

A350

AIRCRAFT CHARACTERISTICS AIRPORT AND MAINTENANCE PLANNING

AC

The content of this document is the property of Airbus.

It is supplied in confidence and commercial security on its contents must be maintained.

It must not be used for any purpose other than that for which it is supplied, nor may information contained in it be disclosed to unauthorized persons.

It must not be reproduced in whole or in part without permission in writing from the owners of the copyright. Requests for reproduction of any data in this document and the media authorized for it must be addressed to Airbus.

© AIRBUS S.A.S. 2005. All rights reserved.

AIRBUS S.A.S.
Customer Services
Technical Data Support and Services
31707 Blagnac Cedex
FRANCE

Issue: Nov 01/16 1 Rev: Dec 01/24

HIGHLIGHTS

Revision No. 14 - Dec 01/24

LOCATIONS	CHG	DESCRIPTIONS OF CHANGE
OLIA DITED. 4	CODE	
CHAPTER 1		
Section 1-2		
Subject 1-2-0	_	
Glossary		PART EFFECTIVITY ADDED/REVISED/ DELETED
CHAPTER 2		
Section 2-1		
Subject 2-1-0		
General Aircraft Characteristics Data	R	
Section 2-6		
Subject 2-6-0		
	R	
Cargo Compartments		
	N	ILLUSTRATION ADDED
FIGURE Cargo Compartments	IN IN	ILLUSTRATION ADDED
FIGURE Course Course outer outer	R	ILLUSTRATION REVISED
FIGURE Cargo Compartments		PART EFFECTIVITY ADDED/REVISED/
		DELETED
FIGURE Course Course outer outer	R	ILLUSTRATION REVISED
FIGURE Cargo Compartments		PART EFFECTIVITY ADDED/REVISED/
		DELETED
FIGURE Lawrence Dook Course Commonter and	R	
FIGURE Lower Deck Cargo Compartments		
	R	ILLUSTRATION REVISED
FIGURE Main Deck Cargo Compartment		
0.000		
Section 2-7		
Subject 2-7-0		
Door Clearances and Location	R	
FIGURE Describertification and Leaville	R	
FIGURE Door Identification and Location		
	<u> </u>	

LOCATIONS	CHG CODE	DESCRIPTIONS OF CHANGE
FIGURE Main Deck Cargo Door	R	
FIGURE Bulk Cargo Compartment Door	N	ILLUSTRATION ADDED
FIGURE Nose Landing Gear Doors	N	ILLUSTRATION ADDED
FIGURE Main Landing Gear Doors	N	ILLUSTRATION ADDED
FIGURE Main Landing Gear Doors	N	ILLUSTRATION ADDED
Section 2-14 Subject 2-14-1		
FIGURE Jacking for Maintenance	R	
Subject 2-14-2	_	
Jacking of the Landing Gear		PART EFFECTIVITY ADDED/REVISED/ DELETED
FIGURE Nose Landing Gear Jacking Point Heights	R	NOTE AMENDED
FIGURE Main Landing Gear Jacking Point Heights	R	ILLUSTRATION REVISED
FIGURE Nose Landing Gear Jacking Point Heights	R	
FIGURE Main Landing Gear Jacking Point Heights	R	
FIGURE Nose Landing Gear Jacking Point Heights	N	ILLUSTRATION ADDED
FIGURE Main Landing Gear Jacking Point Heights	N	ILLUSTRATION ADDED

LOCATIONS	CHG CODE	DESCRIPTIONS OF CHANGE
CHAPTER 4 Section 4-1 Subject 4-1-0		
General Information	R	NOTE AMENDED
Section 4-2 Subject 4-2-0		
Turning Radii		PART EFFECTIVITY ADDED/REVISED/ DELETED
FIGURE Turning Radii	R	
FIGURE Turning Radii	N	ILLUSTRATION ADDED
Section 4-3 Subject 4-3-0		
Minimum Turning Radii		PART EFFECTIVITY ADDED/REVISED/ DELETED
FIGURE Minimum Turning Radii	R	
FIGURE Minimum Turning Radii	N	ILLUSTRATION ADDED
Section 4-5 Subject 4-5-1		
135° Turn - Runway to Taxiway		PART EFFECTIVITY ADDED/REVISED/ DELETED
FIGURE 135° Turn - Runway to Taxiway	R	
FIGURE 135° Turn - Runway to Taxiway	R	
FIGURE 135° Turn - Runway to Taxiway	N	ILLUSTRATION ADDED
Subject 4-5-2	Г	
90° Turn - Runway to Taxiway		PART EFFECTIVITY ADDED/REVISED/ DELETED

LOCATIONS	CHG CODE	DESCRIPTIONS OF CHANGE
FIGURE 90° Turn - Runway to Taxiway	R	
FIGURE 90° Turn - Runway to Taxiway	R	
FIGURE 90° Turn - Runway to Taxiway	N	ILLUSTRATION ADDED
Subject 4-5-3		
180° Turn on a Runway	R	PART EFFECTIVITY ADDED/REVISED/ DELETED
FIGURE 180° Turn on a Runway	R	
FIGURE 180° Turn on a Runway	N	ILLUSTRATION ADDED
Subject 4-5-4		
135° Turn - Taxiway to Taxiway	R	PART EFFECTIVITY ADDED/REVISED/ DELETED
FIGURE 135° Turn - Taxiway to Taxiway	R	
FIGURE 135° Turn - Taxiway to Taxiway	R	
FIGURE 135° Turn - Taxiway to Taxiway	N	ILLUSTRATION ADDED
Subject 4-5-5		
90° Turn - Taxiway to Taxiway	R	PART EFFECTIVITY ADDED/REVISED/ DELETED
FIGURE 90° Turn - Taxiway to Taxiway	R	
FIGURE 90° Turn - Taxiway to Taxiway	R	
FIGURE 90° Turn - Taxiway to Taxiway	N	ILLUSTRATION ADDED
Section 4-7 Subject 4-7-0		
Minimum Line-Up Distance Corrections	R	PART EFFECTIVITY ADDED/REVISED/ DELETED

LOCATIONS	CHG CODE	DESCRIPTIONS OF CHANGE
FIGURE 90° Turn on Runway Entry	R	ILLUSTRATION REVISED PART EFFECTIVITY ADDED/REVISED/ DELETED
FIGURE 180° Turn on Runway Turn Pad		ILLUSTRATION REVISED PART EFFECTIVITY ADDED/REVISED/ DELETED
FIGURE 180° Turn on Runway Width		ILLUSTRATION REVISED PART EFFECTIVITY ADDED/REVISED/ DELETED
CHAPTER 5 Section 5-1 Subject 5-1-1		
FIGURE Typical Ramp Layout (Open Apron)	R	
FIGURE Typical Ramp Layout (Open Apron)	R	
FIGURE Typical Ramp Layout (Open Apron)	R	
Subject 5-1-2	_	
FIGURE Typical Ramp Layout (Gate)	R	
FIGURE Typical Ramp Layout (Gate)	R	
Section 5-4 Subject 5-4-8		
Potable Water Servicing		PART EFFECTIVITY ADDED/REVISED/ DELETED NOTE AMENDED
FIGURE Potable-Water Ground Service Panel	N	ILLUSTRATION ADDED
FIGURE Forward Drain Port		ILLUSTRATION REVISED PART EFFECTIVITY ADDED/REVISED/ DELETED
FIGURE Potable-Water Tanks Location	N	ILLUSTRATION ADDED
Subject 5-4-10		

