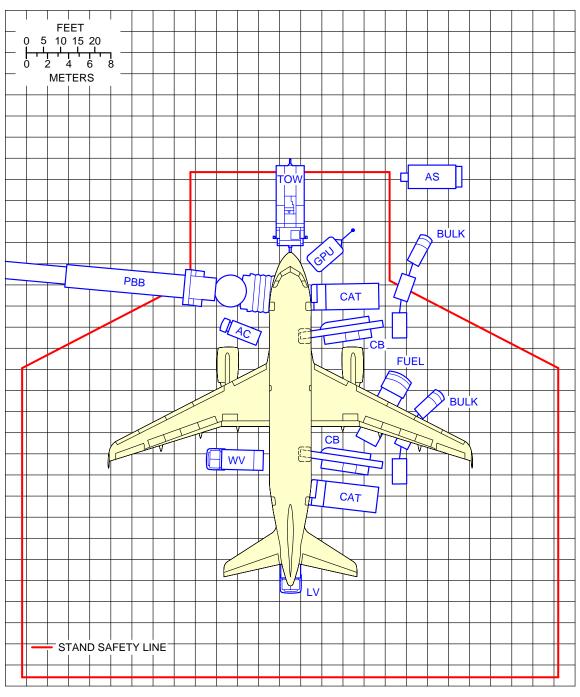
The Stand Safety Line delimits the Aircraft Safety Area (minimum distance 7.5 m from the aircraft). No vehicle must be parked in this area before complete stop of the aircraft (wheel chocks in position on landing gears).

**ON A/C A318-100

N_AC_050102_1_0010101_01_04

Typical Ramp Layout Open Apron - Bulk Loading FIGURE-5-1-2-991-001-A01

5-1-3 Typical Ramp Layout - Gate


**ON A/C A318-100

Typical Ramp Layout - Gate

1. This section give the typical servicing arrangement for pax version (Passenger Bridge).

The Stand Safety Line delimits the Aircraft Safety Area (minimum distance of 7.5 m from the aircraft). No vehicle must be parked in this area before complete stop of the aircraft (wheel chocks in position on landing gears).

**ON A/C A318-100

N_AC_050103_1_0040101_01_03

Typical Ramp Layout
Gate
FIGURE-5-1-3-991-004-A01

5-2-0 Terminal Operations - Full Servicing Turn Round Time Chart

**ON A/C A318-100

Terminal Operations - Full Servicing Turn Round Time

1. This section provides a typical turn round time chart showing the typical time for ramp activities during aircraft turn round.

Actual times may vary due to each operator's specific practices, resources, equipment and operating conditions.

2. Assumptions used for full servicing turn round time chart

A. PASSENGER HANDLING

107 pax: 8 F/C + 99 Y/C.

All passengers deplane and board the aircraft.

1 Passenger Boarding Bridge (PBB) used at door 1L.

Equipment positioning + opening door = +2 min.

Closing door + equipment removal = +1.5 min.

No Passenger with Reduced Mobility (PRM) on board.

Deplaning:

- 107 pax at door 1L
- Deplaning rate = 20 pax/min per door
- Priority deplaning for premium passengers.

Boarding:

- 107 pax at door 1L
- Boarding rate = 12 pax/min per door
- Last Pax Seating allowance (LPS) + headcounting = +2 min.

B. CARGO

2 belt loaders.

Opening door + equipment positioning = +2 min.

Equipment removal + closing door = +1.5 min.

100% cargo exchange (baggage only):

An average 15 kg (33 lb) per pax is assumed.

- FWD cargo compartment: 800 kg (1 764 lb)
- AFT cargo compartment: 800 kg (1 764 lb).

Bulk unloading/loading times:

- Unloading = 150 kg/min (331 lb/min)
- Loading = 120 kg/min (265 lb/min).

C. REFUELING

20 000 I (5 283 US gal) at 50 psig (3.45 bars-rel), one hose (right wing). Dispenser positioning/removal + connection/disconnection times = +2.5 min.

D. CLEANING

Cleaning is performed in available time.

E. CATERING

1 catering truck for servicing galleys sequentially at doors 1R and 4R.

Equipment positioning + opening door = +2 min.

Closing door + equipment removal = +1.5 min.

Time to drive from one door to the other = +2 min.

Full Size Trolley Equivalent (FSTE) to unload and load: 8 FSTE

- 4 FSTE at door 1R
- 4 FSTE at door 4R.

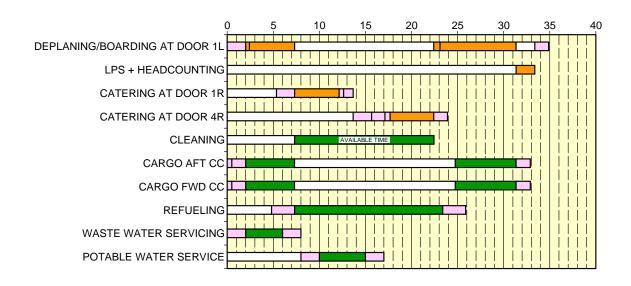
Time for trolley exchange = 1.2 min per FSTE.

F. GROUND HANDLING/GENERAL SERVICING

Start of operations:

- Bridges/stairs: t0 = 0
- Other equipment: t = t0 + 1 min.

Ground Power Unit (GPU): up to 90 kVA.


Air conditioning: one hose.

Potable water servicing: 100% uplift, 200 I (53 US gal).

Toilet servicing: draining + rinsing.

**ON A/C A318-100

TRT: 35 min

GSE POSITIONING/REMOVAL
ACTIVITY
CRITICAL PATH

N_AC_050200_1_0040101_01_05

Full Servicing Turn Round Time Chart FIGURE-5-2-0-991-004-A01

5-3-0 Terminal Operation - Outstation Turn Round Time Chart

**ON A/C A318-100

Terminal Operations - Outstation Turn Round Time

1. This section provides a typical turn round time chart showing the typical time for ramp activities during aircraft turn round.

Actual times may vary due to each operator's specific practices, resources, equipment and operating conditions.

2. Assumptions used for outstation turn round time chart

A. PASSENGER HANDLING

132 pax (all Y/C).

All passengers deplane and board the aircraft.

2 stairways used at doors 1L and 4L.

Equipment positioning + opening door = +2 min.

Closing door + equipment removal = +1.5 min.

No Passenger with Reduced Mobility (PRM) on board.

Deplaning:

- 66 pax at door 1L
- 66 pax at door 4L
- Deplaning rate = 18 pax/min per door.

Boarding:

- 66 pax at door 1L
- 66 pax at door 4L
- Boarding rate = 12 pax/min per door
- Last Pax Seating allowance (LPS) + headcounting = +2 min.

B. CARGO

2 belt loaders.

Opening door + equipment positioning = +2 min.

Equipment removal + closing door = +1.5 min.

100% cargo exchange (baggage only):

An average 15 kg (33 lb) per pax is assumed.

- FWD cargo compartment: 990 kg (2 183 lb)
- AFT cargo compartment: 990 kg (2 183 lb).

Bulk unloading/loading times:

- Unloading = 120 kg/min (265 lb/min)
- Loading = 100 kg/min (220 lb/min).
- C. REFUELING

No refueling.

D. CLEANING

Cleaning is performed in available time.

E. CATERING

One catering truck for servicing the galleys as required.

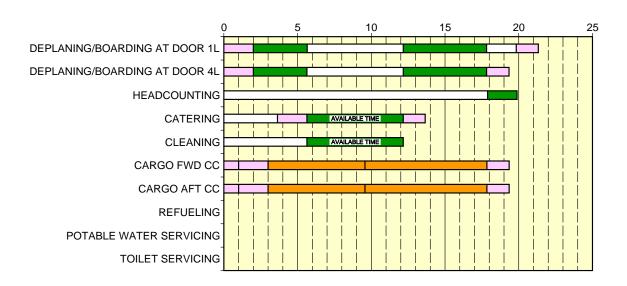
F. GROUND HANDLING/GENERAL SERVICING

Start of operations:

- Bridges/stairs: t0 = 0

- Other equipment: t = t0.

Ground Power Unit (GPU): up to 90 kVA.


Air conditioning: one hose.

No potable water servicing.

No toilet servicing.

**ON A/C A318-100

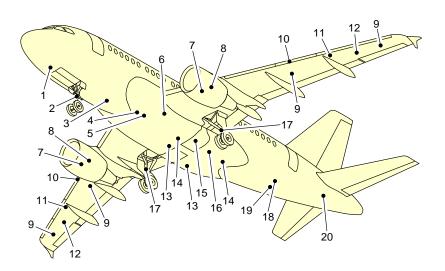
TRT: 21 min

GSE POSITIONING/REMOVAL
ACTIVITY
CRITICAL PATH

N_AC_050300_1_0010101_01_05

Outstation Turn Round Time Chart FIGURE-5-3-0-991-001-A01

5-4-1 Ground Service Connections


**ON A/C A318-100

Ground Service Connections Layout

1. This section provides the ground service connections layout.

5-4-1

**ON A/C A318-100

- 1 GROUND ELECTRICAL POWER CONNECTOR
- 2 NLG GROUNDING (EARTHING) POINT
- 3 POTABLE WATER DRAIN PANEL
- 4 LOW PRESSURE AIR PRE-CONDITIONING
- 5 HIGH PRESSURE AIR PRE-CONDITIONING
- 6 REFUEL/DEFUEL INTEGRATED PANEL
- 7 IDG/STARTER OIL SERVICING
- 8 ENGINE OIL SERVICING*
- 9 OVERPRESSURE PROTECTOR
- 10 REFUEL/DEFUEL COUPLINGS (OPTIONAL-LH WING)

- 11 OVERWING REFUEL (IF INSTALLED)
- 12 NACA VENT INTAKE
- 13 YELLOW HYDRAULIC-SYSTEM SERVICE PANEL
- 14 BLUE HYDRAULIC-SYSTEM SERVICE PANEL
- 15 ACCUMULATOR CHARGING (GREEN SYSTEM) AND RESERVOIR DRAIN (GREEN SYSTEM)
- 16 GREEN HYDRAULIC-SYSTEM SERVICE PANEL
- 17 MLG GROUNDING (EARTHING) POINT
- 18 WASTE WATER SERVICE PANEL
- 19 POTABLE WATER SERVICE PANEL
- 20 APU OIL SERVICING

NOTE:

* FOR THE PW 6000 ENGINE, THE ENGINE OIL SERVICING POINTS (8) ARE LOCATED SYMMETRICALLY ON THE RH SIDE OF EACH ENGINE.

THE ENGINE OIL SERVICING POINTS (8) ARE SHOWN FOR THE CFM 56 ENGINE.

N_AC_050401_1_0010101_01_02

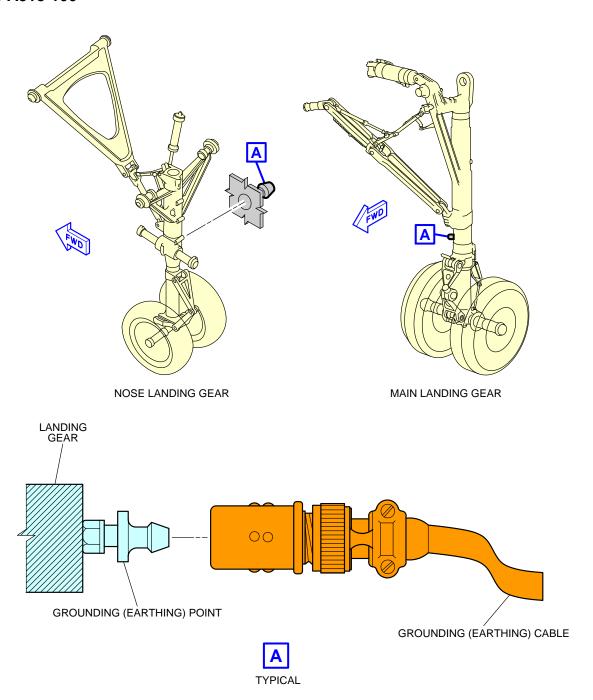
Ground Service Connections Layout FIGURE-5-4-1-991-001-A01

5-4-2 Grounding Points

**ON A/C A318-100

Grounding (Earthing) Points

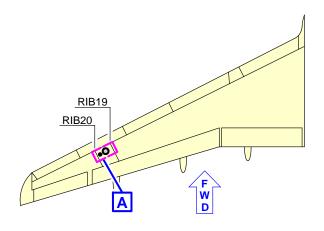
1. Grounding (Earthing) Points

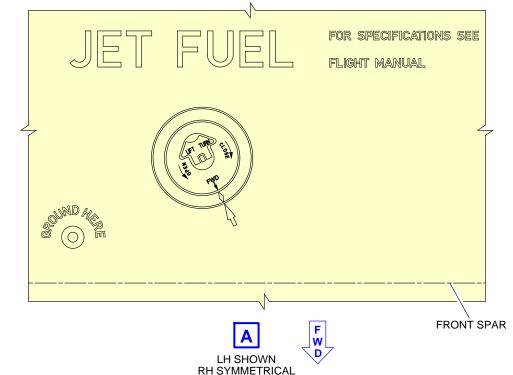

		DISTANCE				
		FROM AIRCRA	MEAN HEIGHT			
AFT OF NOSE	LH SIDE	RH SIDE	FROM GROUND			
On NLG leg:	5.07 m (16.63 ft)	On Centerline		0.94 m (3.08 ft)		
On left MLG leg:	15.32 m (50.26 ft)	3.79 m (12.43 ft)	-	1.07 m (3.51 ft)		
On right MLG leg:	15.32 m (50.26 ft)	-	3.79 m (12.43 ft)	1.07 m (3.51 ft)		

- A. The grounding (earthing) stud on each landing gear leg is designed for use with a clip-on connector (such as Appleton TGR).
- B. The grounding (earthing) studs are used to connect the aircraft to an approved ground (earth) connection on the ramp or in the hangar for:
 - Refuel/defuel operations,
 - Maintenance operations,
 - Bad weather conditions.

NOTE: In all other conditions, the electrostatic discharge through the tire is sufficient. If the aircraft is on jacks for retraction and extension checks or for the removal/installation of the landing gear, the grounding (earthing) alternative points (if installed) are:

- In the hole on the avionics-compartment lateral right door-frame (on FR14),
- On the engine nacelles,
- On the wing upper surfaces.

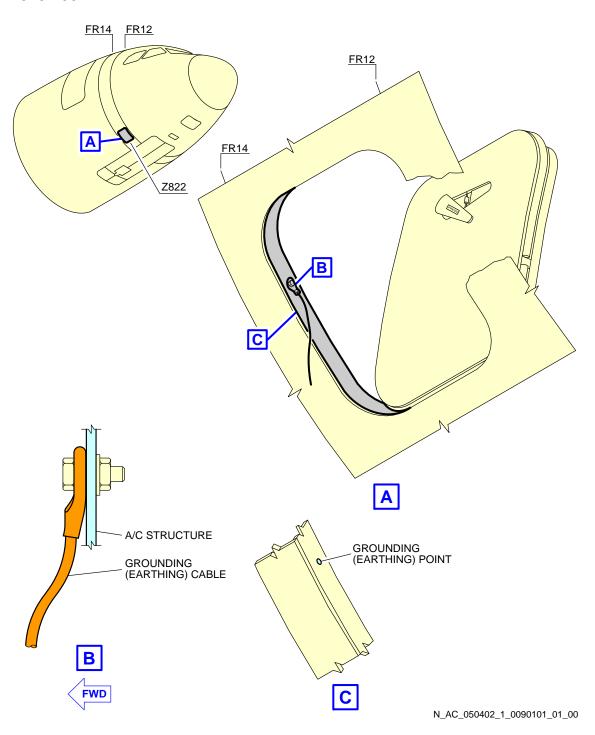

**ON A/C A318-100



N_AC_050402_1_0010101_01_01

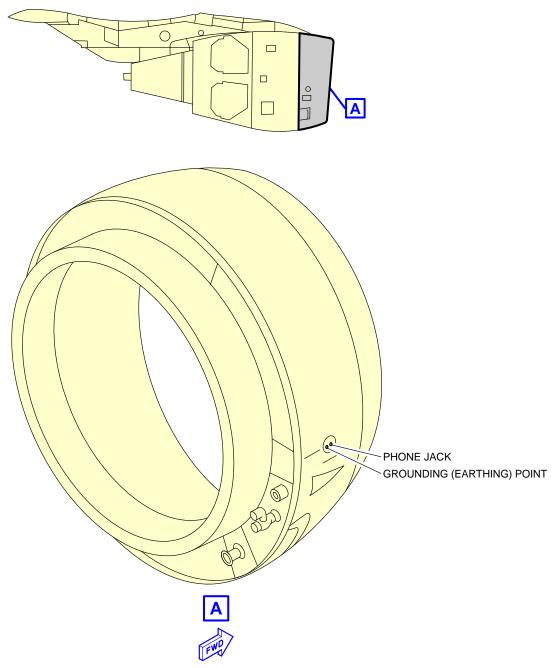
Ground Service Connections Grounding (Earthing) Points - Landing Gear FIGURE-5-4-2-991-001-A01

**ON A/C A318-100



NOTE:

THE REFUEL POINT ON THE WING UPPER SURFACE IS NOT AVAILABLE FOR SOME AIRCRAFTS. THE LABEL "GROUND HERE" IS NOT AVAILABLE ON SOME AIRCRAFTS. BUT THE GROUNDING (EARTHING) POINT CAN BE USED FOR THE GROUNDING (EARTHING) OF THE AIRCRAFT. $N_{AC_050402_1_0020101_01_01}$


Ground Service Connections Grounding (Earthing) Points - Wing FIGURE-5-4-2-991-002-A01

**ON A/C A318-100

Ground Service Connections
Grounding (Earthing) Point - Avionics Compartment Door-Frame
FIGURE-5-4-2-991-009-A01

**ON A/C A318-100

N_AC_050402_1_0100101_01_00

Ground Service Connections
Grounding (Earthing) Point - Engine Air Intake (If Installed)
FIGURE-5-4-2-991-010-A01

5-4-3 Hydraulic System

**ON A/C A318-100

Hydraulic Servicing

1. Access

	DISTANCE				
ACCESS		FROM AIRCRAF	T CENTERLINE	MEAN HEIGHT	
ACCESS	AFT OF NOSE	LH SIDE	RH SIDE	FROM GROUND	
Green System:	16.43 m	1.27 m		1.76 m	
Access Door 197CB	(53.90 ft)	(4.17 ft)		(5.77 ft)	
Yellow System:	16.43 m		1.27 m	1.76 m	
Access Door 198CB	(53.90 ft)		(4.17 ft)	(5.77 ft)	
Blue System:	16.96 m	1.27 m		1.76 m	
Access Door 197EB	(55.64 ft)	(4.17 ft)		(5.77 ft)	

2. Reservoir Pressurization

ACCESS	DISTANCE				
		FROM AIRCRAF	T CENTERLINE	MEAN HEIGHT	
	AFT OF NOSE	LH SIDE	RH SIDE	FROM GROUND	
Access Door 195BB	13.20 m (43.31 ft)	0.25 m (0.82 ft)		1.74 m (5.71 ft)	

3. Accumulator Charging

Four MIL-PRF-6164 connections:

		DISTAI	NCE	
ACCESS		FROM AIRCRAI	T CENTERLINE	MEAN HEIGHT
7.00200	AFT OF NOSE	LH SIDE	RH SIDE	FROM GROUND
IAccumulator.	13.20 m (43.31 ft)		0.25 m (0.82 ft)	1.74 m (5.71 ft)
Green System Accumulator: Left MLG Door	14.30 m (46.92 ft)	0.25 m (0.82 ft)		3.20 m (10.50 ft)
Blue System Accumulator: Access Door 195BB	13.20 m (43.31 ft)	0.25 m (0.82 ft)		1.74 m (5.71 ft)
IΔccumulator.	13.20 m (43.31 ft)		0.25 m (0.82 ft)	1.74 m (5.71 ft)

4. Reservoir Filling

Centralized filling capability on the Green System ground service panel:

		DISTANCE			
ACCESS		FROM AIRCRAF	T CENTERLINE	MEAN HEIGHT	
	AFT OF NOSE	LH SIDE	RH SIDE	FROM GROUND	
Access Door 197CB	16.43 m	1.27 m		1.76 m	
Access Door 197CB	(53.90 ft)	(4.17 ft)		(5.77 ft)	

Filling: Ground pressurized supply or hand pump.