LOCATIONS	CHG CODE	DESCRIPTIONS OF CHANGE
Cargo Control Panels		PART EFFECTIVITY ADDED/REVISED/ DELETED NOTE AMENDED
FIGURE Forward Cargo Control Panels		ILLUSTRATION REVISED PART EFFECTIVITY ADDED/REVISED/ DELETED
FIGURE Aft Cargo Control Panels		ILLUSTRATION REVISED PART EFFECTIVITY ADDED/REVISED/ DELETED
CHAPTER 7		
Section 7-2		
Subject 7-2-0		
FIGURE Landing Gear Footprint	R	
Section 7-3		
Subject 7-3-0		
FIGURE Maximum Pavement Loads	R	
Section 7-9		
Subject 7-9-0		
FIGURE ACN Table	R	
Section 7-10	R	
Subject 7-10-0	R	
FIGURE ACR Table	R	
CHAPTER 10		
Section 10-0		
Subject 10-0-0		
Aircraft Rescue and Fire Fighting	R	
FIGURE Highly Flammable and Hazardous Materials and Components	N	ILLUSTRATION ADDED
FIGURE Crew Rest Compartment Location	R	

LOCATIONS	CHG CODE	DESCRIPTIONS OF CHANGE
FIGURE Composite Materials Location	R	
FIGURE Emergency Evacuation Devices	R	
FIGURE Aircraft Ground Clearances	R	
FIGURE Batteries Location and Access	R	

LIST OF EFFECTIVE CONTENT

Revision No. 14 - Dec 01/24

CONTENT	CHG CODE	LAST REVISION DATE
CHAPTER 1		
Subject 1-1-0		Apr 01/24
Introduction		
Subject 1-2-0	R	Dec 01/24
Glossary		200021
CHAPTER 2		
Subject 2-1-0	R	Dec 01/24
General Aircraft Characteristics Data		
Subject 2-2-0		Apr 01/24
General Aircraft Dimensions		7.01721
FIGURE General Aircraft Dimensions		Nov 01/16
		Nov 01/16
FIGURE General Aircraft Dimensions		1107 0 17 10
FIGURE General Aircraft Dimensions		Apr 01/24
Subject 2-3-0		
Ground Clearances		Apr 01/24
FIGURE Ground Clearances		Apr 01/24
1 1001/L Ground Clearances		lun 01/10
FIGURE Ground Clearances		Jun 01/19
FIGURE Ground Clearances		Jun 01/19
FIGURE Ground Clearances		Jun 01/19

CONTENT	CHG CODE	LAST REVISION DATE
FIGURE Ground Clearances		Jun 01/19
FIGURE Ground Clearances		Jun 01/19
FIGURE Ground Clearances		Jun 01/19
FIGURE Ground Clearances		Jun 01/19
FIGURE Ground Clearances		Apr 01/24
FIGURE Ground Clearances		Jun 01/19
FIGURE Ground Clearances		Jun 01/19
FIGURE Ground Clearances		Jun 01/19
FIGURE Ground Clearances		Jun 01/19
FIGURE Ground Clearances		Jun 01/19
FIGURE Ground Clearances		Jun 01/19
FIGURE Ground Clearances		Jun 01/19
FIGURE Ground Clearances		Apr 01/24
FIGURE Ground Clearances		Apr 01/24
FIGURE Ground Clearances		Apr 01/24
FIGURE Ground Clearances		Apr 01/24
FIGURE Ground Clearances		Apr 01/24

CONTENT	CHG CODE	LAST REVISION DATE
FIGURE Ground Clearances		Apr 01/24
FIGURE Ground Clearances		Apr 01/24
FIGURE Ground Clearances		Apr 01/24
Subject 2-4-0		A = = 04/24
Interior Arrangements - Plan View		Apr 01/24
FIGURE Standard Configuration		Jun 01/18
FIGURE Standard Configuration		Nov 01/16
FIGURE Courier Area		Apr 01/24
Subject 2-5-0		0.4/0.4
Interior Arrangements - Cross Section		Apr 01/24
FIGURE Typical Configuration		Nov 01/16
FIGURE Typical Configuration		Apr 01/24
Subject 2-6-0	Б	Da = 04/04
Cargo Compartments	R	Dec 01/24
FIGURE Cargo Compartments	N	Dec 01/24
FIGURE Cargo Compartments	R	Dec 01/24
FIGURE Cargo Compartments	R	Dec 01/24
FIGURE Lower Deck Cargo Compartments	R	Dec 01/24

CONTENT	CHG CODE	LAST REVISION DATE
FIGURE Main Deck Cargo Compartment	R	Dec 01/24
Subject 2-7-0	_	5 24/24
Door Clearances and Location	R	Dec 01/24
FIGURE Door Identification and Location		Apr 01/24
FIGURE Door Identification and Location		Apr 01/24
FIGURE Door Identification and Location	R	Dec 01/24
FIGURE Forward Passenger/Crew Doors		Nov 01/16
FIGURE Forward Courier/Crew Doors		Apr 01/24
FIGURE Aft Passenger/Crew Doors		Nov 01/16
FIGURE Forward Cargo Compartment Door		Apr 01/24
FIGURE Aft Cargo Compartment Door		Apr 01/24
FIGURE Bulk Cargo Compartment Door		Apr 01/24
FIGURE Nose Landing Gear Doors		Apr 01/24
FIGURE Main Landing Gear Doors		Nov 01/16
FIGURE Main Landing Gear Doors		Apr 01/24
FIGURE Main Deck Cargo Door	R	Dec 01/24
FIGURE Bulk Cargo Compartment Door	N	Dec 01/24

CONTENT	CHG CODE	LAST REVISION DATE
FIGURE Nose Landing Gear Doors	N	Dec 01/24
FIGURE Main Landing Gear Doors	N	Dec 01/24
FIGURE Main Landing Gear Doors	N	Dec 01/24
Subject 2-8-0		
Escape Slides		Apr 01/24
FIGURE Escape Slides		Jun 01/18
FIGURE Escape Slides		Jun 01/18
FIGURE Escape Slides		Apr 01/24
Subject 2-9-0		A 04/04
Landing Gear		Apr 01/24
FIGURE Main Landing Gear		Nov 01/16
FIGURE Main Landing Gear		Apr 01/24
FIGURE Nose Landing Gear		Apr 01/24
Subject 2-9-1		M 04/00
Landing Gear Maintenance Pits		May 01/20
FIGURE Maintenance Pit Envelopes		Nov 01/16
FIGURE NLG/MLG Extension/Retraction Pit		Nov 01/16
FIGURE NLG/MLG Shock Absorber Removal Pit		Nov 01/16

CONTENT	CHG CODE	LAST REVISION DATE
FIGURE NLG/MLG Removal Pit		Nov 01/16
FIGURE Maintenance Pit Envelopes		Jun 01/17
FIGURE NLG/MLG Extension/Retraction Pit		Jun 01/17
FIGURE NLG/MLG Shock Absorber Removal Pit		Jun 01/17
FIGURE NLG/MLG Removal Pit		Jun 01/17
Subject 2-10-0		
Exterior Lighting		Apr 01/24
FIGURE Exterior Lighting		Nov 01/16
FIGURE Exterior Lighting		Nov 01/16
FIGURE Exterior Lighting		Nov 01/16
FIGURE Exterior Lighting		Nov 01/16
FIGURE Exterior Lighting		Nov 01/16
FIGURE Exterior Lighting		Nov 01/16
FIGURE Exterior Lighting		Nov 01/16
FIGURE Exterior Lighting		Nov 01/16
FIGURE Exterior Lighting		Nov 01/16
FIGURE Exterior Lighting		Nov 01/16

CONTENT	CHG CODE	LAST REVISION DATE
FIGURE Exterior Lighting		Apr 01/24
Subject 2-11-0		
Antennas and Probes Location		Apr 01/24
FIGURE Antennas and Probes Location		Apr 01/24
FIGURE Antennas and Probes Location		Apr 01/24
FIGURE Antennas and Probes Location		Apr 01/24
Subject 2-12-0		Apr 01/24
Engine and Nacelle		Αρι 01/24
FIGURE Engine and Nacelle		Apr 01/24
Subject 2-12-1		A = = 04/04
Auxiliary Power Unit		Apr 01/24
FIGURE Auxiliary Power Unit		Apr 01/24
Subject 2-13-0		
Leveling, Symmetry and Alignment		Apr 01/24
FIGURE Location of Leveling Points		Nov 01/16
FIGURE Location of Leveling Points		Nov 01/16
FIGURE Location of Leveling Points		Apr 01/24
Subject 2-14-1		
Jacking for Maintenance		Apr 01/24
FIGURE Jacking for Maintenance		Sep 01/19

CONTENT	CHG CODE	LAST REVISION DATE
FIGURE Jacking Points Location		Apr 01/24
FIGURE Jacking Dimensions		Apr 01/24
FIGURE Forward Jacking Point		Sep 01/19
FIGURE Wing Jacking Point		Sep 01/19
FIGURE Auxiliary Jacking Point - Safety		Sep 01/19
FIGURE Jacking for Maintenance	R	Dec 01/24
Subject 2-14-2		
Jacking of the Landing Gear	R	Dec 01/24
FIGURE Nose Landing Gear Jacking Point Heights	R	Dec 01/24
FIGURE Main Landing Gear Jacking Point Heights	R	Dec 01/24
FIGURE Nose Landing Gear Jacking Point Heights	R	Dec 01/24
FIGURE Main Landing Gear Jacking Point Heights	R	Dec 01/24
FIGURE Nose Landing Gear Jacking Point Heights	N	Dec 01/24
FIGURE Main Landing Gear Jacking Point Heights	N	Dec 01/24
CHAPTER 3		
Subject 3-1-0		
General Information		Apr 01/24
Subject 3-2-0		
Payload/Range - ISA Conditions		Nov 01/16

CONTENT	CHG CODE	LAST REVISION DATE
FIGURE Payload/Range - ISA Conditions		Jun 01/19
FIGURE Payload/Range - ISA Conditions		Jun 01/19
Subject 3-3-0		
Take-Off Weight Limitation		Jun 01/19
FIGURE ISA Conditions		Jun 01/19
FIGURE ISA Conditions		Jun 01/19
FIGURE ISA + 15 °C (ISA + 27 °F) Conditions		Sep 01/19
FIGURE ISA + 15 °C (ISA + 27 °F) Conditions		Sep 01/19
Subject 3-3-3		
Aerodrome Reference Code		Apr 01/24
Subject 3-4-0		
Landing Field Length		Oct 01/19
FIGURE Landing Field Length		Jun 01/19
FIGURE Landing Field Length		Oct 01/19
Subject 3-5-0		M 04/00
Final Approach Speed		May 01/22
CHAPTER 4		
Subject 4-1-0 General Information	R	Dec 01/24
		Apr 01/24
FIGURE ETACS		4.3.,
Subject 4-2-0		

CONTENT	CHG CODE	LAST REVISION DATE
Turning Radii	R	Dec 01/24
FIGURE Turning Radii		Nov 01/16
FIGURE Turning Radii	R	Dec 01/24
FIGURE Turning Radii	N	Dec 01/24
Subject 4-3-0	_	5 04/04
Minimum Turning Radii	R	Dec 01/24
FIGURE Minimum Turning Radii		Nov 01/16
FIGURE Minimum Turning Radii	R	Dec 01/24
FIGURE Minimum Turning Radii	N	Dec 01/24
Subject 4-4-0		
Visibility from Cockpit in Static Position		Apr 01/24
FIGURE Visibility from Cockpit in Static Position		Apr 01/24
FIGURE Binocular Visibility Through Windows from Captain Eye Position		Apr 01/24
Subject 4-5-0		
Introduction		Apr 01/24
Subject 4-5-1	_	
135° Turn - Runway to Taxiway	R	Dec 01/24
FIGURE 135° Turn - Runway to Taxiway	R	Dec 01/24
FIGURE 135° Turn - Runway to Taxiway	R	Dec 01/24

CONTENT	CHG CODE	LAST REVISION DATE
FIGURE 135° Turn - Runway to Taxiway	N	Dec 01/24
Subject 4-5-2		
90° Turn - Runway to Taxiway	R	Dec 01/24
FIGURE 90° Turn - Runway to Taxiway	R	Dec 01/24
FIGURE 90° Turn - Runway to Taxiway	R	Dec 01/24
FIGURE 90° Turn - Runway to Taxiway	N	Dec 01/24
Subject 4-5-3	R	Dec 01/24
180° Turn on a Runway	IX	Dec 01/24
FIGURE 180° Turn on a Runway		Sep 01/19
FIGURE 180° Turn on a Runway	R	Dec 01/24
FIGURE 180° Turn on a Runway	N	Dec 01/24
Subject 4-5-4		
135° Turn - Taxiway to Taxiway	R	Dec 01/24
FIGURE 135° Turn - Taxiway to Taxiway	R	Dec 01/24
FIGURE 135° Turn - Taxiway to Taxiway	R	Dec 01/24
FIGURE 135° Turn - Taxiway to Taxiway	N	Dec 01/24
Subject 4-5-5	_	
90° Turn - Taxiway to Taxiway	R	Dec 01/24
FIGURE 90° Turn - Taxiway to Taxiway	R	Dec 01/24

CONTENT	CHG CODE	LAST REVISION DATE
FIGURE 90° Turn - Taxiway to Taxiway	R	Dec 01/24
FIGURE 90° Turn - Taxiway to Taxiway	N	Dec 01/24
Subject 4-6-0		
Runway Holding Bay		Apr 01/24
FIGURE Runway Holding Bay		Apr 01/24
Subject 4-7-0	Б	D 04/04
Minimum Line-Up Distance Corrections	R	Dec 01/24
FIGURE 90° Turn on Runway Entry	R	Dec 01/24
FIGURE 180° Turn on Runway Turn Pad	R	Dec 01/24
FIGURE 180° Turn on Runway Width	R	Dec 01/24
Subject 4-8-0		A 04/04
Aircraft Mooring		Apr 01/24
FIGURE Aircraft Mooring		Apr 01/24
CHAPTER 5 Subject 5-1-0		
Aircraft Servicing Arrangements		Apr 01/24
Subject 5-1-1		
Typical Ramp Layout (Open Apron)		Apr 01/24
FIGURE Typical Ramp Layout (Open Apron)	R	Dec 01/24
FIGURE Typical Ramp Layout (Open Apron)	R	Dec 01/24

CONTENT	CHG CODE	LAST REVISION DATE
FIGURE Typical Ramp Layout (Open Apron)	R	Dec 01/24
Subject 5-1-2		
Typical Ramp Layout (Gate)		Nov 01/16
FIGURE Typical Ramp Layout (Gate)	R	Dec 01/24
FIGURE Typical Ramp Layout (Gate)	R	Dec 01/24
Subject 5-2-0		
Terminal Operations - Full Servicing Turn Round Time		Apr 01/24
FIGURE Full Servicing Turn Round Time Chart		Jun 01/18
FIGURE Full Servicing Turn Round Time Chart		Jun 01/18
FIGURE Full Servicing Turn Round Time Chart (ULR)		Jun 01/18
FIGURE Full Servicing Turn Round Time Chart		Apr 01/24
Subject 5-3-0		
Terminal Operations - Transit Turn Round Time		May 01/20
FIGURE Transit Turn Round Time Chart		May 01/20
FIGURE Transit Turn Round Time Chart		Jun 01/18
Subject 5-4-0		
Ground Service Connections Layout		Apr 01/24
FIGURE Ground Service Connections Layout		Nov 01/16
FIGURE Ground Service Connections Layout		Nov 01/16