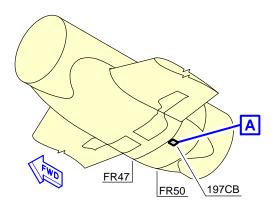
5. Reservoir Drain

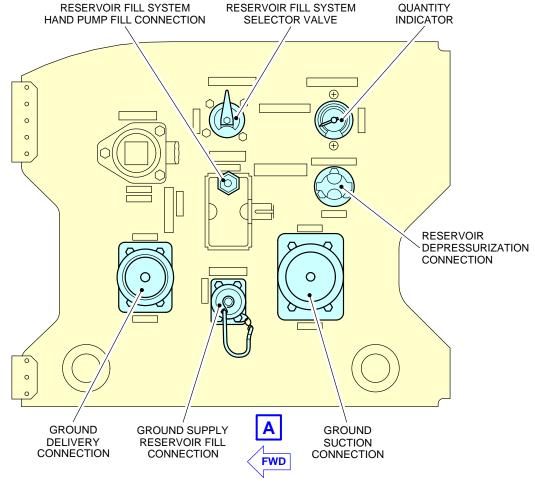
Three 3/8 in. self-sealing connections:

	DISTANCE			
ACCESS		FROM AIRCRAF	OM AIRCRAFT CENTERLINE MEAN I	
	AFT OF NOSE	LH SIDE	RH SIDE	FROM GROUND
Yellow System:	13.20 m		0.25 m	1.74 m

	DISTANCE				
ACCESS		FROM AIRCRAF	T CENTERLINE	MEAN HEIGHT	
ACCESS	AFT OF NOSE	LH SIDE	RH SIDE	FROM GROUND	
Access Door 196BB	(43.31 ft)		(0.82 ft)	(5.71 ft)	
Green System:	14.30 m	0.25 m		3.20 m	
Left MLG Door	(46.92 ft)	(0.82 ft)		(10.50 ft)	
Blue System:	16.96 m	1.27 m		1.76 m	
Access Door 197EB	(55.64 ft)	(4.17 ft)		(5.77 ft)	

NOTE: The drain valve is on the Blue System ground service panel for the reservoir of the Blue Hydraulic system.

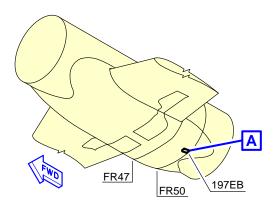

The drain valve is on the reservoir for the Green and Yellow Hydraulic Systems.

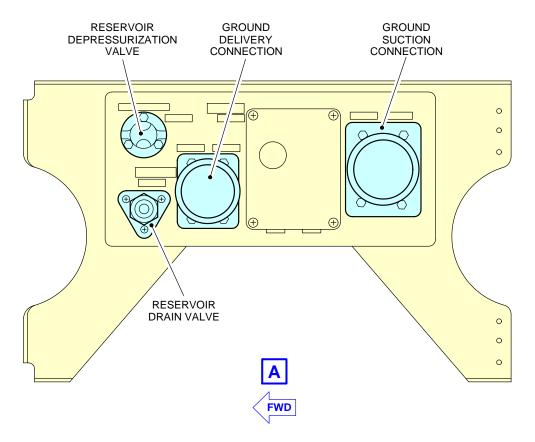

6. Ground Test

On each ground service panel:

- One self-sealing connector (suction).
- One self-sealing connector (delivery).

**ON A/C A318-100

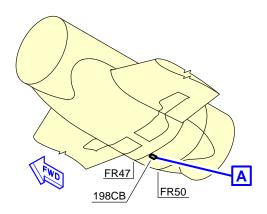


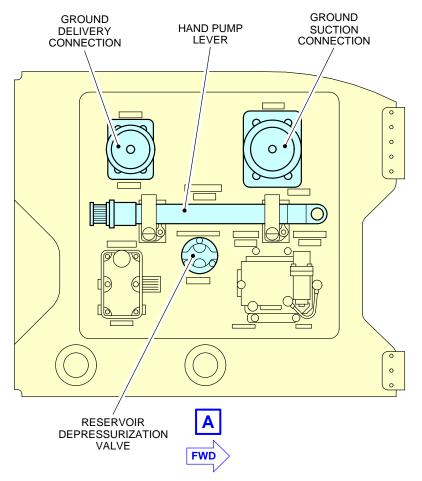


N_AC_050403_1_0040101_01_01

Ground Service Connections Green System Ground Service Panel FIGURE-5-4-3-991-004-A01

**ON A/C A318-100

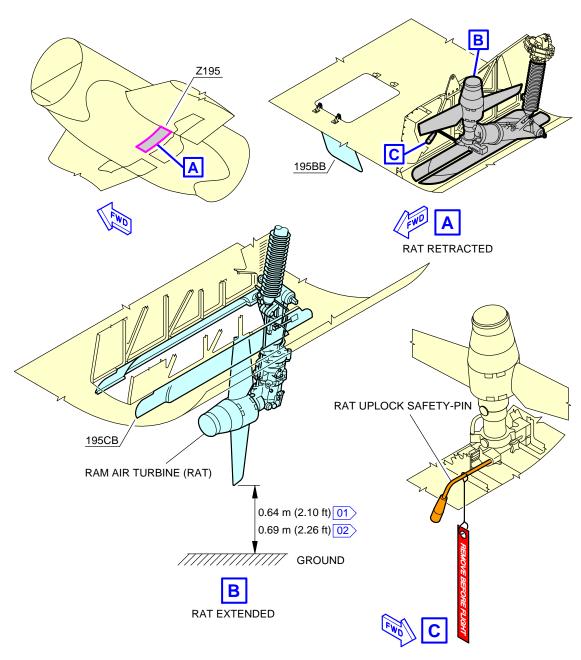




N_AC_050403_1_0050101_01_01

Ground Service Connections
Blue System Ground Service Panel
FIGURE-5-4-3-991-005-A01

**ON A/C A318-100



N_AC_050403_1_0060101_01_01

Ground Service Connections Yellow System Ground Service Panel FIGURE-5-4-3-991-006-A01

**ON A/C A318-100

NOTE:

01 FOR A318, A319 AND A320

02 FOR A321

N_AC_050403_1_0070101_01_00

Ground Service Connections RAT FIGURE-5-4-3-991-007-A01

5-4-4 Electrical System

**ON A/C A318-100

Electrical System

1. Electrical System

This chapter provides data related to the location of the ground service connections.

	DISTANCE			
ACCESS	AFT OF NOSE	FROM AIRCRAFT CENTERLINE		MEAN HEIGHT
	ALL OF NOSE	LH SIDE	RH SIDE	FROM GROUND
A/C External Power: Access Door 121AL	2.55 m (8.37 ft)	On cer	nterline	2.00 m (6.56 ft)

NOTE: Distances are approximate.

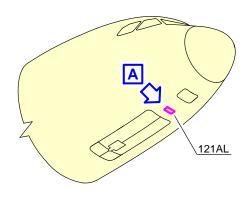
2. Technical Specifications

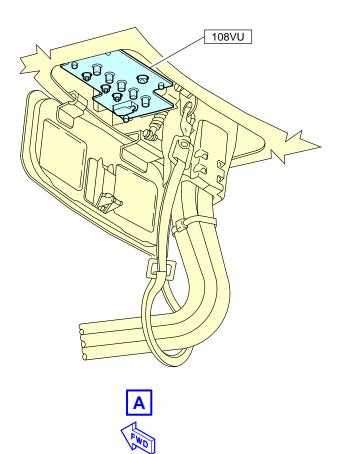
A. External Power Receptacle:

- One receptacle according to MS 90362-3 (without shield MS 17845-1) – 90 kVA.

<u>NOTE</u>: Make sure that for connectors featuring micro switches, the connector is chamfered to properly engage in the receptacle.

B. Power Supply:


- Three-phase, 115/200V, 400 Hz.


C. Electrical Connectors for Servicing:

AC outlets: HUBBELL 5258

- DC outlets: HUBBELL 7472.

**ON A/C A318-100

N_AC_050404_1_0010101_01_01

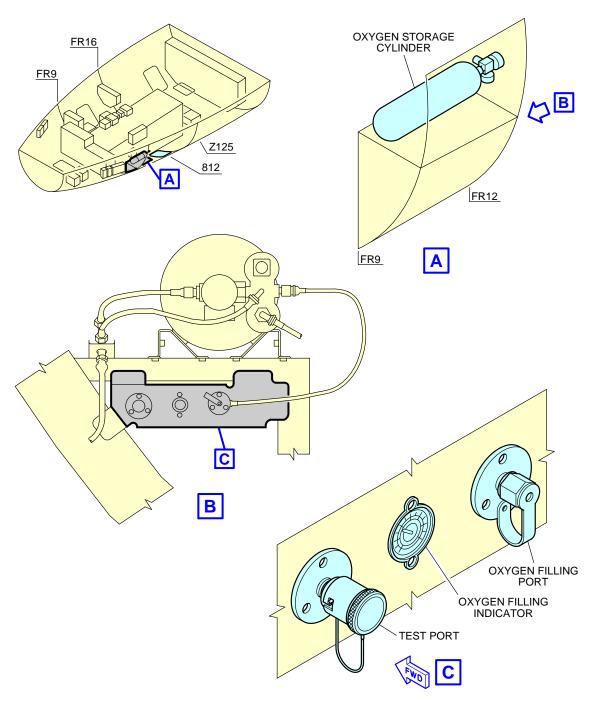
Ground Service Connections External Power Receptacles FIGURE-5-4-4-991-001-A01

5-4-5 Oxygen System

**ON A/C A318-100

Oxygen System

1. Oxygen System


	DISTANCE				
ACCESS		FROM AIRCRAF	T CENTERLINE	MEAN HEIGHT	
	AFT OF NOSE	LH SIDE RH SIDE	DH SIDE	FROM	
			KII SIDE	GROUND	
Oxygen Replenishment:	3.45 m	1.15 m		2.60 m	
Access Door 812	(11.32 ft)	(3.77 ft)	<u>-</u>	(8.53 ft)	

2. Technical Specifications

- One 3/8 in. MIL-DTL 7891 standard service connection.

<u>NOTE</u>: External charging in the avionics compartment.

**ON A/C A318-100

N_AC_050405_1_0010101_01_00

Ground Service Connections Oxygen System FIGURE-5-4-5-991-001-A01

5-4-6 Fuel System

**ON A/C A318-100

Fuel System

1. Refuel/Defuel Control Panel

		DISTANCE			
ACCESS	AFT OF NOSE	AIRCRAFI CENTERTINE		MEAN HEIGHT FROM GROUND	
		LH SIDE	RH SIDE	TINOW GROUND	
Refuel/Defuel Integrated Panel: Access Door 192MB	14.01 m (45.96 ft)	-	1.8 m (5.91 ft)	1.8 m (5.91 ft)	

2. Refuel/Defuel Connectors

		DISTANCE				
ACCESS	AFT OF NOSE	POSITION FROM AIRCRAFT CENTERLINE		MEAN HEIGHT FROM GROUND		
		LH SIDE	RH SIDE	- FROW GROUND		
Refuel/Defuel Coupling, Left: Access Panel 522HB (Optional)	15.2 m (49.87 ft)	9.83 m (32.25 ft)	-	3.65 m (11.98 ft)		
Refuel/Defuel Coupling, Right: Access Panel 622HB	15.2 m (49.87 ft)	-	9.83 m (32.25 ft)	3.65 m (11.98 ft)		
Overwing Gravity- Refuel Cap	16.71 m (54.82 ft)	12.4 m (40.68 ft)	12.4 m (40.68 ft)	3.7 m (12.14 ft)		

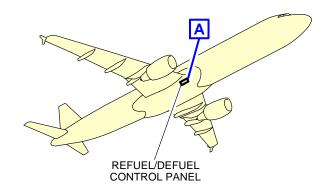
A. Refuel/Defuel Couplings:

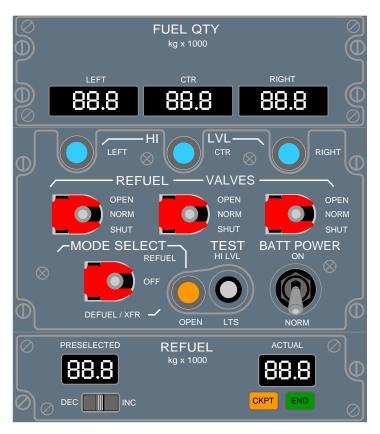
- Right wing: one standard ISO 45, 2.5 in.
- Left wing: one optional standard ISO 45, 2.5 in.

B. Refuel Pressure:

- Maximum pressure: 3.45 bar (50 psi).

C. Average Flow Rate:

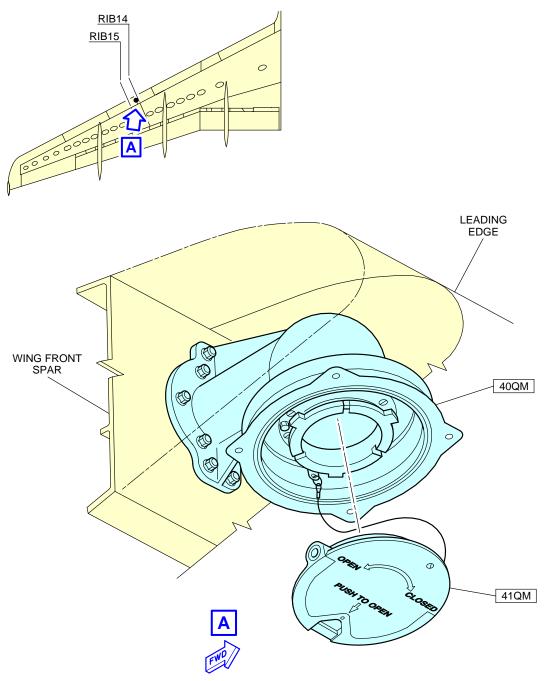

- 1250 l/min (330 US gal/min).


3. Overpressure Protectors and NACA Vent Intake

		DISTANCE				
ACCESS	AFT OF NOSE	POSITION FROM AIRCRAFT CENTERLINE		MEAN HEIGHT FROM GROUND		
		LH SIDE	RH SIDE			
Surge Tank Overpressure- Protector: Access Panel 550CB (650CB)	17.96 m (58.92 ft)	14.9 m (48.88 ft)	14.9 m (48.88 ft)	4.32 m (14.17 ft)		
Inner Cell Overpressure- Protector: Access Panel 540HB (640HB)	16.5 m (54.14 ft)	9.19 m (30.15 ft)	9.19 m (30.15 ft)	4.1 m (13.45 ft)		
NACA Vent Intake: Access Panel 550AB (650AB)	17.4 m (57.09 ft)	13.7 m (44.95 ft)	13.7 m (44.95 ft)	4.02 m (13.19 ft)		

 $\underline{\mathsf{NOTE}}$: Distances are approximate.

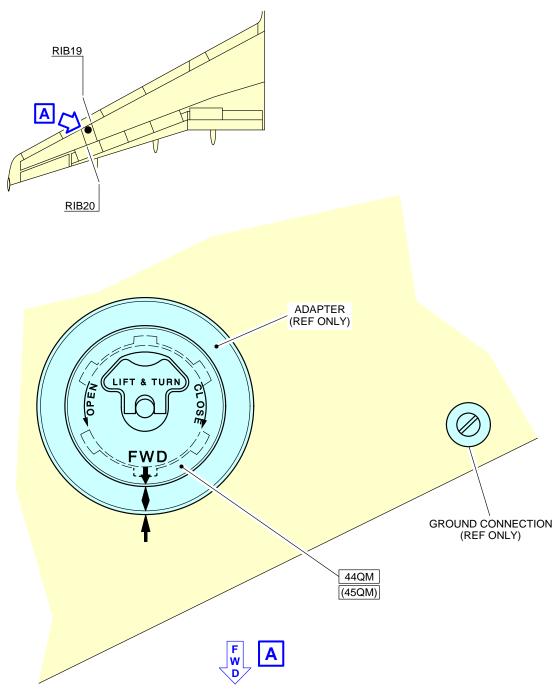
**ON A/C A318-100



NOTE: STANDARD CONFIGURATION OF REFUEL/DEFUEL PANEL.

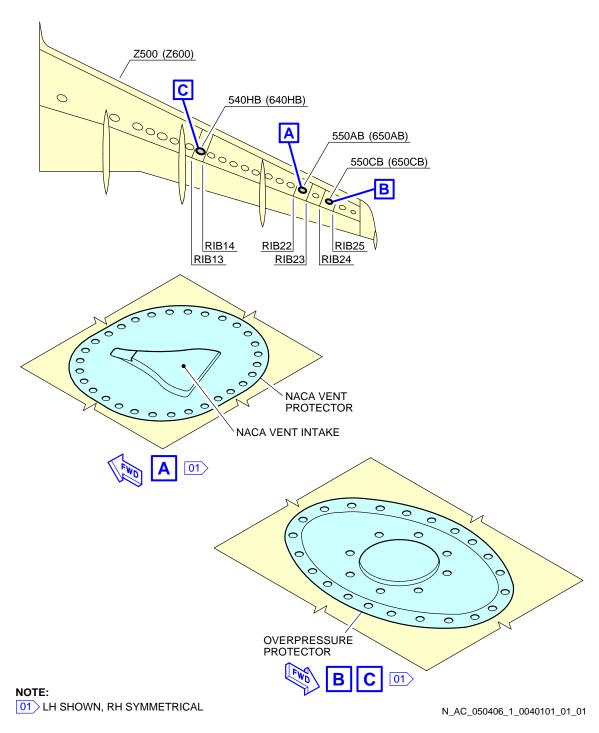
N_AC_050406_1_0010101_01_00

Ground Service Connections Refuel/Defuel Control Panel FIGURE-5-4-6-991-001-A01


**ON A/C A318-100

N_AC_050406_1_0020101_01_00

Ground Service Connections Refuel/Defuel Couplings FIGURE-5-4-6-991-002-A01


**ON A/C A318-100

N_AC_050406_1_0030101_01_00

Ground Service Connections
Overwing Gravity-Refuel Cap (If Installed)
FIGURE-5-4-6-991-003-A01

**ON A/C A318-100

Ground Service Connections
Overpressure Protectors and NACA Vent Intake
FIGURE-5-4-6-991-004-A01

5-4-7 Pneumatic System

**ON A/C A318-100

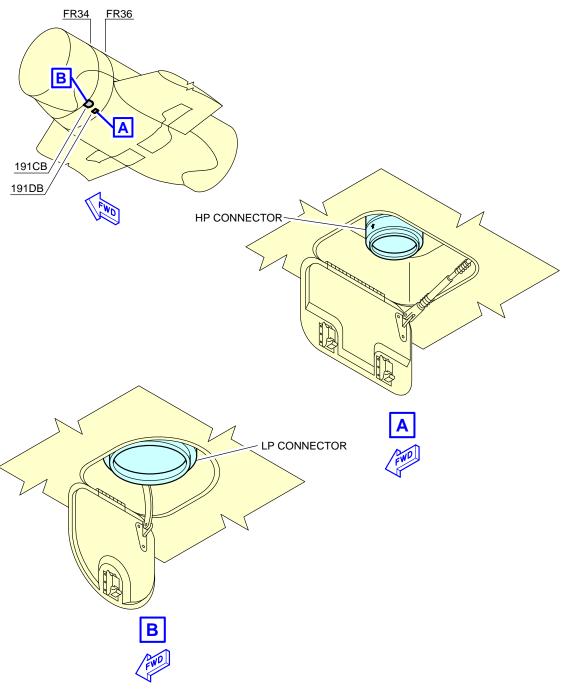
Pneumatic System

1. High Pressure Air Connector

		DIST	ANCE	
ACCESS	AFT OF NOSE	FROM AIRCRAFT CENTERLINE		MEAN HEIGHT
	ALL OF NOSE	LH SIDE	RH SIDE	FROM GROUND
HP Connector: Access Door 191DB	10.43 m (34.22 ft)	0.84 m (2.76 ft)	-	1.76 m (5.77 ft)

A. Connector:

- One standard 3 in. ISO 2026 connection.


2. Low Pressure Air Connector

	DISTANCE				
ACCESS	AFT OF NOSE	FROM AIRCRAFT CENTERLINE		MEAN HEIGHT	
	ALL OF NOSE	LH SIDE	RH SIDE	FROM GROUND	
LP Connector: Access Door 191CB	9.9 m (32.48 ft)	1.11 m (3.64 ft)	-	1.73 m (5.68 ft)	

A. Connector:

- One standard 8 in. SAE AS4262 connection.

**ON A/C A318-100

N_AC_050407_1_0010101_01_00

Ground Service Connections LP and HP Ground Connectors FIGURE-5-4-7-991-001-A01

5-4-8 Oil System

**ON A/C A318-100

Oil System

1. Engine Oil Replenishment for CFM56 Series Engine (See FIGURE 5-4-8-991-003-A): One gravity filling cap and one pressure filling connection per engine.

	DISTANCE				
ACCESS		FROM AIRCRAFT CENTERLINE		MEAN HEIGHT	
ACCESS	AFT OF NOSE	ENGINE 1 (LH)	ENGINE 2 (RH)	FROM GROUND	
IACCESS GOOL, TAKE	12.30 m (40.35 ft)		4.82 m (15.81 ft)	1.46 m (4.79 ft)	
0	12.20 m (40.03 ft)	6.49 m (21.29 ft)	4.74 m (15.55 ft)	1.42 m (4.66 ft)	

NOTE: Distances are approximate.

A. Tank capacity:

- Full level: 19.60 I (5 US gal),

- Usable: 9.46 I (3 US gal).

B. Maximum delivery pressure required: 1.72 bar (25 psi). Maximum delivery flow required: 180 l/h (48 US gal/h).

2. IDG Oil Replenishment for CFM56 Series Engine (See FIGURE 5-4-8-991-004-A): One pressure filling connection per engine.

	DISTANCE			
ACCESS		FROM AIRCRAFT CENTERLINE		MEAN HEIGHT
ACCESS	AFT OF NOSE	ENGINE 1 (LH)	ENGINE 2 (RH)	FROM GROUND
INCCESS HOUR, TANK			5.52 m (18.11 ft)	0.68 m (2.23 ft)

NOTE: Distances are approximate.

IDG oil tank capacity: 5 I (1 US gal).

B. Maximum servicing pressure: 0.34 bar (5 psi) to 2.76 bar (40 psi) at the IDG inlet.

Starter Oil Replenishment for CFM56 Series Engine (See FIGURE 5-4-8-991-005-A): One gravity filling cap per engine.

	DISTANCE			
ACCESS		FROM AIRCRAFT CENTERLINE		MEAN HEIGHT
	AFT OF NOSE	ENGINE 1 (LH)	ENGINE 2 (RH)	FROM GROUND
Starter-oil filling	10.40 m	5.30 m	6.20 m	0.76 m
connection:	(34.12 ft)	(17.39 ft)	(20.34 ft)	(2.49 ft)

NOTE: Distances are approximate.

Tank capacity: 0.8 I (0.21 US gal).

4. Engine Oil Replenishment for PW 6000 Series Engine (See FIGURE 5-4-8-991-006-A): One gravity filling cap per engine.

	DISTANCE			
ACCESS		FROM AIRCRAFT CENTERLINE		MEAN HEIGHT
ACCESS	AFT OF NOSE	ENGINE 1 (LH)	ENGINE 2 (RH)	FROM GROUND
ACCESS HOOR ARRE			6.63 m (21.75 ft)	1.80 m (5.91 ft)

NOTE: Distances are approximate.

Tank capacity:

Full level: 18.36 I (5 US gal),

Usable: 23.50 I (6 US gal),

Engine oil tank capacity: 18.36 I (5 US gal).

IDG Oil Replenishment for PW 6000 Series Engine (See FIGURE 5-4-8-991-007-A): 5. One pressure filling connection per engine.

	DISTANCE				
ACCESS		FROM AIRCRAFT CENTERLINE		MEAN HEIGHT	
ACCESS	AFT OF NOSE	ENGINE 1 (LH)	ENGINE 2 (RH)	FROM GROUND	
IACCESS HOOR ARRINE			6.17 m (20.24 ft)	1.02 m (3.35 ft)	

<u>NOTE</u>: Distances are approximate.

A. Distances are approximate.

- Tank capacity: 6.28 I (2 US gal),

- Maximum servicing pressure: 2.41 bar (35 psi).

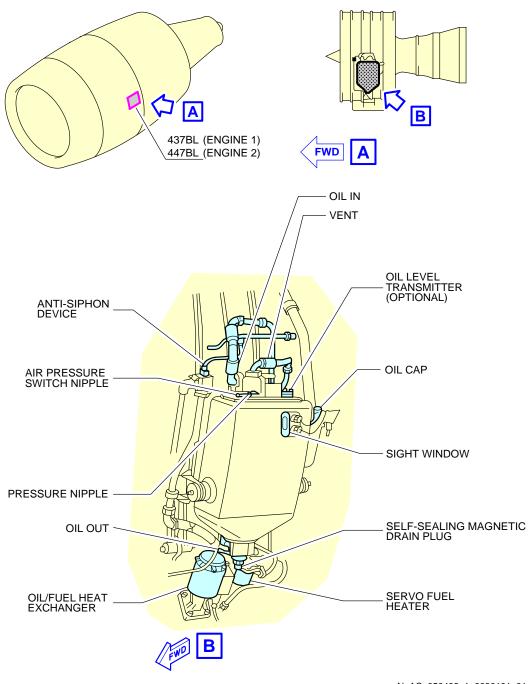
6. Starter Oil Replenishment for PW 6000 Series Engine (See FIGURE 5-4-8-991-008-A): One gravity filling cap per engine.

	DISTANCE			
ACCESS		FROM AIRCRAFT CENTERLINE		MEAN HEIGHT
	AFT OF NOSE	ENGINE 1 (LH)	ENGINE 2 (RH)	FROM GROUND
Starter-oil filling	10.16 m	5.84 m	5.59 m	1.02 m
connection:	(33.33 ft)	(19.16 ft)	(18.34 ft)	(3.35 ft)

NOTE: Distances are approximate.

A. Tank capacity: 0.35 I (0.09 US gal).

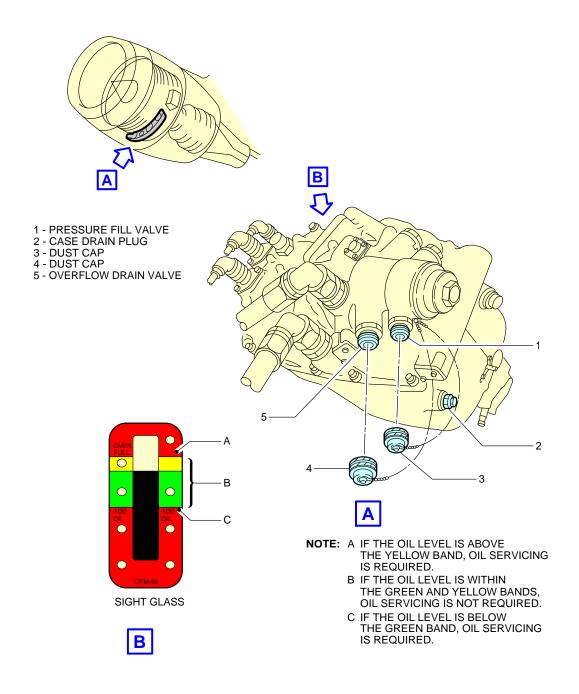
7. APU Oil System (See FIGURE 5-4-8-991-009-A): APU oil gravity-filling-cap.


	DISTANCE			
ACCESS		FROM AIRCRAFT CENTERLINE		MEAN HEIGHT
ACCESS	AFT OF NOSE	ENGINE 1 (LH)	ENGINE 2 (RH)	FROM GROUND
GTCP 36-300	29.37 m	0.30 m		4.83 m
3161 30-300	(96.36 ft)	(0.98 ft)		(15.85 ft)
APS 3200	29.37 m	0.30 m		4.78 m
AF 3 3200	(96.36 ft)	(0.98 ft)		(15.68 ft)
131-9	29.27 m	0.35 m	-	4.32 m

	DISTANCE			
ACCESS		FROM AIRCRAFT CENTERLINE		MEAN HEIGHT
	AFT OF NOSE	ENGINE 1 (LH)	ENGINE 2 (RH)	FROM GROUND
	(96.03 ft)	(1.15 ft)		(14.17 ft)

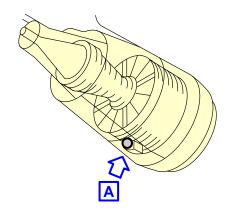
<u>NOTE</u>: Distances are approximate.

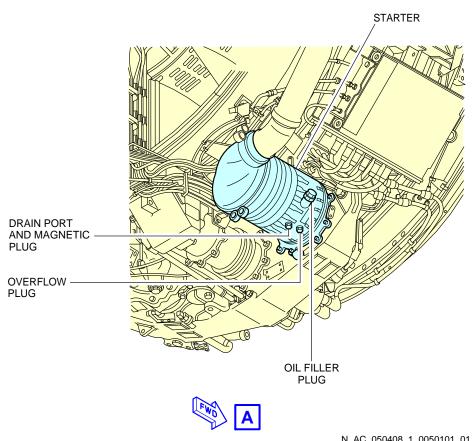
- A. Tank capacity (usable):
 - APU type GTCP 36-300: 6.20 I (2 US gal),
 - APU type APS 3200: 5.40 I (1 US gal),
 - APU type 131-9: 6.25 I (2 US gal).


**ON A/C A318-100

N_AC_050408_1_0030101_01_00

Ground Service Connections
Engine Oil Tank – CFM56 Series Engine
FIGURE-5-4-8-991-003-A01

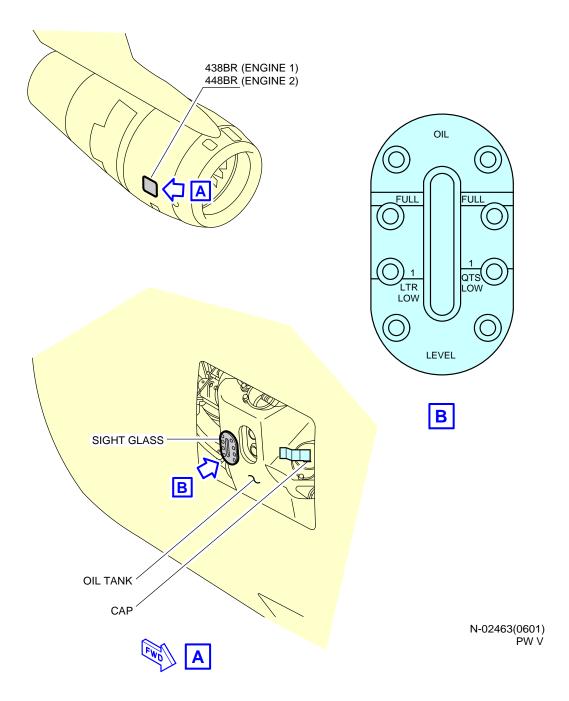

**ON A/C A318-100



N_AC_050408_1_0040101_01_00

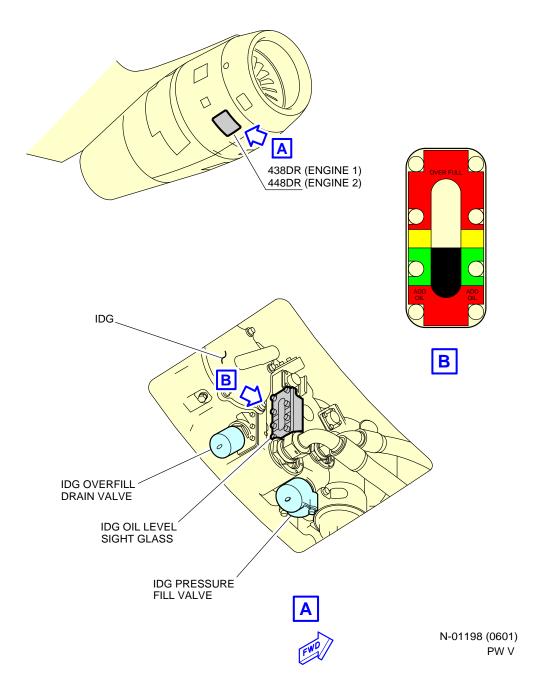
Ground Service Connections IDG Oil Tank – CFM56 Series Engine FIGURE-5-4-8-991-004-A01

**ON A/C A318-100



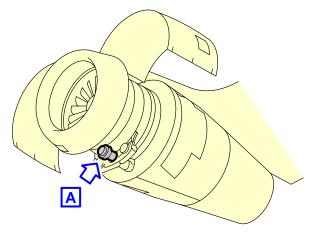
N_AC_050408_1_0050101_01_00

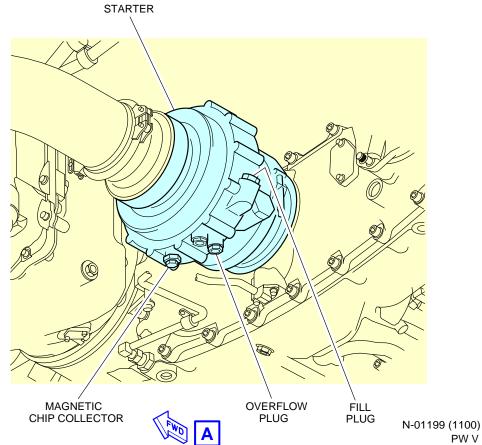
Ground Service Connections Starter Oil Tank - CFM56 Series Engine FIGURE-5-4-8-991-005-A01


**ON A/C A318-100

N_AC_050408_1_0060101_01_00

Ground Service Connections Engine Oil Tank – PW6000 Series Engine FIGURE-5-4-8-991-006-A01

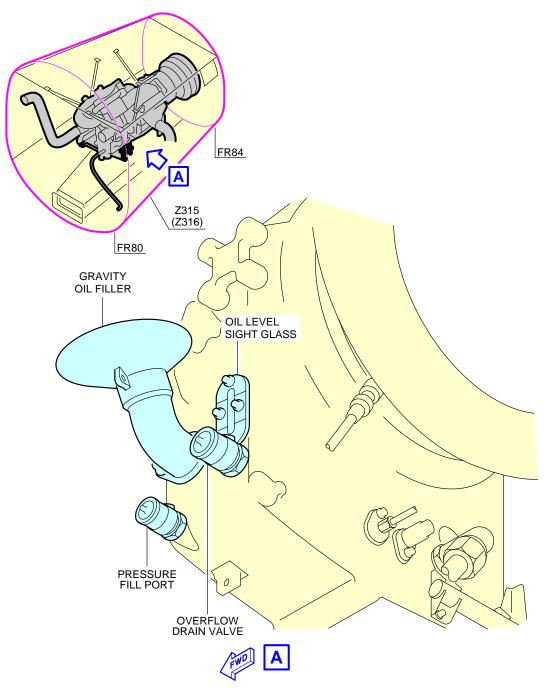

**ON A/C A318-100



N_AC_050408_1_0070101_01_00

Ground Service Connections IDG Oil Tank – PW6000 Series Engine FIGURE-5-4-8-991-007-A01

**ON A/C A318-100



N_AC_050408_1_0080101_01_00

Ground Service Connections Starter Oil Tank – PW6000 Series Engine FIGURE-5-4-8-991-008-A01

**ON A/C A318-100

N_AC_050408_1_0090101_01_00

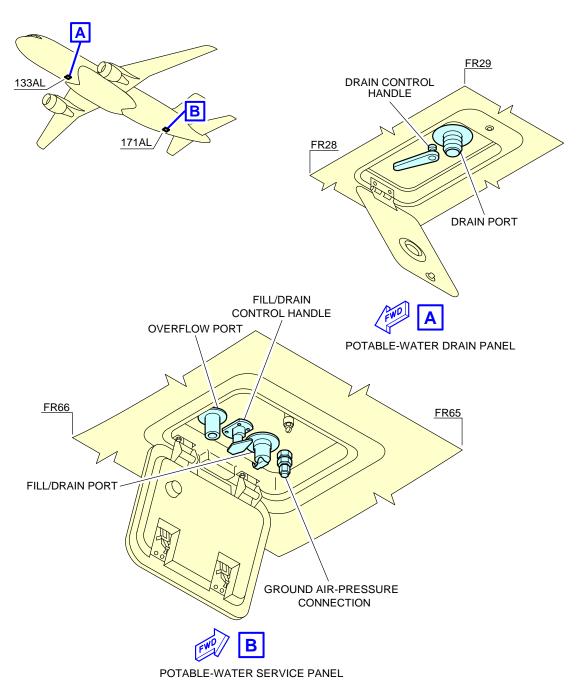
Ground Service Connections APU Oil Tank FIGURE-5-4-8-991-009-A01

5-4-9 Potable Water System

**ON A/C A318-100

Potable Water System

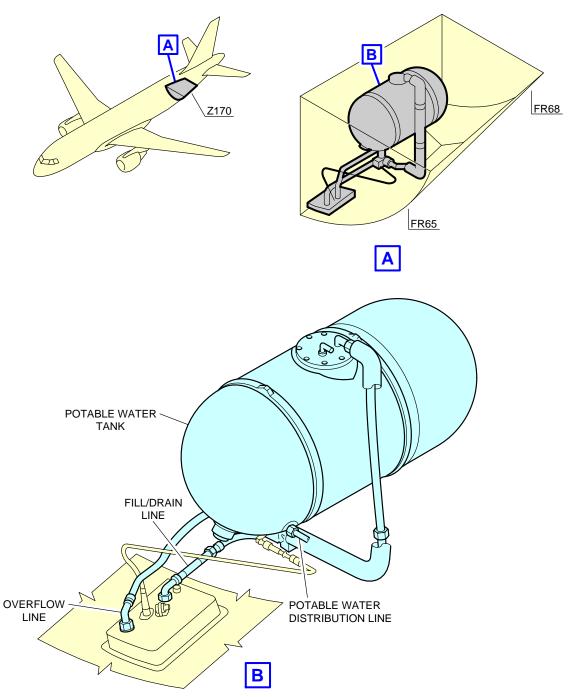
1. Potable Water Ground Service Panels


	DISTANCE				
ACCESS	AFT OF NOSE	POSITION FROM AIRCRAFT CENTERLINE		MEAN HEIGHT FROM GROUND	
		LH SIDE	RH SIDE	FROW GROUND	
IService Panel.		0.3 m (0.98 ft)	_	2.6 m (8.53 ft)	
Potable-Water Drain Panel: Access Door 133AL		0.15 m (0.49 ft)	-	1.75 m (5.74 ft)	

<u>NOTE</u>: Distances are approximate.

2. Technical Specifications

- A. Connectors:
 - (1) On the potable-water service panel (Access Door 171AL)
 - Fill/Drain Nipple 3/4 in. (ISO 17775).
 - One ground air-pressure connector.
 - (2) On the potable-water drain panel (Access Door 133AL)
 - Drain Nipple 3/4 in. (ISO 17775).
- B. Usable capacity:
 - Standard configuration one tank: 200 I (53 US gal).
- C. Filling pressure:
 - 3.45 bar (50 psi).
- D. Typical flow rate:
 - 50 l/min (13 US gal/min).


**ON A/C A318-100

N_AC_050409_1_0290101_01_00

Ground Service Connections
Potable Water Ground Service Panels
FIGURE-5-4-9-991-029-A01

**ON A/C A318-100

N_AC_050409_1_0300101_01_00

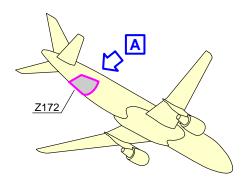
Ground Service Connections Potable Water Tank Location FIGURE-5-4-9-991-030-A01

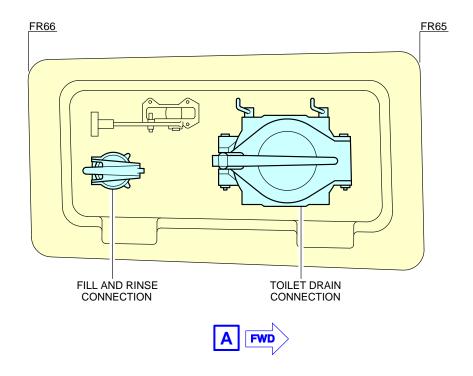
5-4-10 Waste Water System

**ON A/C A318-100

Waste Water System

1. Waste Water System

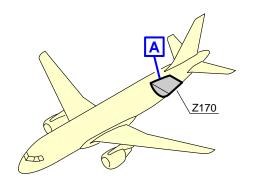

	DISTANCE							
ACCESS	AFT OF NOSE	POSITIO AIRCRAFT O	MEAN HEIGHT FROM GROUND					
		LH SIDE	RH SIDE					
Waste-Water								
Ground Service	25.2 m		0.8 m	2.8 m				
Panel:	(82.68 ft)	_	(2.62 ft)	(9.19 ft)				
Access door 172AR								

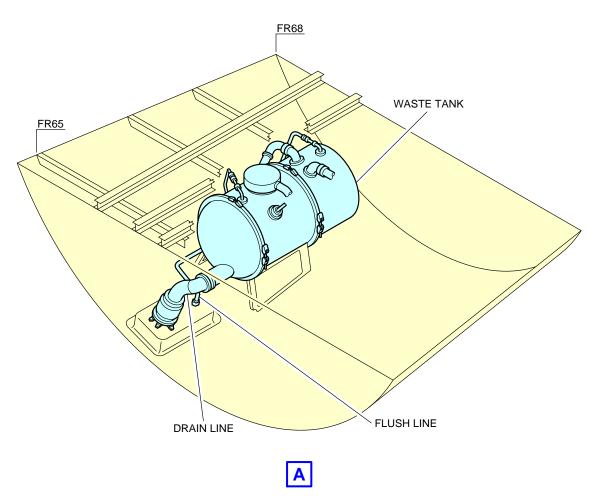

<u>NOTE</u>: Distances are approximate.