CONTENT	CHG CODE	LAST REVISION DATE
FIGURE Ground Service Connections Layout		Apr 01/24
Subject 5-4-1		
Grounding (Earthing) Points		Apr 01/24
FIGURE Grounding (Earthing) Point - NLG		Apr 01/24
FIGURE Grounding (Earthing) Point - MLG		Nov 01/16
FIGURE Grounding (Earthing) Point - MLG		Apr 01/24
Subject 5-4-2		
Hydraulic Servicing		Apr 01/24
FIGURE Green Ground Service Panel		Apr 01/24
FIGURE Yellow Ground Service Panel		Apr 01/24
Subject 5-4-3		
Electrical Servicing		Apr 01/24
FIGURE Electrical Service Panel		Apr 01/24
FIGURE RAT		Apr 01/24
Subject 5-4-4		15/04
Oxygen Servicing		May 15/24
FIGURE Oxygen System		May 15/24
FIGURE Crew Oxygen Storage - Location		May 15/24
FIGURE Oxygen System		May 15/24

CONTENT	CHG CODE	LAST REVISION DATE
FIGURE Crew Oxygen Storage - Location		May 15/24
Subject 5-4-5		
Fuel Servicing		Apr 01/24
FIGURE Refuel/Defuel Control Panel		Apr 01/24
FIGURE Refuel/Defuel Couplings		Apr 01/24
FIGURE Overpressure Protectors and NACA Flame Arrestor		Apr 01/24
Subject 5-4-6		A = = 04/04
Pneumatic Servicing		Apr 01/24
FIGURE Low Pressure Ground Connectors		Apr 01/24
FIGURE High Pressure Ground Connectors		Apr 01/24
Subject 5-4-7		
Engine Oil Servicing		Apr 01/24
FIGURE Engine Oil Servicing		Apr 01/24
VFG Oil Servicing		Apr 01/24
FIGURE VFG Oil Servicing		Apr 01/24
Starter Oil Servicing		Apr 01/24
FIGURE Starter Oil Servicing		Apr 01/24
APU Oil Servicing		Apr 01/24

CONTENT	CHG CODE	LAST REVISION DATE
FIGURE APU Oil Servicing		Apr 01/24
Subject 5-4-8		
Potable Water Servicing	R	Dec 01/24
FIGURE Potable-Water Ground Service Panel		Nov 01/16
FIGURE Potable-Water Ground Service Panel	N	Dec 01/24
FIGURE Forward Drain Port	R	Dec 01/24
FIGURE Potable-Water Tanks Location		Nov 01/16
FIGURE Potable-Water Tanks Location	N	Dec 01/24
Subject 5-4-9		
Waste Water Servicing		Jun 01/18
FIGURE Waste-Water Ground Service Panel		Nov 01/16
FIGURE Waste Tanks Location		Nov 01/16
Subject 5-4-10		
Cargo Control Panels	R	Dec 01/24
FIGURE Forward Cargo Control Panels	R	Dec 01/24
FIGURE Aft Cargo Control Panels	R	Dec 01/24
Subject 5-5-0		
Engine Starting Pneumatic Requirements		Apr 01/24
Subject 5-6-0		
Ground Pneumatic Power Requirements		Jun 01/18

CONTENT	CHG CODE	LAST REVISION DATE
FIGURE Ground Pneumatic Power Requirements		Jun 01/18
FIGURE Ground Pneumatic Power Requirements		Jun 01/18
Subject 5-7-0		
Preconditioned Airflow Requirements		Jun 01/18
FIGURE Preconditioned Airflow Requirements		Jun 01/18
FIGURE Preconditioned Airflow Requirements		Jun 01/18
Subject 5-8-0		1.5 / 2.4
Ground Towing Requirements		May 15/24
FIGURE Ground Towing Requirements		Apr 01/24
FIGURE Ground Towing Requirements		Apr 01/24
Subject 5-9-0		
De-Icing and External Cleaning		Apr 01/24
CHAPTER 6 Subject 6-1-0		
Engine Exhaust Velocities and Temperatures		Apr 01/24
Subject 6-1-1		
Engine Exhaust Velocities Contours - Ground Idle Power		Apr 01/24
FIGURE Ground Idle Power - TRENT XWB-84 Engine		Nov 01/16
FIGURE Ground Idle Power - TRENT XWB-97 Engine		Apr 01/24
Subject 6-1-2		
Engine Exhaust Temperatures Contours - Ground Idle Power		Apr 01/24

CONTENT	CHG CODE	LAST REVISION DATE
FIGURE Ground Idle Power - TRENT XWB-84 Engine		Nov 01/16
FIGURE Ground Idle Power - TRENT XWB-97 Engine		Apr 01/24
Subject 6-1-3		
Engine Exhaust Velocities Contours - Breakaway Power		Apr 01/24
FIGURE Breakaway Power (11% MTO Thrust) - TRENT XWB-84 Engine		Nov 01/16
FIGURE Breakaway Power (22% MTO Thrust) - TRENT XWB-84 Engine		Nov 01/16
FIGURE Breakaway Power (11% MTO Thrust) - TRENT XWB-97 Engine		Apr 01/24
FIGURE Breakaway Power (22% MTO Thrust) - TRENT XWB-97 Engine		Apr 01/24
Subject 6-1-4		
Engine Exhaust Temperatures Contours - Breakaway Power		Apr 01/24
FIGURE Breakaway Power (11% MTO Thrust) - TRENT XWB-84 Engine		Nov 01/16
FIGURE Breakaway Power (22% MTO Thrust) - TRENT XWB-84 Engine		Nov 01/16
FIGURE Breakaway Power (11% MTO Thrust) - TRENT XWB-97 Engine		Apr 01/24
FIGURE Breakaway Power (22% MTO Thrust) - TRENT XWB-97 Engine		Apr 01/24
Subject 6-1-5		

CONTENT	CHG CODE	LAST REVISION DATE
Engine Exhaust Velocities Contours - Max Take-Off Power		Apr 01/24
FIGURE Max Take-Off Power - TRENT XWB-84 Engine		Apr 01/24
FIGURE Max Take-Off Power - TRENT XWB-97 Engine		Apr 01/24
Subject 6-1-6		
Engine Exhaust Temperatures Contours - Max Take-Off Power		Apr 01/24
FIGURE Max Take-Off Power - TRENT XWB-84 Engine		Nov 01/16
FIGURE Max Take-Off Power - TRENT XWB-97 Engine		Apr 01/24
Subject 6-3-0		
Danger Areas of the Engines		Apr 01/24
Subject 6-3-1		
Danger Areas of the Engines - Ground Idle Power		Apr 01/24
FIGURE Ground Idle Power - TRENT XWB-84 Engine		Nov 01/16
FIGURE Ground Idle Power - TRENT XWB-97 Engine		Apr 01/24
Subject 6-3-3		
Danger Areas of the Engines - Max Take-Off Power		Apr 01/24
FIGURE Max Take-Off Power - TRENT XWB-84 Engine		Nov 01/16
FIGURE Max Take-Off Power - TRENT XWB-97 Engine		Apr 01/24
Subject 6-4-0		
APU Exhaust Velocities and Temperatures		Apr 01/24
FIGURE APU Exhaust Velocities and Temperatures		Apr 01/24