2. Technical Specifications

- A. Connectors:
 - Draining: 4 in. (ISO 17775).
 - Flushing and filling: 1 in. (ISO 17775).
- B. Usable waste tank capacity:
 - Standard configuration one tank: 177 I (47 US gal).
- C. Waste tank Rinsing:
 - Operating pressure: 3.45 bar (50 psi).
- D. Waste tank Precharge:
 - 10 l (3 US gal).

**ON A/C A318-100





N_AC_050410_1_0010101_01_00

Ground Service Connections Waste Water Ground Service Panel FIGURE-5-4-10-991-001-A01

**ON A/C A318-100

N_AC_050410_1_0040101_01_00

Ground Service Connections Waste Tank Location FIGURE-5-4-10-991-004-A01

5-5-0 Engine Starting Pneumatic Requirements

**ON A/C A318-100

Engine Starting Pneumatic Requirements

1. The function of this section gives the minimum air-data requirements at the aircraft.

Abbreviation	Definition		
ASU	Air Start Unit		
	High Pressure Ground Connection		
OAT	Outside Air Temperature		

- A. The pressure at HPGC must not be more than 60 psig (75 psia) and less than 33 psig (48 psia). The temperature must be less than 220 °C (428 °F).
- B. The recommended pressure at HPGC is 40 psig (55 psia).
- C. The OAT and the ASU performances (see the technical data from the ASU manufacturer) effect the ASU output temperature.
- D. The tables provide the global requirements for the airflow start for one engine.

 If necessary, connect two ASUs in parallel which gives the same pressure (one for each HPGC) to supply the necessary airflow to the aircraft.
- 2. CFM56 Engines for an OAT between -40 °C (-40 °F) and 55 °C (131 °F) at Sea Level

ASU Output Temperature Range	Pressure at HPGC	Mass Flow at HPGC
100 °C (212 °F) - 125 °C (257 °F)	40 psig (55 psia)	186 ppm (84 kg/min)
125 °C (257 °F) - 175 °C (347 °F)	40 psig (55 psia)	180 ppm (82 kg/min)
175 °C (347 °F) - 220 °C (428 °F)	40 psig (55 psia)	169 ppm (77 kg/min)

ASU Output Temperature Range	Pressure at HPGC	Mass Flow at HPGC
TBD	40 psig (55 psia)	TBD

3. PW 6000 Engines for an OAT between -40 °C (-40 °F) and 55 °C (131 °F) at Sea Level

ASU Output Temperature Range	Pressure at HPGC	Mass Flow at HPGC
100 °C (212 °F) - 125 °C (257 °F)	40 psig (55 psia)	187 ppm (85 kg/min)
125 °C (257 °F) - 175 °C (347 °F)	40 psig (55 psia)	181 ppm (82 kg/min)
175 °C (347 °F) - 220 °C (428 °F)	40 psig (55 psia)	171 ppm (77 kg/min)

ASU Output Temperature Range	Pressure at HPGC	Mass Flow at HPGC
TBD	40 psig (55 psia)	TBD

5-6-0 Ground Pneumatic Power Requirements

**ON A/C A318-100

Ground Pneumatic Power Requirements

1. General

This section describes the required performance for the ground equipment to maintain the cabin temperature at 27 °C (80.6 °F) for the cooling or 21 °C (69.8 °F) for heating cases after boarding (Section 5.7 - steady state), and provides the time needed to cool down or heat up the aircraft cabin to the required temperature (Section 5.6 - dynamic cases with aircraft empty).

ABBREVIATION	DEFINITION		
A/C	Aircraft		
	Aircraft Handling Manual		
AMM	Aircraft Maintenance Manual		
GC	Ground Connection		
GSE	Ground Service Equipment		
IFE	In-Flight Entertainment		
OAT	Outside Air Temperature		
PCA	Pre-Conditioned Air		

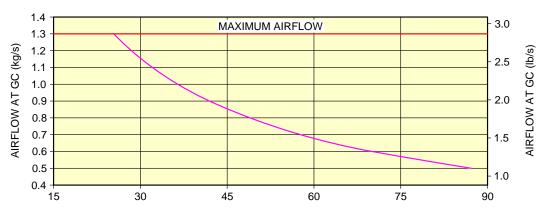
A. The air flow rates and temperature requirements for the GSE, provided in Sections 5.6 and 5.7, are given at A/C ground connection.

NOTE: The cooling capacity of the equipment (kW) is only indicative and is not sufficient by itself to ensure the performance (outlet temperature and flow rate combinations are the requirements needed for ground power). An example of cooling capacity calculation is given in Section 5.7.

<u>NOTE</u>: The maximum air flow is driven by pressure limitation at the ground connection.

- B. For temperatures at ground connection below 2 °C (35.6 °F) (Subfreezing), the ground equipment shall be compliant with the Airbus document "Subfreezing PCA Carts Compliance Document for Suppliers" (contact Airbus to obtain this document) defining all the requirements with which Subfreezing Pre-Conditioning Air equipment must comply to allow its use on Airbus aircraft. These requirements are in addition to the functional specifications included in the IATA AHM997.
- 2. Ground Pneumatic Power Requirements

This section provides the ground pneumatic power requirements for:


SA318

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

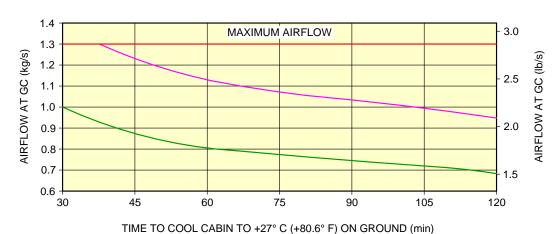
- Heating (pull up) the cabin, initially at OAT, up to 21 °C (69.8 °F) (see FIGURE 5-6-0-991-001-A)
- Cooling (pull down) the cabin, initially at OAT, down to 27 °C (80.6 °F) (see FIGURE 5-6-0-991-002-A).

**ON A/C A318-100

PULL UP PERFORMANCE

TIME TO HEAT CABIN TO +21° C (+69.8° F) ON GROUND (min)

 OAT ISA -38° C (-36.4° F); GC INLET +70° C (+158° F); EMPTY CABIN; IFE OFF; NO SOLAR LOAD; LIGHTS ON; GALLEYS OFF; RECIRCULATION FANS ON


N_AC_050600_1_0010101_01_00

Ground Pneumatic Power Requirements
Heating
FIGURE-5-6-0-991-001-A01

5-6-0

**ON A/C A318-100

PULL DOWN PERFORMANCE

 OAT ISA +23° C (+73.4° F); GC INLET +2° C (+35.6° F); EMPTY CABIN; IFE OFF; NO SOLAR LOAD; LIGHTS ON; GALLEYS OFF; RECIRCULATION FANS ON

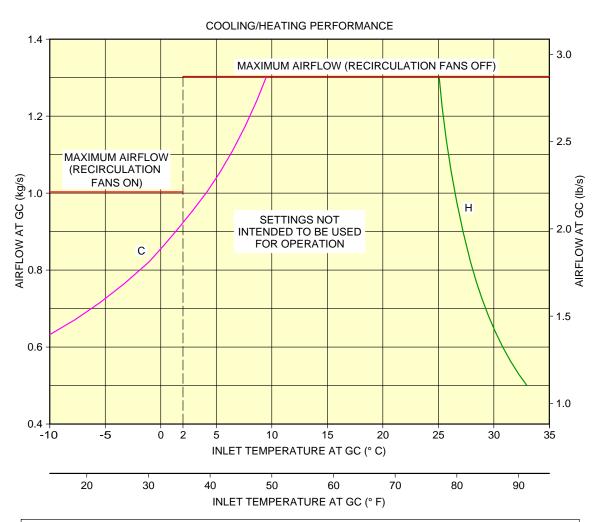
 OAT ISA +23° C (+73.4° F); GC INLET -10° C (+14° F); EMPTY CABIN; IFE OFF; NO SOLAR LOAD; LIGHTS ON; GALLEYS OFF; RECIRCULATION FANS ON

N_AC_050600_1_0020101_01_00

Ground Pneumatic Power Requirements Cooling FIGURE-5-6-0-991-002-A01

5-7-0 Preconditioned Airflow Requirements

**ON A/C A318-100


Preconditioned Airflow Requirements

1. This section provides the preconditioned airflow rate and temperature needed to maintain the cabin temperature at 27 °C (80.6 °F) for the cooling or 21 °C (69.8 °F) for the heating cases.

These settings are not intended to be used for operation (they are not a substitute for the settings given in the AMM). They are based on theoretical simulations and give the picture of a real steady state.

The purpose of the air conditioning (cooling) operation (described in the AMM) is to maintain the cabin temperature below 27 °C (80.6 °F) during boarding (therefore it is not a steady state).

**ON A/C A318-100

- OAT ISA +23° C (73.4° F); EMPTY CABIN; IFE ON; LIGHTS ON; SOLAR LOAD; RECIRCULATION FANS ON; GALLEYS ON
- OAT ISA -38° C (-36.4° F); EMPTY CABIN; IFE OFF; LIGHTS ON; NO SOLAR LOAD; RECIRCULATION FANS ON; GALLEYS OFF

N_AC_050700_1_0010101_01_04

Preconditioned Airflow Requirements FIGURE-5-7-0-991-001-A01

5-8-0 Ground Towing Requirements

**ON A/C A318-100

Ground Towing Requirements

1. This section gives information on aircraft towing.

This aircraft is designed with means for standard or towbarless towing. Information/procedures can be found for both in AMM 09.

Status on towbarless towing equipment qualification can be found in ISI 09.11.00001.

NOTE: The NLG steering deactivation pin has the same design for all Airbus programs.

One towbar fitting is installed at the front of the leg.

The main landing gears have attachment points for towing or debogging (for details, refer ARM 07).

This section shows the chart to determine the drawbar pull and tow tractor mass requirements as a function of the following physical characteristics:

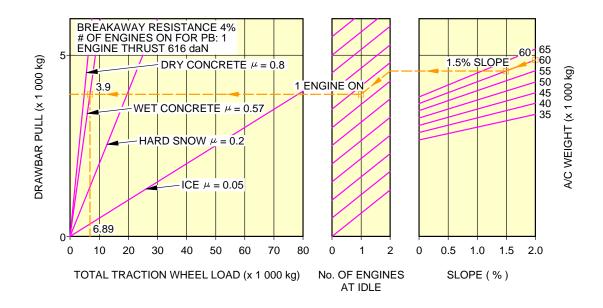
- Aircraft weight,
- Number of engines at idle,
- Slope.

The chart is based on the engine type with the highest idle thrust level.

2. Towbar design guidelines

The aircraft towbar shall comply with the following standards:

- ISO 8267-1, "Aircraft Towbar Attachment Fitting Interface Requirements Part 1: Main Line Aircraft",
- SAE AS 1614, "Main Line Aircraft Towbar Attach Fitting Interface",
- SAE ARP 1915, "Aircraft Towbar",
- ISO 9667, "Aircraft Ground Support Equipment Towbar Connection to Aircraft and Tractor".
- EN 12312-7, "Aircraft Ground Support Equipment Specific Requirements Part 7: Aircraft Movement Equipment",
- IATA Airport Handling Manual AHM 958, "Functional Specification for an Aircraft Towbar".


A standard type towbar is required which should be equipped with a damping system (to protect the nose gear against jerks), a rotating toweye and with towing shear pins:

- A traction shear pin calibrated at 9 425 daN (21 188 lbf),
- A torsion pi n calibrated at 826 m.daN (6 092 lbf.ft).

@A318

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

The towing head is designed according to ISO 8267-1, cat. I.

EXAMPLE HOW TO DETERMINE THE TRACTION WHEEL LOAD REQUIREMENT TO TOW A A318 AT 60 000 kg, AT 1.5% SLOPE, 1 ENGINE AT IDLE AND FOR WET TARMAC CONDITIONS:

- ON THE RIGHT HAND SIDE OF THE GRAPH, CHOOSE THE RELEVANT AIRCRAFT WEIGHT (60 000 kg),
 FROM THIS POINT DRAW A PARALLEL LINE TO THE REQUIRED SLOPE PERCENTAGE (1.5%),
- FROM THE POINT OBTAINED DRAW A STRAIGHT HORIZONTAL LINE UNTIL No. OF ENGINES AT IDLE = 2,
- FROM THIS POINT DRAW A PARALLEL LINE TO THE REQUESTED No. OF ENGINES (1),
- FROM THIS POINT DRAW A STRAIGHT HORIZONTAL LINE TO THE DRAWBAR PULL AXIS
- THE Y-COORDINATE OBTAINED IS THE NECESSARY DRAWBAR PULL FOR THE TRACTOR (3 900 kg),
- SEARCH THE INTERSECTION WITH THE "WET CONCRETE" LINE
- THE OBTAINED X-COORDINATE IS THE TOTAL TRACTION WHEEL LOAD (6 890 kg).

NOTE:

USE A TRACTOR WITH A LIMITED DRAWBAR PULL TO PREVENT LOADS ABOVE THE TOW-BAR SHEAR-PIN CAPACITY. FOR ALL WHEEL-DRIVEN VEHICLES, THE TOTAL TRACTION WHEEL LOAD IS THE TRACTOR WEIGHT.

N_AC_050800_1_0010807_01_00

Ground Towing Requirements FIGURE-5-8-0-991-001-H01

5-9-0 De-Icing and External Cleaning

**ON A/C A318-100

De-Icing and External Cleaning

1. De-Icing and External Cleaning on Ground

The mobile equipment for aircraft de-icing and external cleaning must be capable of reaching heights up to approximately 13 m (43 ft).

2. De-Icing

AIRCRAFT TYPE	Wing Top Surface (Both Sides)		(Both Ir Outside	Wingtip Devices (Both Inside and Outside Surfaces) (Both Sides)		Surface Sides)	VTP (Both Sides)	
			m²	ft²	m²	ft²	m²	ft²
A318	100	1 076	2	22	27	291	46	495

AIRCRAFT TYPE	Fuselage Top Surface (Top Third - 120° Arc)		(Top Third	and Pylon - 120° Arc) agines)	Total De-Iced Area		
	m²	ft²	m²	ft²	m²	ft²	
A318	112	1 206	24	258	310	3 337	

<u>NOTE</u>: Dimensions are approximate.

3. External Cleaning

			Wing	Lower	Wingtip	Devices				
	Wing Top		Surface		(Both Inside		HTP Top		HTP Lower	
AIRCRAFT			(Including Flap		and Outside		Surface		Surface	
TYPE	(Both Sides)		Track Fairing)		Surfaces)		(Both Sides)		(Both	Sides)
	,	ŕ	(Both Sides)		(Both	Sides)	,	•		ŕ
	m²	ft²	m²	ft²	m²	ft²	m²	ft²	m²	ft²
A318	100	1 076	103	1 109	2	22	27	291	27	291

AIRCRAFT TYPE	VTP (Both Sides)		Fuselage and Belly Fairing		Nacelle and Pylon (All Engines)		Total Cleaned Area	
	m²	ft²	m²	ft²	m²	ft²	m²	ft²
A318	46	495	343	3 692	73	786	723	7 782

 $\underline{\mathsf{NOTE}}: \ \ \mathsf{Dimensions} \ \mathsf{are} \ \mathsf{approximate}.$

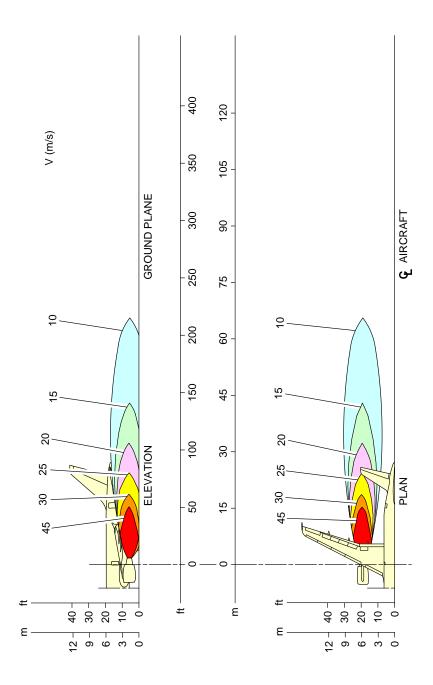
OPERATING CONDITIONS

6-1-0 Engine Exhaust Velocities and Temperatures

**ON A/C A318-100

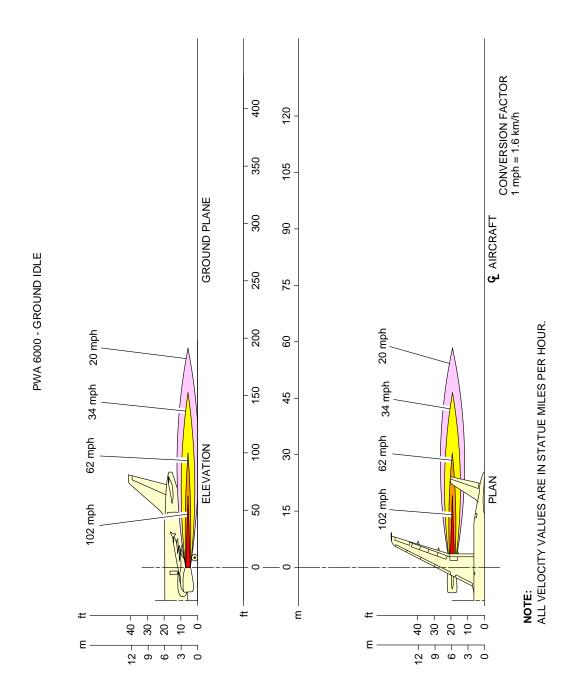
Engine Exhaust Velocities and Temperatures

1. General


This section provides the estimated engine exhaust efflux velocities and temperatures contours for Ground Idle, Breakaway and Maximum Take-Off (MTO) conditions.

6-1-1 Engine Exhaust Velocities Contours - Ground Idle Power

**ON A/C A318-100

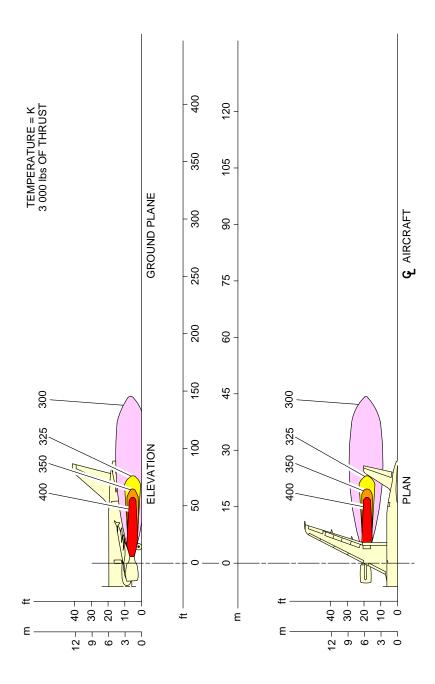

Engine Exhaust Velocities Contours - Ground Idle Power

1. This section provides engine exhaust velocities contours at ground idle power.

N_AC_060101_1_0010101_01_01

Engine Exhaust Velocities Ground Idle Power – CFM56 Series Engine FIGURE-6-1-1-991-001-A01

N_AC_060101_1_0020101_01_01


Engine Exhaust Velocities Ground Idle Power – PW 6000 Series Engine FIGURE-6-1-1-991-002-A01

6-1-2 Engine Exhaust Temperatures Contours - Ground Idle Power

**ON A/C A318-100

Engine Exhaust Temperatures Contours - Ground Idle Power

1. This section provides engine exhaust temperatures contours at ground idle power.

N_AC_060102_1_0010101_01_01

Engine Exhaust Temperatures Ground Idle Power – CFM56 Series Engine FIGURE-6-1-2-991-001-A01

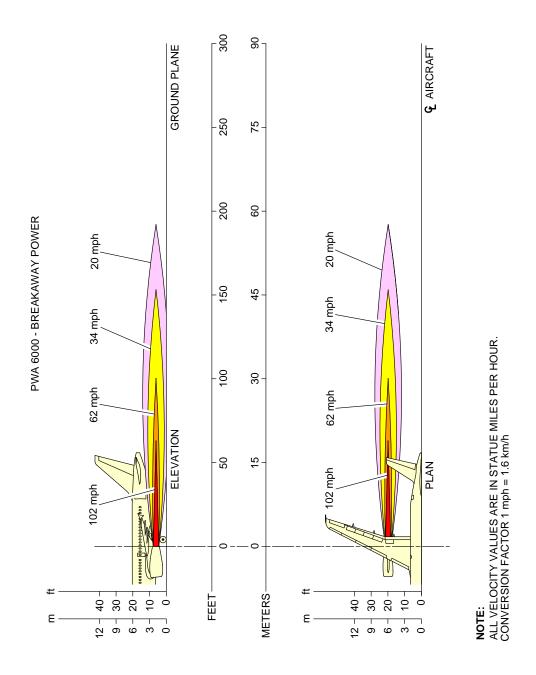
400 120 350 105 **GROUND PLANE** 300 6 AIRCRAFT 90 250 75 200 9 **NOTE:** ALL TEMPERATURES ARE IN FAHRENHEIT (CELSIUS). 150 45 100 ELEVATION 30 Ľ О 100° F (38° C 100° F (38° C) 50 15 160° F (71° C) 160° F (71° C) 40 -30 -20 -10 -40 -30 -10 -12 -0 -0 -0 -0 -- 6 9 - 0

N_AC_060102_1_0020101_01_01


Engine Exhaust Temperatures Ground Idle Power – PW 6000 Series Engine FIGURE-6-1-2-991-002-A01

6-1-3 Engine Exhaust Velocities Contours - Breakaway Power

**ON A/C A318-100

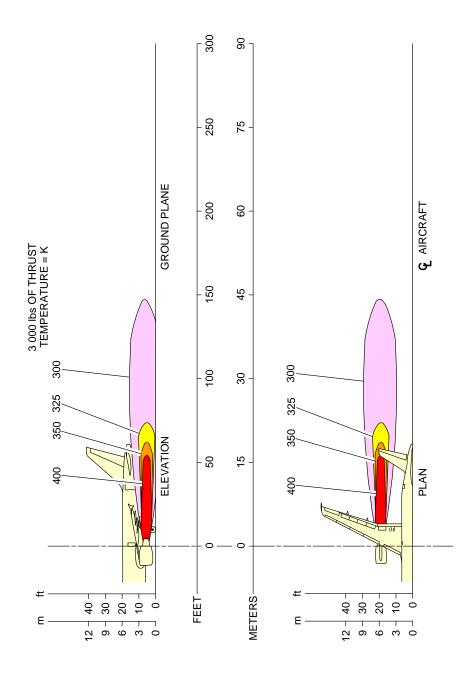

Engine Exhaust Velocities Contours - Breakaway Power

1. This section provides engine exhaust velocities contours at breakaway power.

N_AC_060103_1_0010101_01_01

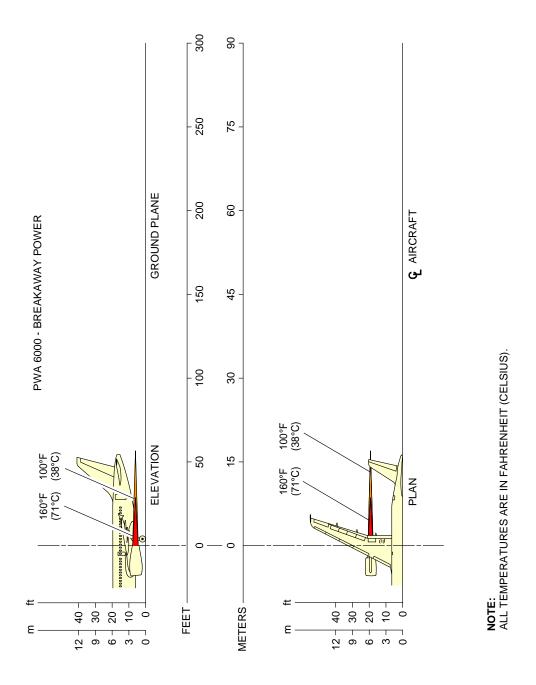
Engine Exhaust Velocities Breakaway Power – CFM56 Series Engine FIGURE-6-1-3-991-001-A01

N_AC_060103_1_0020101_01_01


Engine Exhaust Velocities Breakaway Power – PW 6000 Series Engine FIGURE-6-1-3-991-002-A01

6-1-4 Engine Exhaust Temperatures Contours - Breakaway Power

**ON A/C A318-100

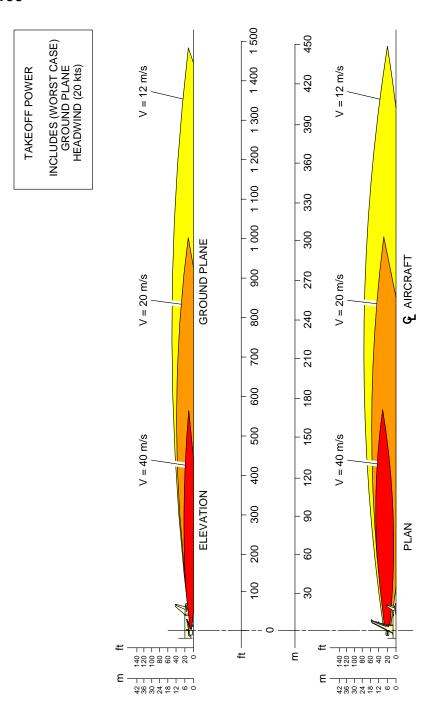

Engine Exhaust Temperatures Contours - Breakaway Power

1. This section provides engine exhaust temperatures contours at breakaway power.

N_AC_060104_1_0010101_01_01

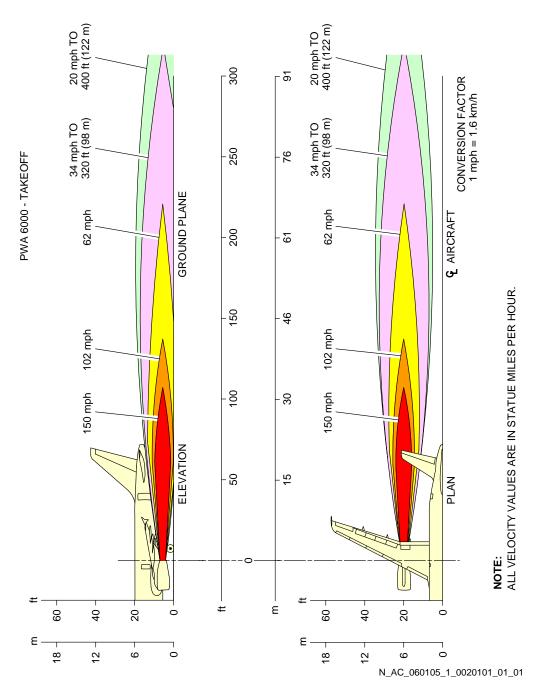
Engine Exhaust Temperatures Breakaway Power – CFM56 Series Engine FIGURE-6-1-4-991-001-A01

N_AC_060104_1_0020101_01_01


Engine Exhaust Temperatures Breakaway Power – PW 6000 Series Engine FIGURE-6-1-4-991-002-A01

6-1-5 Engine Exhaust Velocities Contours - Takeoff Power

**ON A/C A318-100

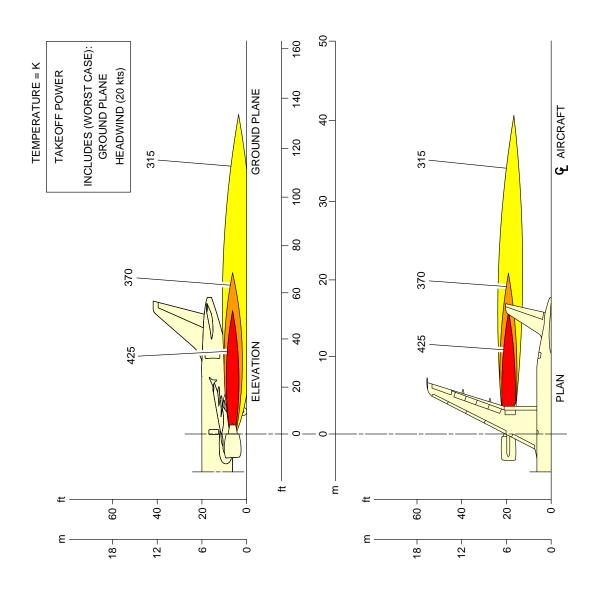

Engine Exhaust Velocities Contours - Takeoff Power

1. This section provides engine exhaust velocities contours at takeoff power.

N_AC_060105_1_0010101_01_01

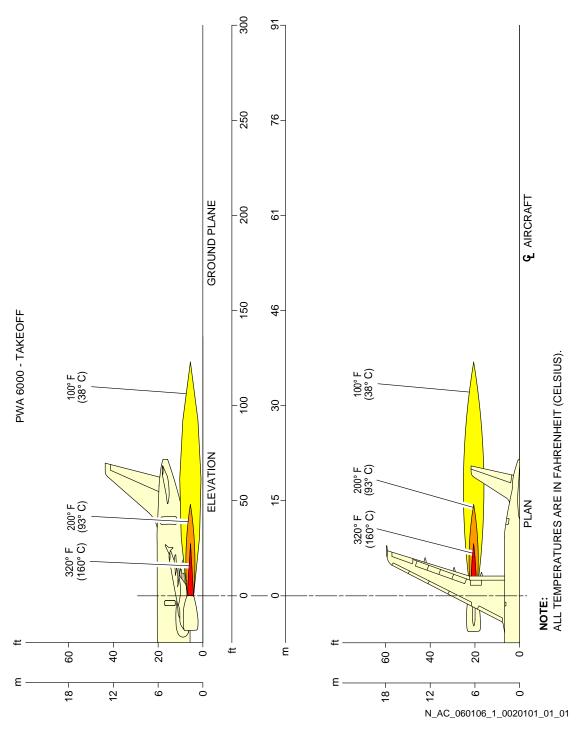
Engine Exhaust Velocities
Takeoff Power – CFM56 Series Engine
FIGURE-6-1-5-991-001-A01

Engine Exhaust Velocities
Takeoff Power – PW 6000 Series Engine
FIGURE-6-1-5-991-002-A01


6-1-6 Engine Exhaust Temperatures Contours - Takeoff Power

**ON A/C A318-100

Engine Exhaust Temperatures Contours - Takeoff Power


1. This section provides engine exhaust temperatures contours at takeoff power.

6-1-6

N_AC_060106_1_0010101_01_01

Engine Exhaust Temperatures
Takeoff Power – CFM56 Series Engine
FIGURE-6-1-6-991-001-A01

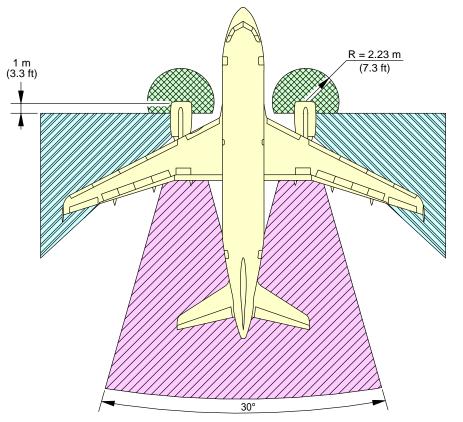
Engine Exhaust Temperatures
Takeoff Power – PW 6000 Series Engine
FIGURE-6-1-6-991-002-A01

6-3-0 Danger Areas of Engines

**ON A/C A318-100

Danger Areas of Engines

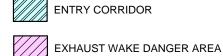
- 1. Danger Areas of the Engines
 - A. The danger areas of the engines shown below are given in the normalized format:
 - Entry corridors are only available at ground idle.
 - Do not go into the areas between the engines.
 - The exhaust danger areas are given for 0 kt headwind (if not specified otherwise).


6-3-1 Ground Idle Power

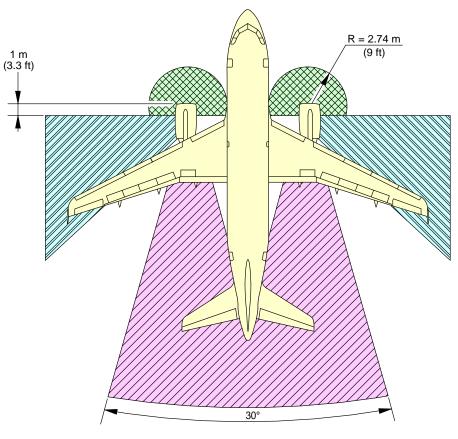
**ON A/C A318-100

Ground Idle Power

1. This section provides danger areas of the engines at ground idle power conditions.


**ON A/C A318-100

TO 55 m (180 ft) AFT OF COMMON NOZZLE ASSEMBLY (CNA) INCLUDES CROSS WIND EFFECT



N_AC_060301_1_0010101_01_03

Danger Areas of the Engines CFM56 Series Engine FIGURE-6-3-1-991-001-A01

**ON A/C A318-100

TO 61 m (200 ft) AFT OF COMMON NOZZLE ASSEMBLY (CNA) INCLUDES CROSS WIND EFFECT

NOTE:

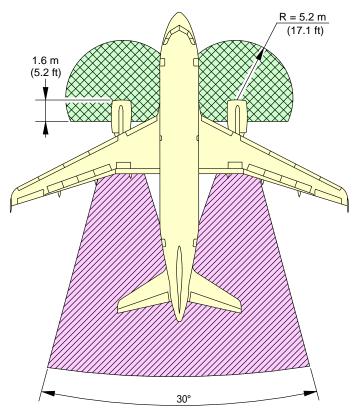
INTAKE SUCTION DANGER AREA

ENTRY CORRIDOR

EXHAUST DANGER AREA

N_AC_060301_1_0020101_01_02

Danger Areas of the Engines PW 6000 Series Engine FIGURE-6-3-1-991-002-A01


6-3-2 Breakaway Power

**ON A/C A318-100

Breakaway Power

1. This section provides danger areas of the engines at breakaway power.

**ON A/C A318-100

TO 74.7 m (245 ft) AFT OF COMMON NOZZLE ASSEMBLY (CNA) INCLUDES CROSS WIND EFFECT

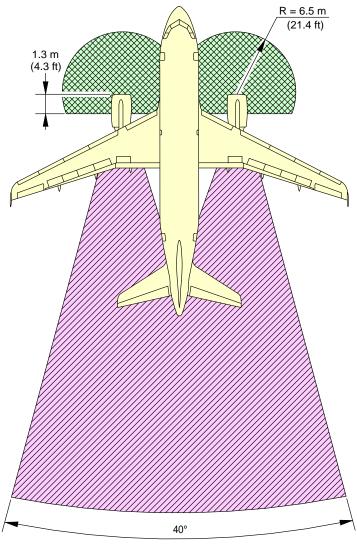
NOTE:

INTAKE SUCTION DANGER AREA

EXHAUST WAKE DANGER

N_AC_060302_1_0010101_01_02

Danger Areas of the Engines CFM56 Series Engine FIGURE-6-3-2-991-001-A01


6-3-3 Max Take Off Power

**ON A/C A318-100

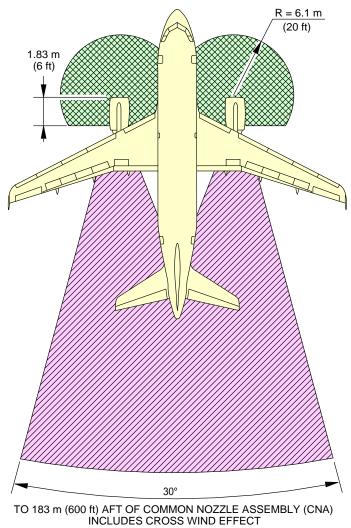
Take Off Power

1. This section provides danger areas of the engines at max. take off conditions.

**ON A/C A318-100

TO 275 m (900 ft) AFT OF COMMON NOZZLE ASSEMBLY (CNA) INCLUDES CROSS WIND EFFECT

NOTE:


INTAKE SUCTION DANGER AREA

EXHAUST WAKE DANGER

N_AC_060303_1_0150101_01_01

Danger Areas of the Engines CFM56 Series Engine FIGURE-6-3-3-991-015-A01

**ON A/C A318-100

INCLUDES CROSS WIND EFFECT

NOTE:

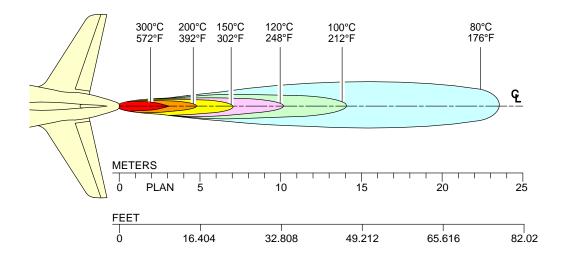
INTAKE SUCTION DANGER AREA

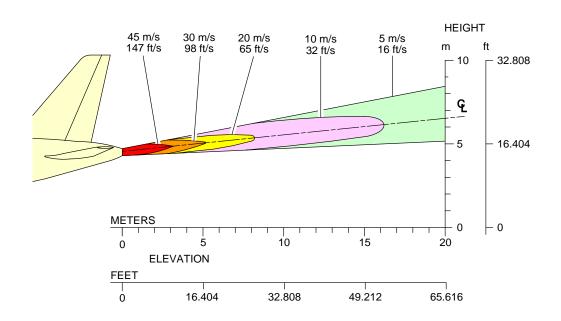
EXHAUST WAKE DANGER

N_AC_060303_1_0180101_01_01

Danger Areas of the Engines PW 6000 Series Engine FIGURE-6-3-3-991-018-A01

6-4-1 APU


**ON A/C A318-100


APU - APIC & GARRETT

1. This section gives APU exhaust velocities and temperatures.

6-4-1

**ON A/C A318-100

N_AC_060401_1_0010101_01_00

Exhaust Velocities and Temperatures APU – APIC & GARRETT FIGURE-6-4-1-991-001-A01

PAVEMENT DATA

7-1-0 General Information

**ON A/C A318-100

General Information

1. A brief description of the pavement charts that follow will help in airport planning.

To aid in the interpolation between the discrete values shown, each aircraft configuration is shown with a minimum range of five loads on the Main Landing Gear (MLG).

All curves on the charts represent data at a constant specified tire pressure with:

- The aircraft loaded to the Maximum Ramp Weight (MRW),
- The CG at its maximum permissible aft position.

Pavement requirements for commercial aircraft are derived from the static analysis of loads imposed on the MLG struts.

Landing Gear Footprint:

Section 07-02-00 presents basic data on the landing gear footprint configuration, MRW and tire sizes and pressures.

Maximum Pavement Loads:

Section 07-03-00 shows maximum vertical and horizontal pavement loads for certain critical conditions at the tire-ground interfaces.

Landing Gear Loading on Pavement:

The curves related to the landing gear loading on pavement are not given in section 07-04-00. Because the relationship between the aircraft weight, the center of gravity and the landing gear loading on the pavement is not strictly linear, it cannot be shown in chart format. But you can find in section 07-03-00 the maximum vertical and horizontal pavement loads for some critical conditions at the tire/ground interfaces for all the operational weight variants of the aircraft. For questions that are related to landing gear loading on pavement, contact Airbus.

Flexible Pavement Requirements - US Army Corps of Engineers Design Method:

The flexible pavement requirements curves as per U.S. Army Corps of Engineers Design Method are not given in section 07-05-00 since the related data is available through free software.

Sections 07-02-00 and 07-03-00 give all the inputs data required for the use of such software. For questions that are related to the flexible pavement requirements, contact Airbus.

Flexible Pavement Requirements - LCN Conversion Method:

The Load Classification Number (LCN) curves are not given in section 07-06-00 since the LCN system for reporting pavement strength is old and are replaced by the ICAO recommended ACN/PCN system in 1983 and ACR/PCR system in 2020.

For questions that are related to the LCN system, contact Airbus.

Rigid Pavement Requirements - PCA (Portland Cement Association) Design Method: The rigid pavement requirements curves as per as Portland Cement Association Design Method are not given in section 07-07-00 since the related data is available through free software. Sections 07-02-00 and 07-03-00 give all the inputs data required for the use of such software. For questions that are related to the rigid pavement requirements, contact Airbus.