CONTENT	CHG CODE	LAST REVISION DATE
CHAPTER 7 Subject 7-1-0		
General Information		Apr 01/24
Subject 7-2-0		Apr 01/24
Landing Gear Footprint		·
FIGURE Landing Gear Footprint	R	Dec 01/24
FIGURE Landing Gear Footprint		Apr 01/24
FIGURE Landing Gear Footprint		Apr 01/24
Subject 7-3-0		
Maximum Pavement Loads		Apr 01/24
FIGURE Maximum Pavement Loads	R	Dec 01/24
FIGURE Maximum Pavement Loads		Apr 01/24
FIGURE Maximum Pavement Loads		Apr 01/24
Subject 7-4-0		
Landing Gear Loading on Pavement		Apr 01/24
Subject 7-5-0		
Flexible Pavement Requirements - US Army Corps of Engineers Design Method		Apr 01/24
Subject 7-6-0		
Flexible Pavement Requirements - LCN Conversion		Apr 01/24
Subject 7-7-0		
Rigid Pavement Requirements - Portland Cement Association Design Method		Apr 01/24

CONTENT	CHG CODE	LAST REVISION DATE
Subject 7-8-0		
Rigid Pavement Requirements - LCN Conversion		Apr 01/24
Subject 7-9-0		
ACN/PCN Reporting System - Flexible and Rigid Pavements		Apr 01/24
FIGURE ACN Table	R	Dec 01/24
FIGURE ACN Table		Apr 01/24
FIGURE ACN Table		Apr 01/24
Subject 7-10-0		
ACR/PCR Reporting System - Flexible and Rigid Pavements		May 15/24
FIGURE ACR Table	R	Dec 01/24
FIGURE ACR Table		May 15/24
FIGURE ACR TABLE		May 15/24
CHAPTER 8 Subject 8-0-0		
Scaled Drawings		Apr 01/24
FIGURE Scaled Drawings		Nov 01/16
FIGURE Scaled Drawings		Nov 01/16
FIGURE Scaled Drawings		Apr 01/24
CHAPTER 10		
Subject 10-0-0		
Aircraft Rescue and Fire Fighting	R	Dec 01/24

CONTENT	CHG CODE	LAST REVISION DATE
FIGURE Front Page		Jul 01/21
FIGURE Front Page		Jul 01/21
FIGURE Front Page		Apr 01/24
FIGURE Highly Flammable and Hazardous Materials and Components		Jun 01/19
FIGURE Highly Flammable and Hazardous Materials and Components		Jun 01/19
FIGURE Highly Flammable and Hazardous Materials and Components	N	Dec 01/24
FIGURE Crew Rest Compartments Location		Nov 01/16
FIGURE Crew Rest Compartments Location		Nov 01/16
FIGURE Crew Rest Compartment Location	R	Dec 01/24
FIGURE Wheel/Brake Overheat		Nov 01/16
FIGURE Wheel/Brake Overheat		Apr 01/24
FIGURE Composite Materials Location		Nov 01/16
FIGURE Composite Materials Location		Nov 01/16
FIGURE Composite Materials Location	R	Dec 01/24
FIGURE Ground Lock Safety Devices		Nov 01/16
FIGURE Ground Lock Safety Devices		Apr 01/24
FIGURE Emergency Evacuation Devices		Jun 01/18

CONTENT	CHG CODE	LAST REVISION DATE
FIGURE Emergency Evacuation Devices		Jun 01/18
FIGURE Emergency Evacuation Devices	R	Dec 01/24
FIGURE Pax/Crew Doors and Emergency Exits		Apr 01/24
FIGURE Cockpit Emergency Exit		Apr 01/24
FIGURE FWD and AFT Lower Deck Cargo Doors		Apr 01/24
FIGURE Control Panels		Apr 01/24
FIGURE APU Compartment Access		Apr 01/24
FIGURE Aircraft Ground Clearances		Jun 01/19
FIGURE Aircraft Ground Clearances		Nov 01/16
FIGURE Aircraft Ground Clearances	R	Dec 01/24
FIGURE Structural Break-in Points		Nov 01/16
FIGURE Batteries Location and Access		Nov 01/16
FIGURE Batteries Location and Access		Nov 01/16
FIGURE Batteries Location and Access	R	Dec 01/24

TABLE OF CONTENTS

1	SCOPE
1-1-0	Introduction
1-2-0	Glossary
2	AIRCRAFT DESCRIPTION
2-1-0	General Aircraft Characteristics Data
2-2-0	General Aircraft Dimensions
2-3-0	Ground Clearances
2-4-0	Interior Arrangements - Plan View
2-5-0	Interior Arrangements - Cross Section
2-6-0	Cargo Compartments
2-7-0	Door Clearances and Location
2-8-0	Escape Slides
2-9-0	Landing Gear
2-9-1	Landing Gear Maintenance Pits
2-10-0	Exterior Lighting
2-11-0	Antennas and Probes Location
2-12-0	Engine and Nacelle
2-12-1	Auxiliary Power Unit
2-13-0	Leveling, Symmetry and Alignment
2-14-1	Jacking for Maintenance
2-14-2	Jacking of the Landing Gear
3	AIRCRAFT PERFORMANCE
3-1-0	General Information
3-2-0	Payload/Range - ISA Conditions
3-3-0	Take-Off Weight Limitation
3-3-3	Aerodrome Reference Code
3-4-0	Landing Field Length
3-5-0	Final Approach Speed
4	GROUND MANEUVERING
4-1-0	General Information
4-2-0	Turning Radii
4-3-0	Minimum Turning Radii
4-4-0	Visibility from Cockpit in Static Position

4-5-0	Runway and Taxiway Turn Paths
4-5-1	135° Turn - Runway to Taxiway
4-5-2	90° Turn - Runway to Taxiway
4-5-3	180° Turn on a Runway
4-5-4	135° Turn - Taxiway to Taxiway
4-5-5	90° Turn - Taxiway to Taxiway
4-6-0	Runway Holding Bay
4-7-0	Minimum Line-Up Distance Corrections
4-8-0	Aircraft Mooring
5	TERMINAL SERVICING
5-1-0	Aircraft Servicing Arrangements
5-1-1	Typical Ramp Layout (Open Apron)
5-1-2	Typical Ramp Layout (Gate)
5-2-0	Terminal Operations - Full Servicing Turn Round Time
5-3-0	Terminal Operations - Transit Turn Round Time
5-4-0	Ground Service Connections Layout
5-4-1	Grounding (Earthing) Points
5-4-2	Hydraulic Servicing
5-4-3	Electrical Servicing
5-4-4	Oxygen Servicing
5-4-5	Fuel Servicing
5-4-6	Pneumatic Servicing
5-4-7	Oil Servicing
5-4-8	Potable Water Servicing
5-4-9	Waste Water Servicing
5-4-10	Cargo Control Panels
5-5-0	Engine Starting Pneumatic Requirements
5-6-0	Ground Pneumatic Power Requirements
5-7-0	Preconditioned Airflow Requirements
5-8-0	Ground Towing Requirements
5-9-0	De-Icing and External Cleaning
6	OPERATING CONDITIONS
6-1-0	Engine Exhaust Velocities and Temperatures
6-1-1	Engine Exhaust Velocities Contours - Ground Idle Power
6-1-2	Engine Exhaust Temperatures Contours - Ground Idle Power
6-1-3	Engine Exhaust Velocities Contours - Breakaway Power
6-1-4	Engine Exhaust Temperatures Contours - Breakaway Power