Rigid Pavement Requirements - LCN Conversion:

The Load Classification Number (LCN) curves are not given in section 07-08-00 since the LCN system for reporting pavement strength is old and are replaced by the ICAO recommended ACN/PCN system in 1983 and ACR/PCR system in 2020.

For questions that are related to the rigid pavement requirements, contact Airbus.

ACN/PCN Reporting System:

Section 07-09-00 gives ACN data prepared according to the ACN/PCN system as referenced in ICAO Annex 14, "Aerodromes", Volume 1 "Aerodrome Design and Operations".

Eighth Edition July 2018, incorporating Amendments 1 to 14 and ICAO doc 9157, "Aerodrome Design Manual", part 3 "Pavements" Second Edition 1983.

The ACN/PCN system is applicable until November 2024.

ACN is the Aircraft Classification Number and PCN is the related Pavement Classification Number.

An aircraft with an ACN less than or equal to the PCN can operate without restriction on the pavement.

Numerically the ACN is two times the derived single wheel load expressed in thousands of kilograms.

The derived single wheel load is calculated as the load on a single tire inflated to 1.25 MPa (181 psi) that would have the same pavement requirements as the aircraft.

Computationally the ACN/PCN system uses PCA program PDILB for rigid pavements and S-77-1 for flexible pavements to calculate ACN values.

The airport authority must select the method of pavement analysis.

The results of their analysis should be reported using the following format:

	PCN											
PAVEMENT TYPE	SUBGRADE CATEGORY	TIRE PRESSURE CATEGORY	EVALUATION METHOD									
R – Rigid	A – High	W – No pressure limit	T – Technical									
F – Flexible		X – High pressure limited to 1.75 MPa (254 psi)	U – Using Aircraft									
	C – Low	Y – Medium pressure limited to 1.25 MPa (181 psi)										
	D – Ultra Low	Z – Low pressure limited to 0.5 MPa (73 psi)										

Section 07-09-00 shows the aircraft ACN values.

For flexible pavements, the four subgrade categories (CBR) are:

- A. High Strength
- B. Medium Strength
- C. Low Strength
- D. Ultra Low Strength
- CBR 6
- CBR 3

For rigid pavements, the four subgrade categories (k) are:

- A. High Strength $k = 150 \text{ MN/m}^3 (550 \text{ pci})$ - B. Medium Strength $k = 80 \text{ MN/m}^3 (300 \text{ pci})$ - C. Low Strength $k = 40 \text{ MN/m}^3 (150 \text{ pci})$ - D. Ultra Low Strength $k = 20 \text{ MN/m}^3 (75 \text{ pci})$

ACR/PCR Reporting System:

Section 07-10-00 gives ACR data prepared according to the ACR/PCR system as referenced in ICAO Annex 14, "Aerodromes", Volume 1 "Aerodrome Design and Operations".

Eight Edition July 2018, incorporating Amendments 1 to 15 and ICAO doc 9157, "Aerodrome Design Manual", part 3 "Pavements" Third Edition 2021.

The ACR/PCR system is effective from November 2020 and will be applicable in November 2024.

ACR is the Aircraft Classification Rating and PCR is the related Pavement Classification Rating.

An aircraft with an ACR less than or equal to the PCR can operate without restriction on the pavement.

Numerically the ACR is two times the derived single-wheel load expressed in hundreds of kilograms.

The derived single-wheel load is calculated as the load on a single tire inflated to 1.50 Mpa (218 psi) that can have the same pavement requirements as the aircraft.

Computationally the ACR/PCR system relies on the Linear Elastic Analysis (LEA). The ACR are computed with the official ICAO-ACR software.

States can start their own methods for PCR determination, which agree with the overall parameters of the ACR/PCR method.

The results of their analysis should be reported with the following format:

	PCR										
PAVEMENT TYPE	SUBGRADE CATEGORY	TIRE PRESSURE CATEGORY	EVALUATION METHOD								
R – Rigid	A – High	W – No pressure limit	T – Technical								
F – Flexible	B – Medium	X – High pressure limited to 1.75 MPa (254 psi)	U – Using Aircraft								
	C – Low	Y – Medium pressure limited to 1.25 MPa (181 psi)									
	D – Ultra Low	Z – Low pressure limited to 0.5 MPa (73 psi)									

Section 07-10-00 shows the aircraft ACR value.

For flexible and rigid pavement, the four subgrade categories are defined based on the subgrade modulus of elasticity (E):

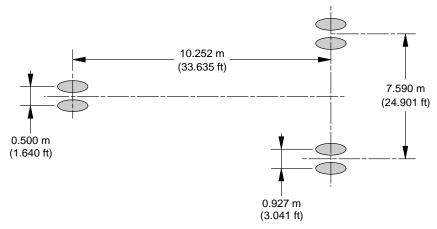
 - A. High Strength
 E = 200 Mpa (29 008 psi)

 - B. Medium Strength
 E = 120 Mpa (17 405 psi)

 - C. Low Strength
 E = 80 Mpa (11 603 psi)

 - D. Ultra Low Strength
 E = 50 Mpa (7 252 psi)

7-2-0 Landing Gear Footprint


**ON A/C A318-100

Landing Gear Footprint

1. This section gives data about the landing gear footprint in relation with the aircraft MRW and tire sizes and pressures.

The landing-gear footprint information is given for all the operational weight variants of the aircraft.

**ON A/C A318-100

		T	ı			
WEIGHT VARIANT	MAXIMUM RAMP WEIGHT	PERCENTAGE OF WEIGHT ON MAIN GEAR GROUP	NOSE GEAR TIRE SIZE	NOSE GEAR TIRE PRESSURE	MAIN GEAR TIRE SIZE	MAIN GEAR TIRE PRESSURE
A318-100 WV000	59 400 kg	89.7%	30x8.8R15	12.8 bar	46x17R20	11.4 bar
(CG 33.93%)	(130 950 lb)		(30x8.8-15)	(186 psi)	(46x16-20)	(165 psi)
A318-100 WV000	59 400 kg	88.1%	30x8.8R15	12.8 bar	46x17R20	11.4 bar
(CG 30%)	(130 950 lb)		(30x8.8-15)	(186 psi)	(46x16-20)	(165 psi)
A318-100 WV001	61 900 kg	89.2%	30x8.8R15	12.8 bar	46x17R20	11.4 bar
(CG 32.7%)	(136 475 lb)		(30x8.8-15)	(186 psi)	(46x16-20)	(165 psi)
A318-100 WV001	61 900 kg	88.1%	30x8.8R15	12.8 bar	46x17R20	11.4 bar
(CG 30%)	(136 475 lb)		(30x8.8-15)	(186 psi)	(46x16-20)	(165 psi)
A318-100 WV002	63 400 kg	89.0%	30x8.8R15	12.8 bar	46x17R20	11.4 bar
(CG 32%)	(139 775 lb)		(30x8.8-15)	(186 psi)	(46x16-20)	(165 psi)
A318-100 WV002	63 400 kg	88.1%	30x8.8R15	12.8 bar	46x17R20	11.4 bar
(CG 30%)	(139 775 lb)		(30x8.8-15)	(186 psi)	(46x16-20)	(165 psi)
A318-100 WV003	64 900 kg	89.0%	30x8.8R15	13.5 bar	46x17R20	12.4 bar
(CG 32%)	(143 075 lb)		(30x8.8-15)	(196 psi)	(46x16-20)	(180 psi)
A318-100 WV003	64 900 kg	88.1%	30x8.8R15	13.5 bar	46x17R20	12.4 bar
(CG 30%)	(143 075 lb)		(30x8.8-15)	(196 psi)	(46x16-20)	(180 psi)
A318-100 WV004	66 400 kg	89.0%	30x8.8R15	13.5 bar	46x17R20	12.4 bar
(CG 32%)	(146 375 lb)		(30x8.8-15)	(196 psi)	(46x16-20)	(180 psi)
A318-100 WV004	66 400 kg	88.1%	30x8.8R15	13.5 bar	46x17R20	12.4 bar
(CG 30%)	(146 375 lb)		(30x8.8-15)	(196 psi)	(46x16-20)	(180 psi)
A318CJ WV004	66 400 kg	89.0%	30x8.8R15	13.5 bar	46x17R20	12.4 bar
(CG 32%)	(146 375 lb)		(30x8.8-15)	(196 psi)	(46x16-20)	(180 psi)
A318-100 WV005	68 400 kg	89.0%	30x8.8R15	13.5 bar	46x17R20	12.4 bar
(CG 32%)	(150 800 lb)		(30x8.8-15)	(196 psi)	(46x16-20)	(180 psi)
A318-100 WV005	68 400 kg	88.1%	30x8.8R15	13.5 bar	46x17R20	12.4 bar
(CG 30%)	(150 800 lb)		(30x8.8-15)	(196 psi)	(46x16-20)	(180 psi)

N_AC_070200_1_0010101_01_05

Landing Gear Footprint (Sheet 1 of 2) FIGURE-7-2-0-991-001-A01

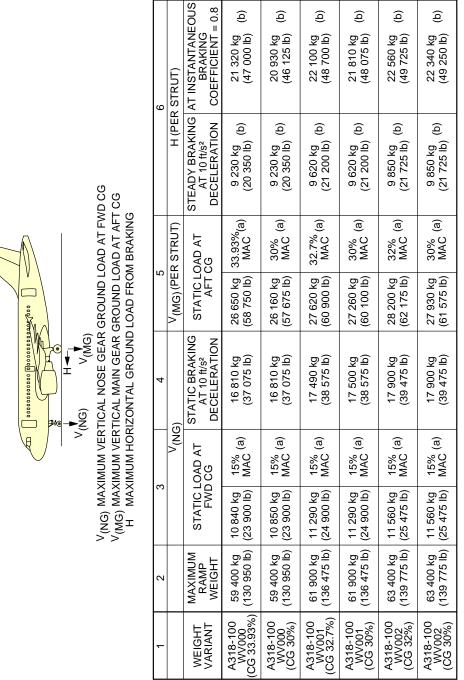
**ON A/C A318-100

WEIGHT VARIANT	MAXIMUM RAMP WEIGHT	PERCENTAGE OF WEIGHT ON MAIN GEAR GROUP	NOSE GEAR TIRE SIZE	NOSE GEAR TIRE PRESSURE	MAIN GEAR TIRE SIZE	MAIN GEAR TIRE PRESSURE
A318CJ WV005	68 400 kg	89.0%	30x8.8R15	13.5 bar	46x17R20	12.4 bar
(CG 32%)	(150 800 lb)		(30x8.8-15)	(196 psi)	(46x16-20)	(180 psi)
A318-100 WV006	56 400 kg	90.2%	30x8.8R15	12.3 bar	46x17R20	10.2bar
(CG 35%)	(124 350 lb)		(30x8.8-15)	(178 psi)	(46x16-20)	(148 psi)
A318-100 WV006	56 400 kg	88.1%	30x8.8R15	12.3 bar	46x17R20	10.2 bar
(CG 30.11%)	(124 350 lb)		(30x8.8-15)	(178 psi)	(46x16-20)	(148 psi)
A318-100 WV007	61 400 kg	89.3%	30x8.8R15	12.8 bar	46x17R20	11.4 bar
(CG 32.93%)	(135 375 lb)		(30x8.8-15)	(186 psi)	(46x16-20)	(165 psi)
A318-100 WV007	61 400 kg	88.1%	30x8.8R15	12.8 bar	46x17R20	11.4 bar
(CG 30%)	(135 375 lb)		(30x8.8-15)	(186 psi)	(46x16-20)	(165 psi)
A318-100 WV008	64 400 kg	89.0%	30x8.8R15	13.5 bar	46x17R20	12.4 bar
(CG 32%)	(141 975 lb)		(30x8.8-15)	(196 psi)	(46x16-20)	(180 psi)
A318-100 WV008	64 400 kg	88.1%	30x8.8R15	13.5 bar	46x17R20	12.4 bar
(CG 30%)	(141 975 lb)		(30x8.8-15)	(196 psi)	(46x16-20)	(180 psi)
A318CJ WV009	66 400 kg	89.0%	30x8.8R15	13.5 bar	46x17R20	12.4 bar
(CG 32%)	(146 375 lb)		(30x8.8-15)	(196 psi)	(46x16-20)	(180 psi)
A318CJ WV010	68 400 kg	89.0%	30x8.8R15	13.5 bar	46x17R20	12.4 bar
(CG 32%)	(150 800 lb)		(30x8.8-15)	(196 psi)	(46x16-20)	(180 psi)

N_AC_070200_1_0010104_01_00

Landing Gear Footprint 2 of 2) 7-2-0-991-001-A01

7-3-0 Maximum Pavement Loads


**ON A/C A318-100

Maximum Pavement Loads

1. This section gives maximum vertical and horizontal pavement loads for some critical conditions at the tire-ground interfaces.

The maximum pavement loads are given for all the operational weight variants of the aircraft.

**ON A/C A318-100

| CG 32%| | CG 30%| | CG 3

Maximum Pavement Loads for A318-100 and ACJ318-100 (Sheet 1 of 3)
FIGURE-7-3-0-991-020-A01

©A318

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

**ON A/C A318-100

_	_												
		EOUS = 0.8	(c)	(c)	(c)	(c)	(c)	(c)	(c)	(c)	(c)	(c)	(c)
9	H (PER STRUT)	AT INSTANTANEOUS BRAKING COEFFICIENT = 0.8	23 090 kg (50 925 lb)	22 870 kg (50 425 lb)	23 630 kg (52 100 lb)	23 400 kg (51 600 lb)	23 630 kg (52 100 lb)	24 340 kg (53 675 lb)	24 110 kg (53 150 lb)	24 340 kg (53 675 lb)	20 340 kg (44 850 lb)	19 880 kg (43 825 lb)	21 940 kg (48 375 lb)
	(PER	SING ON	(c)	(c)	(2)	(c)	(c)	(c)	(c)	(c)	(c)	(c)	(c)
	T	STEADY BRAKING AT 10 ft/s² DECELERATION	10 090 kg (22 225 lb)	10 090 kg (22 225 lb)	10 320 kg (22 750 lb)	10 320 kg (22 750 lb)	10 320 kg (22 750 lb)	10 630 kg (23 425 lb)	10 630 kg (23 425 lb)	10 630 kg (23 425 lb)	8 760 kg (19 325 lb)	8 760 kg (19 325 lb)	9 540 kg (21 025 lb)
	5	_	(a)	(a)	(a)	(a)	(a)	(a)	(a)	(a)	(a)	⁶ (a)	, (a)
5	R STR	LOAD AT r CG	32% MAC	30% MAC	32% MAC	30% MAC	32% MAC	32% MAC	30% MAC	32% MAC	35% MAC	30.11% MAC	32.93%(a) MAC
	V _(MG) (PER STRUT)	STATIC LOAD AFT CG	28 870 kg (63 650 lb)	28 590 kg (63 025 lb)	29 540 kg (65 125 lb)	29 250 kg (64 500 lb)	29 540 kg (65 125 lb)	30 430 kg (67 100 lb)	30 140 kg (66 450 lb)	30 430 kg (67 100 lb)	25 430 kg (56 050 lb)	24 840 kg (54 775 lb)	27 420 kg (60 450 lb)
4	(3)	STATIC BRAKING AT 10 ft/s² DECELERATION	17 990 kg (39 675 lb)	17 990 kg (39 675 lb)	17 780 kg (39 175 lb)	17 780 kg (39 200 lb)	17 780 kg (39 175 lb)	17 760 kg (39 150 lb)	17 760 kg (39 175 lb)	17 760 kg (39 150 lb)	16 230 kg (35 775 lb)	16 000 kg (35 275 lb)	17 360 kg (38 275 lb)
	V(NG)	АТ	(q) (s	(q) (,	(a)	(q) ((q) ((a)	(a) ((q) ;	; (a)	; (a)	(a)
8		FWD CG	16.17%(b) MAC	16.17% (b) MAC	15% MAC	15% MAC	15% MAC	15% MAC	15% MAC	15% MAC	14% MAC	15% MAC	15% MAC
		STATIC LOAD FWD CG	11 510 kg (25 375 lb)	11 510 kg (25 375 lb)	11 490 kg (25 325 lb)	11 490 kg (25 325 lb)	11 490 kg (25 325 lb)	11 490 kg (25 325 lb)	11 490 kg (25 325 lb)	11 490 kg (25 325 lb)	10 550 kg (23 250 lb)	10 310 kg (22 725 lb)	11 200 kg (24 700 lb)
2		MAXIMUM RAMP WEIGHT	64 900 kg (143 075 lb)	64 900 kg (143 075 lb)	66 400 kg (146 375 lb)	66 400 kg (146 375 lb)	66 400 kg (146 375 lb)	68 400 kg (150 800 lb)	68 400 kg (150 800 lb)	68 400 kg (150 800 lb)	56 400 kg (124 350 lb)	56 400 kg (124 350 lb)	61 400 kg (135 375 lb)
_		WEIGHT VARIANT	A318-100 WV003 (CG 32%)	A318-100 WV003 (CG 30%)	A318-100 WV004 (CG 32%)	A318-100 WV004 (CG 30%)	A318CJ-100 WV004 (CG 32%)	A318-100 WV005 (CG 32%)	A318-100 WV005 (CG 30%)	A318CJ-100 WV005 (CG 32%)	A318-100 WV006 (CG 35%)	A318-100 WV006 (CG 30.11%)	A318-100 WV007 (CG 32.93%)

S NOTE:
(a) LOADS CALCULATED USING AIRCRAFT AT MRW.
(b) LOADS CALCULATED USING AIRCRAFT AT 63 000 kg (138 900 lb).
(c) BRAKED MAIN GEAR.

N_AC_070300_1_0200102_01_02

Maximum Pavement Loads for A318-100 and ACJ318-100 (Sheet 2 of 3)
FIGURE-7-3-0-991-020-A01

**ON A/C A318-100

_		-					
		:0US	(c)	(c)	(c)	(0)	(0)
9	H (PER STRUT)	STEADY BRAKING AT INSTANTANEOUS AT 10 ft/s² BRAKING DECELERATION COEFFICIENT = 0.8	21 630 kg (47 700 lb)	22 920 kg (50 025 lb)	22 700 kg (50 025 lb)	23 630 kg (52 100 lb)	24 340 kg (53 675 lb)
	(PEF	(ING ON	(c)	(c)	(c)	(c)	(0)
	I	STEADY BRAKING AT 10 ft/s² DECELERATION	9 540 kg (21 025 lb)	10 010 kg (22 075 lb)	10 010 kg (22 075 lb)	10 320 kg (22 750 lb)	10 630 kg (23 425 lb)
	Ê	F	(a)	(a)	(a)	(a)	(a)
5	R STR	OAD A	30% MAC	32% MAC	30% MAC	32% MAC	32% MAC
	V(MG) (PER STRUT)	STATIC LOAD AT AFT CG 27 040 kg 30% (59 625 lb) MAC (63 150 lb) MAC (63 150 lb)		28 370 kg (62 550 lb)	29 540 kg (65 125 lb)	30 430 kg (67 100 lb)	
4	(8	STATIC BRAKING AT 10 ft/s² DECELERATION	17 360 kg (38 275 lb)	17 960 kg (39 600 lb)	17 960 kg (39 600 lb)	17 780 kg (39 175 lb)	17 760 kg (39 150 lb)
	(NG)	АТ	(a)	% (a)	[%] (a)	(q)	(q)
_		TIC LOAD FWD CG	15% MAC	15.79% MAC	15.79% MAC	15% MAC	15% MAC
3		STATIC LOAD AT FWD CG	11 200 kg (24 700 lb)	11 520 kg (25 400 lb)	11 520 kg (25 400 lb)	11 490 kg (25 325 lb)	11 490 kg (25 325 lb)
2		MAXIMUM RAMP WEIGHT	61 400 kg 11 200 kg (135 375 lb) (24 700 lb)	64 400 kg 11 520 kg 15.79% (a) (141 975 lb) (25 400 lb) MAC	64 400 kg 11 520 kg 15.79% (a) (141 975 lb) (25 400 lb) MAC	66 400 kg 11 490 kg (146 375 lb)	68 400 kg 11 490 kg (150 800 lb) (25 325 lb)
1		WEIGHT VARIANT	A318-100 WV007 (CG 30%)	A318-100 WV008 (CG 32%)	A318-100 WV008 (CG 30%)	A318CJ-100 WV009 (CG 32%)	A318CJ-100 WV010 (CG 32%)

(a) LOADS CALCULATED USING AIRCRAFT AT MRW.
(b) LOADS CALCULATED USING AIRCRAFT AT 63 000 kg (138 900 lb).
(c) BRAKED MAIN GEAR.

N_AC_070300_1_0200103_01_00

Maximum Pavement Loads for A318-100 and ACJ318-100 3 of 3) 7-3-0-991-020-A01

7-4-0 Landing Gear Loading on Pavement

**ON A/C A318-100

Landing Gear Loading on Pavement

1. The curves related to the landing gear loading on pavement are not given in section 07-04-00. Because the relationship between the aircraft weight, the center of gravity and the landing gear loading on the pavement is not strictly linear, it cannot be shown in chart format. But you can find in section 07-03-00 the maximum vertical and horizontal pavement loads for some critical conditions at the tire/ground interfaces for all the operational weight variants of the aircraft.

For questions that are related to landing gear loading on pavement, contact Airbus.

7-5-0 Flexible Pavement Requirements - U.S. Army Corps of Engineers Design Method

**ON A/C A318-100

Flexible Pavement Requirements - US Army Corps of Engineers Design Method

 The flexible pavement requirements curves as per as U.S. Army Corps of Engineers Design Method are not given in section 07-05-00 since the related data is available through free software.

Sections 07-02-00 and 07-03-00 give all the inputs data required for the use of such software.

NOTE: The U.S. Army Corps of Engineers Design Method for flexible pavements is being gradually superseded by mechanistic-empirical design methods mostly relying on Linear Elastic Analysis (LEA). The number of parameters considered by such methods is not applicable for a chart format and the use of dedicated pavement-design software is necessary.

For questions that are related to the flexible pavement requirements, contact Airbus.

7-6-0 Flexible Pavement Requirements - LCN Conversion

**ON A/C A318-100

Flexible Pavement Requirements - LCN Conversion

 The Load Classification Number (LCN) curves are not given in section 07-06-00 since the LCN system for reporting pavement strength is old and are replaced by the ICAO recommended ACN/PCN system in 1983 and ACR/PCR system in 2020.
 For questions that are related to the LCN system, contact Airbus.

7-7-0 Rigid Pavement Requirements - Portland Cement Association Design Method

**ON A/C A318-100

Rigid Pavement Requirements - Portland Cement Association Design Method

1. The rigid-pavement requirements curves as per as Portland Cement Association Design Method are not given in section 07-07-00 since the related data is available through free software. Sections 07-02-00 and 07-03-00 give all the inputs data required for the use of such software.

NOTE: The Portland Cement Association Design Method for rigid pavements is being gradually superseded by mechanistic-empirical design methods mostly relying on Finite Element Analysis (FEM). The number of parameters considered by such methods is not applicable for a chart format and the use of dedicated pavement-design software is necessary.

For questions that are related to the rigid pavement requirements, contact Airbus.

7-8-0 Rigid Pavement Requirements - LCN Conversion

**ON A/C A318-100

Rigid Pavement Requirements - LCN Conversion

 The Load Classification Number (LCN) curves are not given in section 07-08-00 since the LCN system for reporting pavement strength is old and are replaced by the ICAO recommended ACN/PCN system in 1983 and ACR/PCR system in 2020.
 For questions that are related to the LCN system, contact Airbus.

7-9-0 ACN/PCN Reporting System - Flexible and Rigid Pavements

**ON A/C A318-100

Aircraft Classification Number - Flexible and Rigid Pavements

1. This section gives data about the Aircraft Classification Number (ACN) for an aircraft gross weight in relation with standard subgrade strength values for flexible and rigid pavement.

To find the ACN of an aircraft on flexible and rigid pavement, you must know the aircraft gross weight and the subgrade strength.

NOTE: An aircraft with an ACN equal to or less than the reported PCN can operate on that pavement, subject to any limitation on the tire pressure.

(Ref: ICAO Aerodrome Design Manual, Part 3, Chapter 1, Second Edition 1983).

Aircraft Classification Number - ACN table

The table in FIGURE 7-9-0-991-001-A gives ACN data in tabular format for all the operational weight variants of the aircraft.

As an approximation, use a linear interpolation in order to get the ACN at the required operating weight using the following equation:

ACN = ACN min + (ACN max - ACN min) x (Operating weight - 39 000 kg)/(MRW - 39 000 kg)

Please note that the interpolation error may reach 5% to 10%.

As an approximation, use a linear interpolation in order to get the aircraft weight at the pavement PCN using the following equation:

Operating weight = 39 000 kg + (MRW - 39 000 kg) x (PCN - ACN min)/(ACN max - ACN min)

Please note that the interpolation error may reach up to 5%.

With ACN max = ACN calculated at the MRW in the table and with ACN min = ACN calculated at 39 000 kg.

For questions or specific calculation regarding ACN/PCN Reporting System, contact Airbus.

**ON A/C A318-100

WEIGHT VARIANT	ALL UP MASS (kg)	LOAD ON ONE MAIN GEAR LEG	TIRE PRESSURE		ACN RIGID PA JBGRADE	VĒME		ACN FOR FLEXIBLE PAVEMENT SUBGRADES - CBR			
VANIANT		(%)	(MPa)	HIGH 150	MEDIUM 80	LOW 40	ULTRA -LOW 20	HIGH 15	MEDIUM 10	LOW 6	ULTRA -LOW 3
A318-100 WV000	59 400	44.9	1.14	30	32	34	36	28	29	32	37
(CG 33.93%)	39 000	44.8	1.14	18	20	21	22	17	17	19	22
A318-100 WV000	59 400	44.0	1.14	29	31	33	35	28	28	31	36
(CG 30%)	39 000	44.0	1.14	18	19	20	22	17	17	19	21
A318-100 WV001	61 900	44.6	1.14	31	33	36	37	29	30	33	38
(CG 32.7%)	39 000	44.6	1.14	18	19	21	22	17	17	19	22
A318-100 WV001	61 900	44.0	1.14	31	33	35	37	29	29	32	38
(CG 30%)	39 000	44.0	1.14	18	19	20	22	17	17	19	21
A318-100 WV002	63 400	44.5	1.14	32	34	36	38	30	30	34	39
(CG 32%)	39 000	44.4	1.14	18	19	21	22	17	17	19	22
A318-100 WV002	63 400	44.1	1.14	32	34	36	38	30	30	33	39
(CG 30%)	39 000	44.0	1.14	18	19	20	22	17	17	19	21
A318-100 WV003	64 900	44.5	1.24	34	36	38	40	31	32	35	41
(CG 32%)	39 000	44.4	1.24	19	20	21	22	17	18	19	22
A318-100 WV003	64 900	44.1	1.24	33	36	38	40	31	31	35	40
(CG 30%)	39 000	44.0	1.24	18	20	21	22	17	17	19	21
A318-100 WV004	66 400	44.5	1.24	35	37	39	41	32	33	36	42
(CG 32%)	39 000	44.4	1.24	19	20	21	22	17	18	19	22
A318-100 WV004	66 400	44.1	1.24	34	37	39	41	31	32	36	41
(CG 30%)	39 000	44.0	1.24	18	20	21	22	17	17	19	21
A318CJ WV004	66 400	44.5	1.24	35	37	39	41	32	33	36	42
(CG 32%)	39 000	44.4	1.24	19	20	21	22	17	18	19	22
A318-100 WV005	68 400	44.5	1.24	36	38	41	42	33	34	37	43
(CG 32%)	39 000	44.4	1.24	19	20	21	22	17	18	19	22
A318-100 WV005	68 400	44.1	4.04	36	38	40	42	32	33	37	43
(CG 30%)	39 000	44.0	1.24	18	20	21	22	17	17	19	21
A318CJ WV005	68 400	44.5	1.24	36	38	41	42	33	34	37	43
(CG 32%)	39 000	44.4	1.24	19	20	21	22	17	18	19	22
A318-100 WV006	56 400	45.1	1.02	27	29	31	33	26	27	30	35
(CG 35%)	39 000	45.1	1.02	18	19	20	22	17	17	19	22
A318-100 WV006	56 400	44.0	1.02	26	29	31	32	25	26	29	34
(CG 30.11%)	39 000	44.0	1.02	17	19	20	21	16	17	18	21

N_AC_070900_1_0010101_01_03

ACN Table for A318-100 and A318CJ (Sheet 1 of 2) FIGURE-7-9-0-991-001-A01

**ON A/C A318-100

WEIGHT	ALL UP	LOAD ON ONE MAIN GEAR LEG	TIRE PRESSURE (MPa)		ACN RIGID PA' JBGRADE	VĚME		ACN FOR FLEXIBLE PAVEMENT SUBGRADES - CBR			
VARIANT	MASS (kg)	(%)		HIGH 150	MEDIUM 80	LOW 40	ULTRA -LOW 20	HIGH 15	MEDIUM 10	LOW 6	ULTRA -LOW 3
A318-100 WV007	61 400	44.7	4.44	31	33	35	37	29	30	33	38
(CG 32.93%)	39 000	44.6	1.14	18	19	21	22	17	17	19	22
A318-100 WV007	61 400	44.0	4.44	30	33	35	36	29	29	32	37
(CG 30%)	39 000	44.0	1.14	18	19	20	22	17	17	19	21
A318-100 WV008	64 400	44.5	4.04	33	36	38	40	31	31	35	40
(CG 32%)	39 000	44.4	1.24	19	20	21	22	17	18	19	22
A318-100 WV008	64 400	44.1	4.04	33	35	37	39	30	31	34	40
(CG 30%)	39 000	44.0	1.24	18	20	21	22	17	17	19	21
A318CJ WV009	66 400	44.5	4.04	35	37	39	41	32	33	36	42
(CG 32%)	39 000	44.4	1.24	19	20	21	22	17	18	19	22
A318CJ WV010	68 400	44.5	1 24	36	38	41	42	33	34	37	43
(CG 32%)	39 000	44.4	1.24	19	20	21	22	17	18	19	22

N_AC_070900_1_0010103_01_00

ACN Table for A318-100 and A318CJ 2 of 2) 7-9-0-991-001-A01

7-10-0 ACR/PCR Reporting System - Flexible And Rigid Pavements

**ON A/C A318-100

ACR/PCR Reporting System - Flexible and Rigid Pavements

 The ACR/PCR system has been developed by the ICAO to overcome the deficiencies of the ACN/PCN system. Significant advances in pavement design methods had occurred since its development in the late 1970s early 1980s, leading to inconsistencies with the pavementstrength-rating system.

The ACR/PCR system entails new procedures for the determination of both the ACR and the PCR that are consistent with the current pavement design procedures. This allows to capture the effects of the improved characteristics of new pavement materials as well as modern landing gear configurations, thus leading to an improved accuracy.

This section gives data about the Aircraft Classification Rating (ACR) for the maximum ramp weight in relation with standard subgrade strength values for flexible and rigid pavement. To determine the ACR at other aircraft gross weight, use the official ICAO-ACR software.

NOTE: An aircraft with an ACR equal to or less than the reported PCR can operate on that pavement, subject to any limitation on the tire pressure. (Ref: ICAO Aerodrome Design Manual, Part 3, Third Edition 2020).

2. Aircraft Classification Rating - ACR Table

The table in FIGURE 7-10-0-991-003-A gives ACR data in tabular format for all the operational weight variants of the aircraft.

For questions or specific calculation related to ACR/PCR Reporting System, contact Airbus.

**ON A/C A318-100

		LOAD ON	TIRE PRESSURE		ACR RIGID PA	FOR	=NT	ACR FOR FLEXIBLE PAVEMENT			
WEIGHT	ALL UP	ONE MAIN			UBGRAI			SUBGRADES - MPa			
VARIANT	MASS (kg)	GEAR LEG (%)	(MPa)	HIGH 200	MEDIUM 120	LOW 80	ULTRA -LOW 50	HIGH 200	MEDIUM 120	LOW 80	ULTRA -LOW 50
A318-100 WV000 (CG 33.93%)	59 400	44.9	1.14	310	330	340	360	250	260	280	320
A318-100 WV000 (CG 30%)	59 400	44.0	1.14	300	320	340	350	240	260	280	310
A318-100 WV001 (CG 32.7%)	61 900	44.6	1.14	320	340	360	370	260	280	300	330
A318-100 WV001 (CG 30%)	61 900	44.0	1.14	320	340	350	370	250	270	290	330
A318-100 WV002 (CG 32%)	63 400	44.5	1.14	330	350	370	380	260	280	300	340
A318-100 WV002 (CG 30%)	63 400	44.1	1.14	330	350	360	380	260	280	300	340
A318-100 WV003 (CG 32%)	64 900	44.5	1.24	350	370	380	400	280	290	310	350
A318-100 WV003 (CG 30%)	64 900	44.1	1.24	340	360	380	390	270	290	310	350
A318-100 WV004 (CG 32%)	66 400	44.5	1.24	360	380	390	410	280	300	320	360
A318-100 WV004 (CG 30%)	66 400	44.1	1.24	350	380	390	410	280	300	320	360
A318CJ WV004 (CG 32%)	66 400	44.5	1.24	360	380	390	410	280	300	320	360
A318-100 WV005 (CG 32%)	68 400	44.5	1.24	370	390	410	420	290	310	340	380
A318-100 WV005 (CG 30%)	68 400	44.1	1.24	370	390	400	420	290	310	330	370
A318CJ WV005 (CG 32%)	68 400	44.5	1.24	370	390	410	420	290	310	340	380
A318-100 WV006 (CG 35%)	56 400	45.1	1.02	280	300	320	330	220	250	260	300
A318-100 WV006 (CG 30.11%)	56 400	44.0	1.02	270	290	310	320	220	240	260	290

N_AC_071000_1_0030101_01_01

ACR Table for A318-100 and A318CJ (Sheet 1 of 2) FIGURE-7-10-0-991-003-A01

**ON A/C A318-100

WEIGHT	ALL UP MASS (kg)	LOAD ON ONE MAIN GEAR LEG	TIRE PRESSURE (MPa)		ACR RIGID PA SUBGRAI			ACR FOR FLEXIBLE PAVEMENT SUBGRADES - MPa			
VARIANT MASS (k	IVIAGG (kg)	(%)		HIGH 200	MEDIUM 120	LOW 80	ULTRA -LOW 50	HIGH 200	MEDIUM 120	LOW 80	ULTRA -LOW 50
A318-100 WV007 (CG 32.93%)	61 400	44.7	1.14	320	340	360	370	250	270	290	330
A318-100 WV007 (CG 30%)	61 400	44.0	1.14	310	330	350	360	250	270	290	320
A318-100 WV008 (CG 32%)	64 400	44.5	1.24	350	370	380	400	270	290	310	350
A318-100 WV008 (CG 30%)	64 400	44.1	1.24	340	360	380	390	270	290	310	340
A318CJ WV009 (CG 32%)	66 400	44.5	1.24	360	380	390	410	280	300	320	360
A318CJ WV010 (CG 32%)	68 400	44.5	1.24	370	390	410	420	290	310	340	380

N_AC_071000_1_0030102_01_00

ACR Table for A318-100 and A318CJ 2 of 2) 7-10-0-991-003-A01

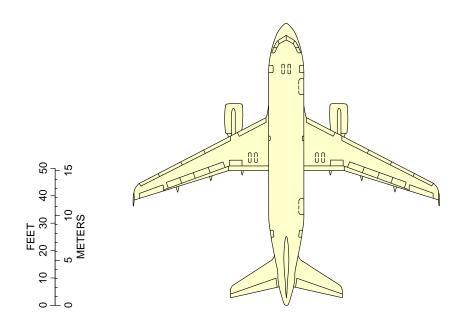
> Page 3 Jun 01/24

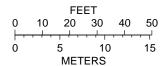
SA318

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

SCALED DRAWINGS

8-0-0 SCALED DRAWINGS


**ON A/C A318-100


Scaled Drawings

1. This section provides the scaled drawings.

NOTE: When printing this drawing, make sure to adjust for proper scaling.

**ON A/C A318-100

NOTE: WHEN PRINTING THIS DRAWING, MAKE SURE TO ADJUST FOR PROPER SCALING.

N_AC_080000_1_0010101_01_00

Scaled Drawing FIGURE-8-0-0-991-001-A01

SA318

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

AIRCRAFT RESCUE AND FIRE FIGHTING

10-0-0 AIRCRAFT RESCUE AND FIRE FIGHTING

**ON A/C A318-100

Aircraft Rescue and Fire Fighting

1. Aircraft Rescue and Fire Fighting Charts

This sections provides data related to aircraft rescue and fire fighting.

The figures contained in this section are the figures that are in the Aircraft Rescue and Fire Fighting Charts poster available for download on AIRBUSWorld and the Airbus website.

**ON A/C A318-100

AIRBUS

A318

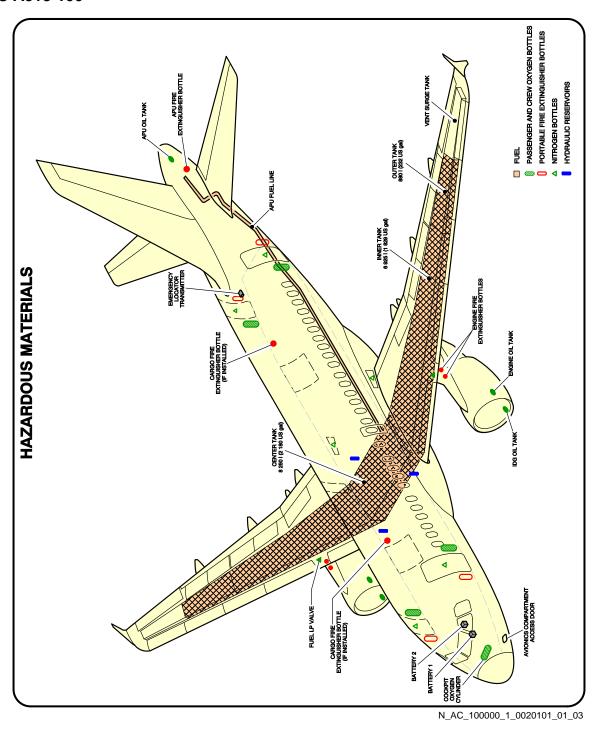
Aircraft Rescue and Fire Fighting Chart

NOTE

THIS CHART GIVES THE GENERAL LAYOUT OF THE A318 STANDARD VERSION.
THE NUMBER AND ARRANGEMENT OF THE INDIVIDUAL ITEMS VARY WITH THE CUSTOMERS.
IGURES CONTAINED IN THIS POSTER ARE AVAILABLE SEPARATELY IN THE CHAPTER 10 OF TH
"AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING" DOCUMENT.

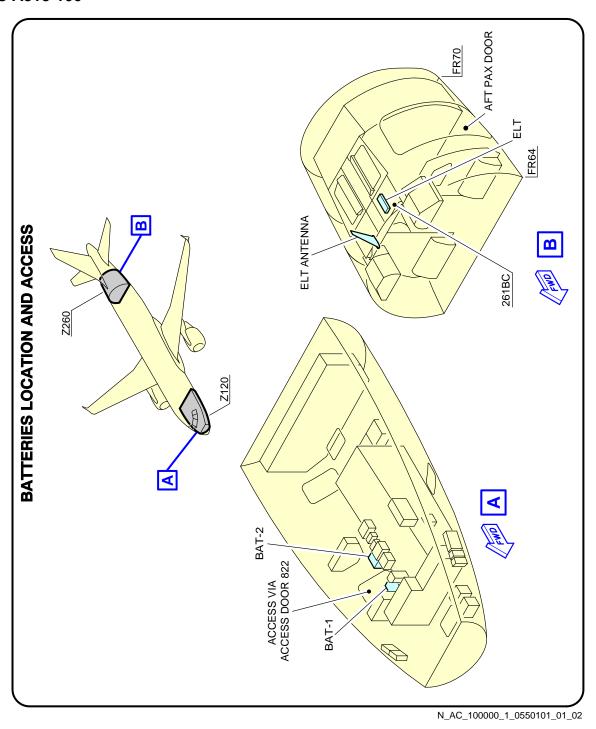
ISSUED BY:

AIRBUS S.A.S CUSTOMER SERVICES TECHNICAL DATA SUPPORT AND SERVICES 31707 BLAGNAC CEDEX FRANCE

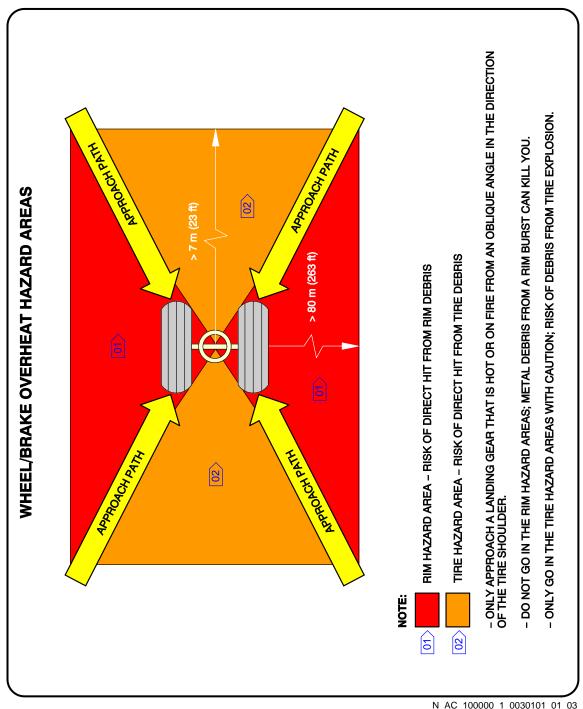

NOV 2019 N_RF_000000_1_A318000

REVISION DATE: 1 REFERENCE : 1 SHEET 1/2

© AIRBUS S.A.S. 2018 . All rights reserved.