6-1-5	Engine Exhaust Velocities Contours - Max Take-Off Power
6-1-6	Engine Exhaust Temperatures Contours - Max Take-Off Power
6-3-0	Danger Areas of the Engines
6-3-1	Danger Areas of the Engines - Ground Idle Power
6-3-3	Danger Areas of the Engines - Max Take-Off Power
6-4-0	APU Exhaust Velocities and Temperatures
7	PAVEMENT DATA
7-1-0	General Information
7-2-0	Landing Gear Footprint
7-3-0	Maximum Pavement Loads
7-4-0	Landing Gear Loading on Pavement
7-5-0	Flexible Pavement Requirements - US Army Corps of Engineers Design Method
7-6-0	Flexible Pavement Requirements - LCN Conversion
7-7-0	Rigid Pavement Requirements - Portland Cement Association Design Method
7-8-0	Rigid Pavement Requirements - LCN Conversion
7-9-0	ACN/PCN Reporting System - Flexible and Rigid Pavements
7-10-0	ACR/PCR Reporting System - Flexible and Rigid Pavements
8	SCALED DRAWINGS
8-0-0	Scaled Drawings
10	AIRCRAFT RESCUE AND FIRE FIGHTING
10-0-0	Aircraft Rescue and Fire Fighting

SCOPE

1-1-0 Introduction

**ON A/C A350-1000 A350-1000F A350-900

Introduction

**ON A/C A350-1000 A350-900

1. General

The A350 AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING (AC) manual is issued for the A350-900 and A350-1000 series aircraft to give necessary data to airport operators, airlines and Maintenance/Repair Organizations (MRO) for airport and maintenance facility planning.

The data given in this issue of the A350 AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING (AC) can change until the completion of the design and flight test phases. It is given for guidance only and does not constitute a contractual commitment.

This document is not customized and must not be used for training.

The A350 XWB is the world's most modern and eco-efficient aircraft family that will shape the future of air travel. It is the long-range leader in the large wide-body market (300 to 410 seats). The A350 XWB has the latest aerodynamic design, carbon fiber fuselage and wings, and equipped with new fuel efficient Rolls-Royce-Trent XWB engines. The Trent XWB engine offers the most advanced technologies. It delivers the best aircraft performance and reliability with the lowest fuel consumption and environmental impact. Together with simple and robust systems, these latest technologies lead to unmatched operational efficiency with a reduction of 25 percent in fuel burn, emissions and operating costs and important reduction in maintenance cost.

The A350 XWB has an Airspace cabin designed by Airbus that focuses on well-being on board thanks to its quiet twin-aisle cabin and the new air management systems.

The A350 XWB gives a high level of cargo hold capability and flexibility to meet the requirements of the market. Two wide cargo doors and a cargo loading system, compatible with the lower-deck cargo containers and pallet standards make interlining operations possible and the loading easier.

The A350 XWB family includes two optimal and complementary models, the baseline A350-900 and its larger sibling aircraft, the A350-1000. The two aircraft share the best operating efficiency and an exceptional level of comfort with the Airspace cabin. Based on a clean-sheet design, the A350 XWB by its essence is a very flexible platform. It is operated on domestic, regional, long haul or ultra-long-haul services.

The A350-900 is an important member of the A350 XWB family, in service since January 2015, that accommodates 300 to 350 passengers in a standard three-class configuration. The A350-1000 is Airbus's largest widebody aircraft in the twin-aisle category that measures almost 74 meters nose-to-tail, has a 7-meter longer fuselage than the baseline model A350-900. It provides a space larger by 40 percent than the A350-900 for premium cabin products. In a typical three-class configuration, the A350-1000 can accommodate 350 to 410 passengers and made its entry into service in February 2018.

The A350 XWB has a true long-range capability of up to 8 400 nm (15 600 km).

From 2018 onwards, the A350-900 comes with a better baseline. It consists of an aerodynamic performance improvement package that includes extended winglets, enhanced flap support fairings, wing retwist and modified overwing fairings and an increased Maximum Takeoff Weight (MTOW) of 280 tonnes.

These changes enhance the A350 XWB unrivalled operational flexibility and efficiency for all market segments.

Airbus launched the Ultra Long Range (ULR) version of its A350-900 as part of the company's philosophy of continuous innovation. The A350-900ULR is the most range-capable variant in the A350 XWB family with a range of 9 700 nm (18 000 km). It also has a higher fuel capacity and a modified fuel system relative to the baseline (relocation of sensors, pumps and pipes). The A350-900ULR can perform a non-stop flight of more than 20 hours. It gives the highest level of comfort for passengers and crew, with the best economics over long flight time. The inherent flexibility of the A350 XWB aircraft means that the A350-900ULR can easily change to a standard A350-900 with the specifications required by the operator.

Correspondence concerning this publication must be directed to:

AIRBUS S.A.S.
Customer Services
Technical Data Support and Services
1 Rond Point Maurice BELLONTE
31707 BLAGNAC CEDEX
FRANCE

**ON A/C A350-1000F

2. General

Introduced as part of Airbus's ongoing Freighter Strategy, the A350F (A350-1000F) is its first line-built large freighter and uses the proven A350-1000 as its platform, maintaining pilot commonality and more than 98% commonality of parts which will boost maturity at EIS. The A350F will be the first freighter in service to comply with the International Civil Aviation Organization (ICAO) regulations on CO2 emissions, which will be implemented at the end of 2027.

It is targeted to replace the aging freighters by offering the same volumetric capability and a similar structural capability while being 35 tonne lighter. Equipped with the world's most efficient engine, the Rolls-Royce Trent XWB will deliver a 40% lower fuel burn. The lightweight design results in a 40% reduction in overall costs, including lower fuel, maintenance, landing, Aircraft Classification Number (ACN), navigation, emissions, and airport noise costs. This ensures that the A350F will be more sustainable, both in terms of emissions and noise and also from a business point of view.

The aircraft will feature the largest side door of any freighter, accommodating bigger package sizes than those possible on current freighters. This, combined with the latest next-generation Cargo Loading System (CLS) and an Environmental Control System (ECS) adapted to the requirements of the freight market and fully flexible loading without the risk of tail tip, offers capabilities beyond anything that is flying today.

The A350F is capable of a range of 4 700 nm (8 800 km) with a maximum structural payload of 109 tonne and a volume of 723 cubic meters in a palletized configuration, which gives it the ability to connect all freight hubs worldwide and to fly up to 6 000 nm (11 200 km) with a typical maximum volumetric payload.