N_AC_100000_1_0010101_01_05

Front Page FIGURE-10-0-0-991-001-A01



Highly Flammable and Hazardous Materials and Components FIGURE-10-0-0-991-002-A01

**ON A/C A318-100

Batteries Location and Access FIGURE-10-0-0-991-055-A01

N_AC_100000_1_0030101_01_03

Wheel/Brake Overheat Wheel Safety Area (Sheet 1 of 2) FIGURE-10-0-0-991-003-A01

**ON A/C A318-100

GEAR **SRAKE OVERHEAT AND LANDING**

BE VERY CAREFUL WHEN THERE IS A BRAKE OVERHEAT AND/OR LANDING GEAR FIRE. THERE IS A RISK OF TIRE EXPLOSION AND/OR WHEEL RIM BURST THAT CAN CAUSE DEATH OR INJURY. MAKE SURE THAT YOU OBEY THE SAFETY PRECAUTIONS THAT FOLLOW WARNING:

THE PROCEDURES THAT FOLLOW GIVE RECOMMENDATIONS AND SAFETY PRECAUTIONS FOR THE COOLING OF VERY HOT BRAKES AFTER ABNORMAL OPERATIONS SUCH AS A REJECTED TAKE-OFF OR OVERWEIGHT LANDING. FOR THE COOLING OF BRAKES AFTER NORMAL TAXI-IN, REFER TO YOUR COMPANY PROCEDURES.

BRAKE OVERHEAT:

GET THE BRAKE TEMPERATURE FROM THE COCKPIT OR USE A REMOTE MEASUREMENT TECHNIQUE. THE REAL TEMPERATURE OF THE BRAKES CAN BE MUCH HIGHER THAN THE TEMPERATURE SHOWN ON THE ECAM. **NOTE:** AT HIGH TEMPERATURES (>800°C), THERE IS A RISK OF WARPING OF THE LANDING GEAR STRUTS AND AXLES.

APPROACH THE LANDING GEAR WITH EXTREME CAUTION AND FROM AN OBLIQUE ANGLE IN THE DIRECTION OF THE TIRE SHOULDER. DO NOT GO INTO THE RIM HAZARD AREA AND ONLY GO IN THE TIRE HAZARD AREA WITH CAUTION. (REF FIG. WHEEL/BRAKE OVERHEAT HAZARD AREAS). IF POSSIBLE, STAY IN A VEHICLE. ٦ ا

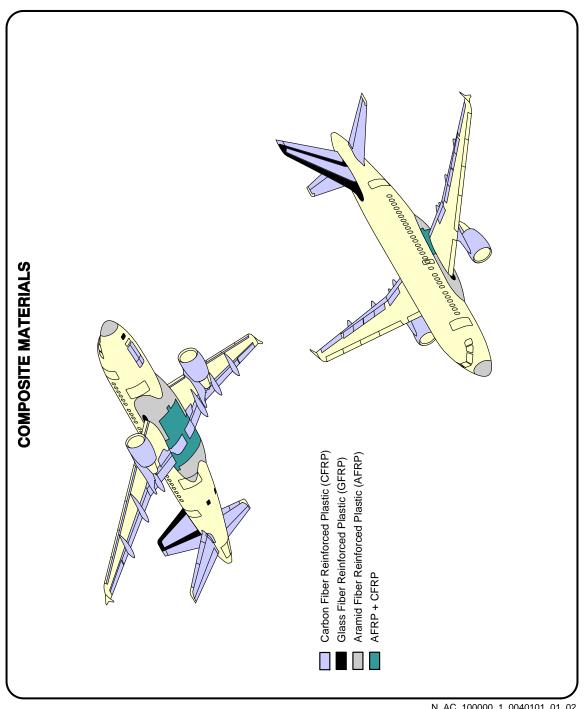
LOOK AT THE CONDITION OF THE TIRES: IF THE TIRES ARE STILL INFLATED (FUSE PLUGS NOT MELTED), THERE IS A RISK OF TIRE EXPLOSION AND RIM BURST. DO NOT USE COOLING FANS BECAUSE THEY CAN PREVENT OPERATION OF THE FUSE PLUGS. ် က

USE A TECHNIQUE THAT PREVENTS SUDDEN COOLING. SUDDEN COOLING CAN CAUSE WHEEL CRACKS OR RIM BURST DO NOT APPLY WATER, FOAM OR CO2. THESE COOLING AGENTS (AND ESPECIALLY CO2, WHICH HAS A VERY STRONG COOLING EFFECT) CAN CAUSE THERMAL SHOCKS AND BURST OF HOT PARTS. USE WATER MIST TO DECREASE THE TEMPERATURE OF THE COMPLETE WHEEL AND BRAKE ASSEMBLY 4

LANDING GEAR FIRE:

CAUTION: AIRBUS RECOMMENDS THAT YOU DO NOT USE DRY POWDERS OR DRY CHEMICALS ON HOT BRAKES OR LANDING GEAR FIRES. THESE AGENTS CAN CHANGE INTO SOLID OR ENAMELED DEPOSITS. THEY CAN DECREASE THE SPEED OF HEAT DISSIPATION WITH A POSSIBLE RISK OF PERMANENT STRUCTURAL DAMAGE TO THE BRAKES, WHEELS OR WHEEL AXLES

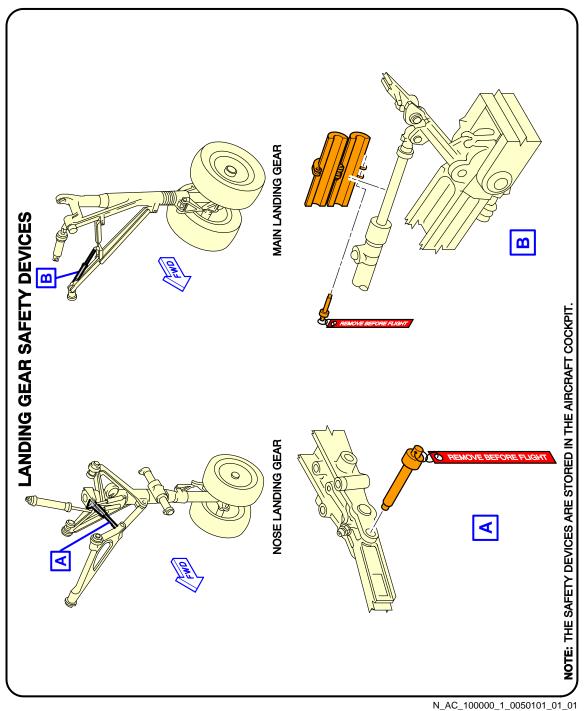
1 – IMMEDIATELY STOP THE FIRE:

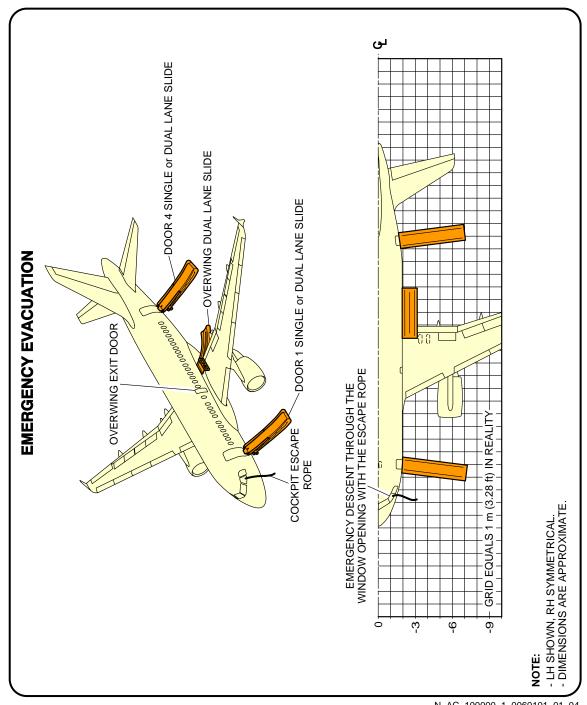

APPROACH THE LANDING GEAR WITH EXTREME CAUTION AND FROM AN OBLIQUE ANGLE IN THE DIRECTION OF THE TIRE SHOULDER. DO NOT GO INTO THE RIM HAZARD AREA AND ONLY GO IN THE TIRE HAZARD AREA WITH CAUTION. IF POSSIBLE, STAY IN A VEHICLE ₹

USE LARGE AMOUNTS OF WATER, WATER MIST; IF THE FUEL TANKS ARE AT RISK, USE FOAM. USE A TECHNIQUE THAT PREVENTS SUDDEN COOLING. SUDDEN COOLING CAN CAUSE WHEEL CRACKS OR RIM BURST <u>@</u>

DO NOT USE FANS OR BLOWERS O

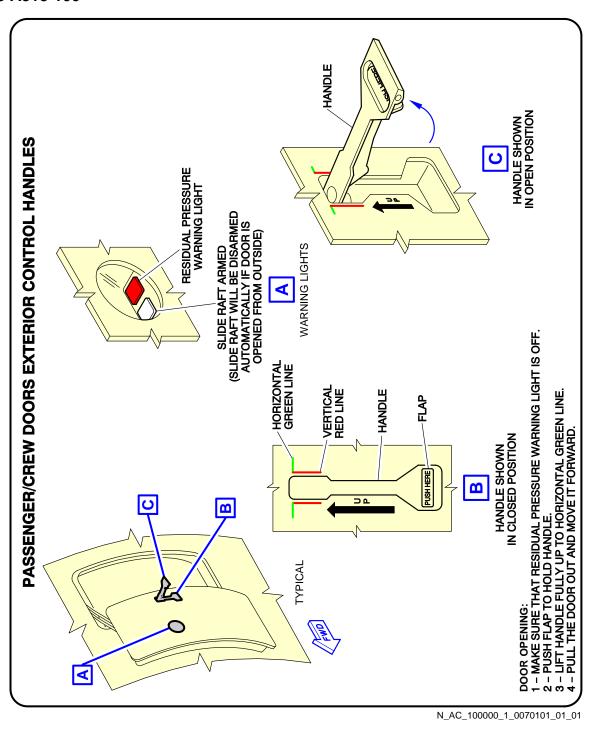
N_AC_100000_1_0030102_01_00


Wheel/Brake Overheat Recommendations (Sheet 2 of 2) FIGURE-10-0-0-991-003-A01

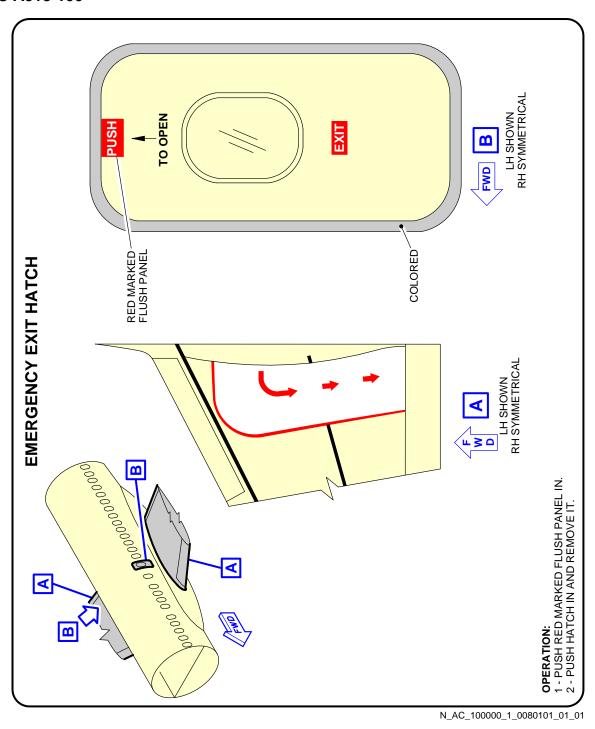

N_AC_100000_1_0040101_01_02

Composite Materials FIGURE-10-0-0-991-004-A01

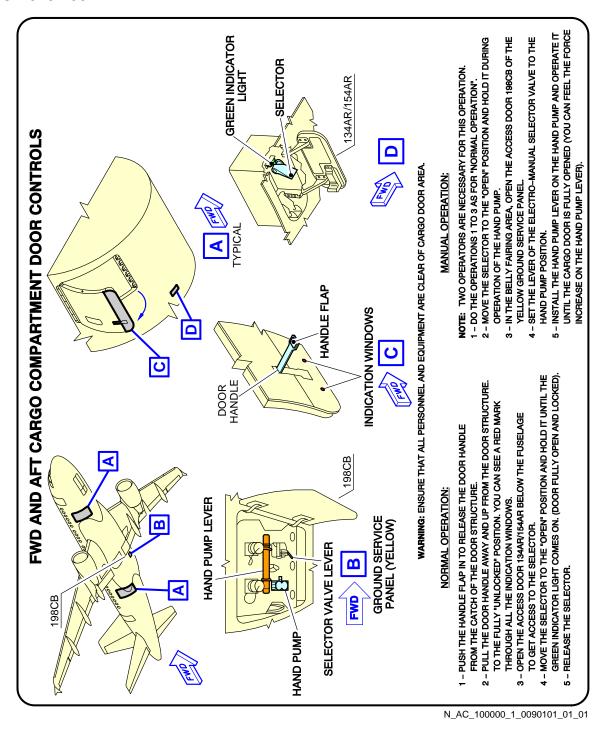
**ON A/C A318-100



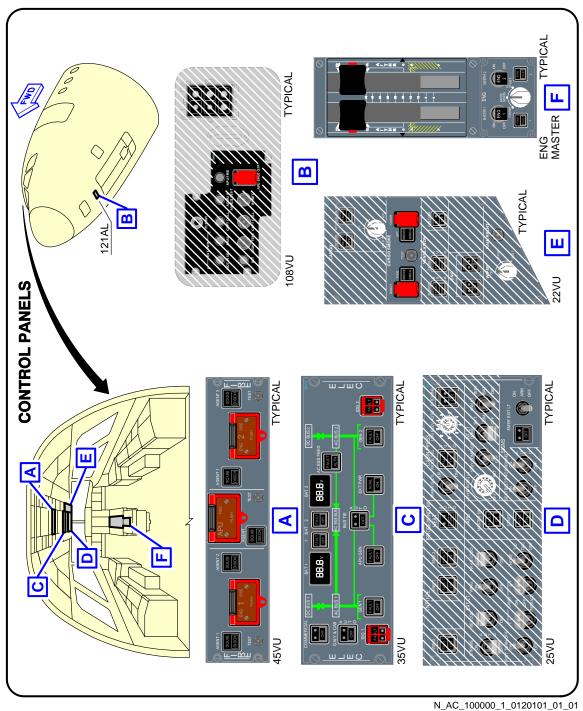
L/G Ground Lock Safety Devices FIGURE-10-0-0-991-005-A01

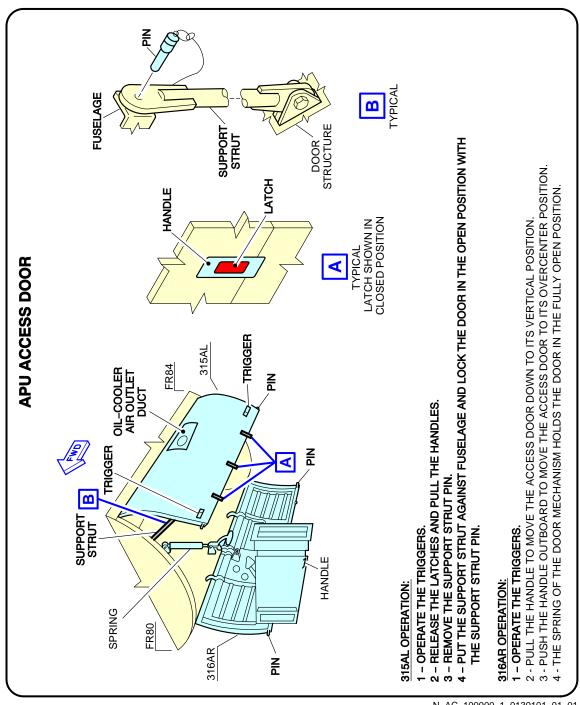


N_AC_100000_1_0060101_01_04


Emergency Evacuation Devices FIGURE-10-0-0-991-006-A01

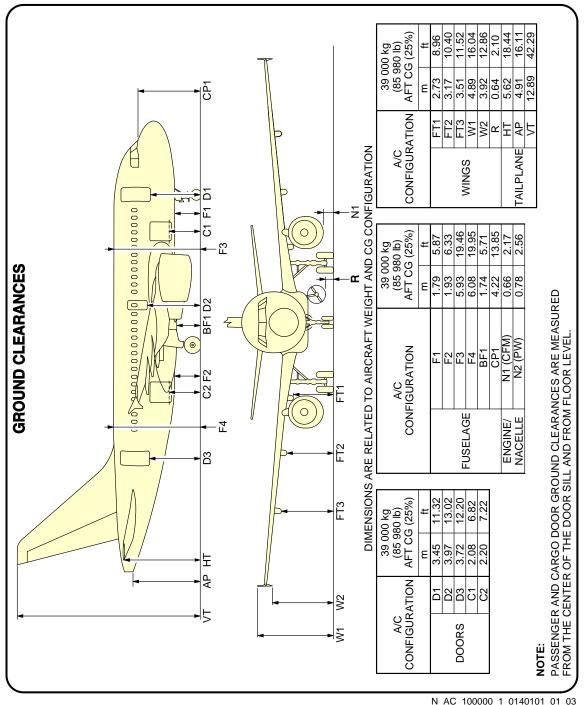
Pax/Crew Doors FIGURE-10-0-0-991-007-A01


Emergency Exit Hatch FIGURE-10-0-0-991-008-A01

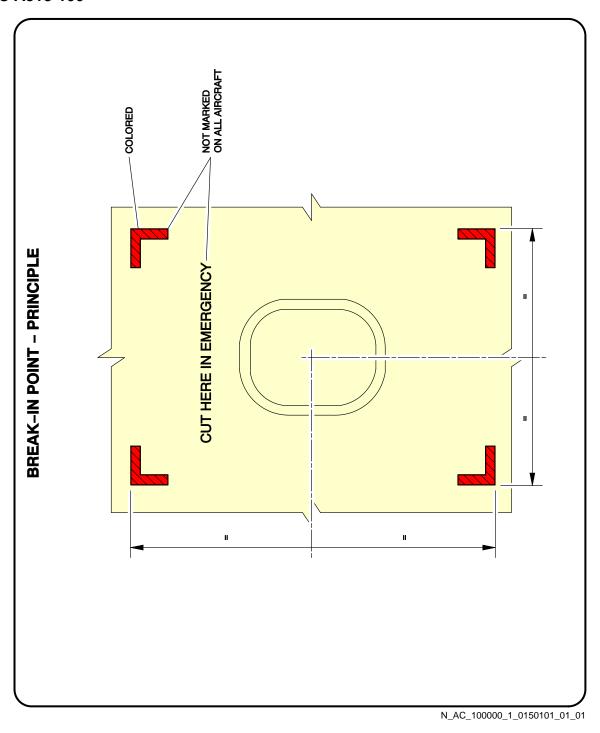

Doors

FWD and AFT Lower Deck Cargo Doors FIGURE-10-0-0-991-009-A01

**ON A/C A318-100



Control Panels FIGURE-10-0-0-991-012-A01


N_AC_100000_1_0130101_01_01

APU Access Door FIGURE-10-0-0-991-013-A01

N_AC_100000_1_0140101_01_03

Aircraft Ground Clearances FIGURE-10-0-0-991-014-A01

Structural Break-in Points FIGURE-10-0-0-991-015-A01