Correspondence concerning this publication must be directed to:

AIRBUS S.A.S.
Customer Services
Technical Data Support and Services
1 Rond Point Maurice BELLONTE
31707 BLAGNAC CEDEX
FRANCE

1-2-0 Glossary

**ON A/C A350-1000 A350-1000F A350-900

Glossary

List of Abbreviations

A/C Aircraft

ACN Aircraft Classification Number
ACR Aircraft Classification Rating
AMM Aircraft Maintenance Manual

APU Auxiliary Power Unit B/C Business Class

CBR California Bearing Ratio
CC Cargo Compartment

CDOP Cargo Door Operation Panel

CG Center of Gravity
CLS Cargo Loading System

E Young's Modulus

ESWL Equivalent Single Wheel Load FAA Federal Aviation Administration

FDL Fuselage Datum Line

FR Frame

FSTE Full Size Trolley Equivalent

FWD Forward

GPU Ground Power Unit

GSE Ground Support Equipment

ICAO International Civil Aviation Organisation ISA International Standard Atmosphere

L Radius of relative stiffness
LCN Load Classification Number

LD Load Device
LD Lower Deck
LH Left Hand
LP Low Pressure
LPS Last Pax Seating

MAC Mean Aerodynamic Chord

MAX Maximum

MDCC Main Deck Cargo Compartment

MFC Maximum Fuel Capacity

MIN Minimum

MLG Main Landing Gear
NLG Nose Landing Gear
OAT Outside Air Temperature
OCP Outside Control Panel

PAX Passenger

PBB Passenger Boarding Bridge
PCA Portland Cement Association
PCN Pavement Classification Number
PCR Pavement Classification Rating
PRM Passenger with Reduced Mobility

RH Right Hand
ULD Unit Load Device
ULR Ultra Long Range
US United States

VFG Variable Frequency Generator

WV Weight Variant Y/C Economic Class

**ON A/C A350-1000 A350-900

2. Design Weight Terminology

Maximum Design Ramp Weight (MRW):

Maximum weight for ground maneuver (including weight of taxi and run-up fuel) as limited by aircraft strength and airworthiness requirements. It is also called Maximum Design Taxi Weight (MTW).

Maximum Design Landing Weight (MLW):

Maximum weight for landing as limited by aircraft strength and airworthiness requirements.

Maximum Design Takeoff Weight (MTOW):

Maximum weight for takeoff as limited by aircraft strength and airworthiness requirements. (This is the maximum weight at start of the take-off run).

Maximum Design Zero Fuel Weight (MZFW):

Maximum permissible weight of the aircraft without usable fuel.

Maximum Seating Capacity:

Maximum number of passengers specifically certified or anticipated for certification.

Usable Volume:

Usable volume available for cargo, pressurized fuselage, passenger compartment and cockpit.

Water Volume:

Maximum volume of cargo compartment.

Usable Fuel:

Fuel available for aircraft propulsion.

**ON A/C A350-1000F

Design Weight Terminology

Maximum Design Ramp Weight (MRW):

Maximum weight for ground maneuver (including weight of taxi and run-up fuel) as limited by aircraft strength and airworthiness requirements. It is also called Maximum Design Taxi Weight (MTW).

Maximum Design Landing Weight (MLW):

Maximum weight for landing as limited by aircraft strength and airworthiness requirements.

Maximum Design Takeoff Weight (MTOW):

Maximum weight for takeoff as limited by aircraft strength and airworthiness requirements. (This is the maximum weight at start of the take-off run).

Maximum Design Zero Fuel Weight (MZFW):

Maximum permissible weight of the aircraft without usable fuel.

Maximum Seating Capacity:

Maximum number of crew specifically certified or anticipated for certification.

Usable Volume:

Usable volume available for cargo, pressurized fuselage, main deck cargo compartment and cockpit.

Water Volume:

Maximum volume of cargo compartment.

Usable Fuel:

Fuel available for aircraft propulsion.

AIRCRAFT DESCRIPTION

2-1-0 General Aircraft Characteristics Data

**ON A/C A350-1000 A350-1000F A350-900

General Aircraft Characteristics Data

**ON A/C A350-900

1. The tables that follow give characteristics of A350–900 models, this data is applicable to each weight variant:

	Aircraft Characteristics					
	WV000	WV001	WV002	WV003	WV004	
Maximum Taxi Weight (MTW) Maximum Ramp Weight (MRW)			J		260 900 kg (575 187 lb)	
Maximum Take- Off Weight (MTOW)		•	J		260 000 kg (573 202 lb)	
Maximum Landing Weight (MLW)	_	•	J		207 000 kg (456 357 lb)	
Maximum Zero Fuel Weight (MZFW)		•	•		195 700 kg (431 445 lb)	

	Aircraft Characteristics						
	WV005	WV006	WV007	WV008	WV009		
Maximum Taxi							
Weight (MTW)	250 900 kg	272 900 kg	268 900 kg	240 900 kg	275 900 kg		
Maximum Ramp	(553 140 lb)	(601 642 lb)	(592 824 lb)	(531 094 lb)	(608 256 lb)		
Weight (MRW)							
Maximum Take-	250 000 kg	272 000 kg	268 000 kg	240 000 kg	275 000 kg		
Off Weight	(551 156 lb)	(599 658 lb)	(590 839 lb)	(529 110 lb)	(606 272 lb)		
(MTOW)	(001 100 10)	(000 000 10)	(000 000 10)	(020 110 10)	(000 21 2 10)		

@A350

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

	Aircraft Characteristics					
	WV005	WV006	WV007	WV008	WV009	
Maximum Landing Weight (MLW)	205 000 kg (451 948 lb)	207 000 kg (456 357 lb)				
Maximum Zero Fuel Weight (MZFW)	192 000 kg (423 288 lb)	195 700 kg (431 445 lb)	194 000 kg (427 697 lb)	195 700 kg (431 445 lb)	197 200 kg (434 752 lb)	

	Aircraft Characteristics					
	WV010	WV011	WV012	WV013 (ULR)	WV014	
Maximum Taxi Weight (MTW) Maximum Ramp Weight (MRW)	280 900 kg (619 279 lb)	255 900 kg (564 163 lb)	250 900 kg (553 140 lb)	280 900 kg (619 279 lb)	235 900 kg (520 071 lb)	
Maximum Take- Off Weight (MTOW)	280 000 kg (617 295 lb)	255 000 kg (562 179 lb)	250 000 kg (551 156 lb)	280 000 kg (617 295 lb)	235 000 kg (518 087 lb)	
Maximum Landing Weight (MLW)	207 000 kg (456 357 lb)	207 000 kg (456 357 lb)	207 000 kg (456 357 lb)	205 000 kg (451 948 lb)	207 000 kg (456 357 lb)	
Maximum Zero Fuel Weight (MZFW)	195 700 kg (431 445 lb)	195 700 kg (431 445 lb)	194 000 kg (427 697 lb)	192 000 kg (423 288 lb)	195 700 kg (431 445 lb)	

		Aircraft Cha	aracteristics		
	WV015	WV016	WV017	WV018	WV019
Maximum Taxi Weight (MTW) Maximum Ramp Weight (MRW)	277 900 kg (612 665 lb)	278 900 kg (614 870 lb)	210 900 kg (464 955 lb)	217 900 kg (480 388 lb)	235 900 kg (520 071 lb)
Maximum Take- Off Weight (MTOW)	277 000 kg (610 681 lb)	278 000 kg (612 886 lb)	210 000 kg (462 971 lb)	217 000 kg (478 403 lb)	235 000 kg (518 087 lb)
Maximum Landing Weight (MLW)	205 000 kg (451 948 lb)	207 000 kg (456 357 lb)	205 000 kg (451 948 lb)	207 000 kg (456 357 lb)	205 000 kg (451 948 lb)
Maximum Zero Fuel Weight (MZFW)	192 000 kg (423 288 lb)	195 700 kg (431 445 lb)	195 700 kg (431 445 lb)	195 700 kg (431 445 lb)	192 000 kg (423 288 lb)

	Aircraft Characteristics					
	WV020	WV021	WV022	WV023	WV024	WV025
Maximum Taxi Weight (MTW) Maximum Ramp Weight (MRW)	283900 kg (625893 lb)	277 900 kg (612 665 lb)	280 900 kg (619 279 lb)	280 900 kg (619 279 lb)	250 900 kg (553 140 lb)	245 900 kg (542 117 lb)
Maximum Take-Off Weight (MTOW)	283900 kg (625893 lb)	277 000 kg (610 681 lb)	280 000 kg (617 295 lb)	280 000 kg (617 295 lb)	250 000 kg (551 156 lb)	245 000 kg (540 133 lb)
Maximum Landing Weight (MLW)	207 000 kg (456 357 lb)	207 000 kg (456 357 lb)	207 000 kg (456 357 lb)	205 000 kg (451 948 lb)	207 000 kg (456 357 lb)	207 000 kg (456 357 lb)
Maximum Zero Fuel Weight (MZFW)	195 700 kg (431 445 lb)	192 000 kg (423 288 lb)	194 000 kg (427 697 lb)	192 000 kg (423 288 lb)	195 700 kg (431 445 lb)	195 700 kg (431 445 lb)

2. The table that follows gives characteristics of A350–900 models, this data is applicable to each weight variant:

Airc	Aircraft Characteristics				
Standard Seating Capacity	315 (48 BC / 267 EC)				
(in a two class layout)	173 (80 BC / 93 EC) for A350-900 (ULR)				
	138 000 L				
	(36 456 USgal)				
	108 330 kg				
	(238 827 lb)				
Usable Fuel Capacity	165 000 L				
(density = 0.785 kg/l)	(43 589 USgal)				
	for A350–900 (ULR)				
	129 500 kg				
	(285 499 lb)				
	for A350–900 (ULR)				
Unequipped Pressurized Volume	1313 m3				
	(46368 ft.3)				

Aircraft Characteristics				
Cockpit Volume		8.23 m3		
Cockpit volume		(291 ft.3)		
Passenger Compartment Vo	olume	473.7 m3		
rassenger Compartment vo	Julie	(16 729 ft.3)		
		89.5 m3		
		(3 161 ft.3)		
	(Based on LD3)	For A350–900 (ULR) configuration, the		
		forward cargo hold is de-activated (no cargo		
		operation is possible).		
ĺ		63.2 m3		
	'Dood on 99" v 195"	(2 232 ft.3)		
· '	(Based on 88" x 125"	For A350–900 (ULR) configuration, the		
CC t	pallet)	forward cargo hold is de-activated (no cargo		
		operation is possible).		
ĺ		69.1 m3		
	(Deced on OC!) v 405!!	(2 440 ft.3)		
]	(Based on 96" x 125" pallet)	For A350–900 (ULR) configuration, the		
F		forward cargo hold is de-activated (no cargo		
		operation is possible).		
,	(Deceded D2)	71.6 m3		
	(Based on LD3)	(2 529 ft.3)		
Llaabla Valuma Aft CC	Based on 88" x 125"	52.7 m3		
Usable Volume, Aft CC	pallet)	(1 861 ft.3)		
[Based on 96" x 125"	57.6 m3		
ļ.	pallet)	(2 034 ft.3)		
	(0) = 1 = 1	9.12 m3		
	(Standard)	(322 ft.3)		
	(Option 1 (Coro Book))	8.76 m3		
1	(Option 1 (Core Rack))	(309 ft.3)		
Usable Volume, Bulk CC (Option 2 (IFE Rack Size	8.34 m3		
	1))	(295 ft.3)		
[Option 3 (IFE Rack Size	8.16 m3		
	2))	(288 ft.3)		
Water Volume, Forward CC		113.4 m3		
		(4 005 ft.3)		
Water Volume, Aft CC		95.8 m3		
valer volume, All CC		(3 383 ft.3)		
	(Standard)	11.4 m3		
Water Volume, Bulk CC	(Standard)	(403 ft.3)		
Ī	Option 1 (Core Rack))	10.95 m3		

	Aircraft Charac	cteristics
		(387 ft.3)
(Option	2 (IFE Rack Size	10.42 m3
1))		(368 ft.3)
(Option	3 (IFE Rack Size	10.2 m3
2))		(360 ft.3)
Maximum Water Volume, Bulk CC		11.4 m3
Waxiiiidiii Watei Voidiile, Buik CC	,	(403 ft.3)
Load Capacity, Forward CC		22 000 kg
Load Capacity, I of ward CC		(48 502 lb)
Load Capacity, Aft CC		19 000 kg
Load Capacity, Art CC		(41 888 lb)
Load Capacity, Bulk CC		1 500 kg
Load Capacity, Bulk CC		(3 307 lb)

**ON A/C A350-1000

3. The table that follows gives characteristics of A350–1000 models, this data is applicable to each weight variant:

		Aircraft Cha	aracteristics		
	WV000	WV001	WV002	WV004	WV005
Maximum Taxi Weight (MTW) Maximum Ramp Weight (MRW)	308 900 kg (681 008 lb)	311 900 kg (687 622 lb)	316 900 kg (698 645 lb)	308 900 kg (681 008 lb)	270 900 kg (597 233 lb)
Maximum Take- Off Weight (MTOW)	308 000 kg (679 024 lb)	311 000 kg (685 638 lb)	316 000 kg (696 661 lb)	308 000 kg (679 024 lb)	270 000 kg (595 249 lb)
Maximum Landing Weight (MLW)	233 000 kg (513 677 lb)	236 000 kg (520 291 lb)			
Maximum Zero Fuel Weight (MZFW)	220 000 kg (485 017 lb)	223 000 kg (491 631 lb)			

	Aircraft Characteristics					
	WV006	WV007	WV009	WV010	WV011	WV014
Maximum						
Taxi Weight						
(MTW)	319 900 kg	260 900 kg	290 900 kg	300 900 kg	316 900 kg	314750 kg
Maximum	(705 259 lb)	(575 187 lb)	(641 325 lb)	(663 371 lb)	(698 645 lb)	(693906 lb)
Ramp Weight (MRW)						
Maximum						
Take-Off	319 000 kg	260 000 kg	290 000 kg	300 000 kg	316 000 kg	313850 kg
Weight	(703 275 lb)	(573 202 lb)	(639 341 lb)	(661 387 lb)	(696 661 lb)	(691921 lb)
(MTOW)						
Maximum						
Landing	236 000 kg	236 000 kg	233 000 kg	233 000 kg	233 000 kg	233000 kg
Weight	(520 291 lb)	(520 291 lb)	(513 677 lb)	(513 677 lb)	(513 677 lb)	(513677 lb)
(MLW)						
Maximum						
Zero Fuel	223 000 kg	223 000 kg	220 000 kg	220 000 kg	220 000 kg	220000 kg
Weight	(491 631 lb)	(491 631 lb)	(485 017 lb)	(485 017 lb)	(485 017 lb)	(485017 lb)
(MZFW)						

4. The table that follows gives characteristics of A350–1000 models, this data is applicable to each weight variant:

Aircraft Characteristics					
Standard Seating Capacity (in a two class layout)		369 (54 BC / 315 EC)			
Usable Fuel Capacity (density = 0.785 kg/l)	158 790 L (41 949 USgal) 124 650 kg				
Unequipped Pressurized Volume		(274 806 lb) 1495 m3			
Cockpit Volume	(52796 ft.3) 8.23 m3 (291 ft.3)				
Passenger Compartment Volur	538.3 m3 (19 010 ft.3)				
Usable Volume, Forward CC	(Based on LD3)	107.4 m3 (3 793 ft.3)			

@A350

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

	Aircraft Characteristics	
	(Based on 88" x 125" pallet)	84.3 m3 (2 977 ft.3)
	(Based on 96" x 125" pallet)	92.2 m3 (3 256 ft.3)
	(Based on LD3)	89.5 m3 (3 161 ft.3)
Usable Volume, Aft CC	(Based on 88" x 125" pallet)	63.2 m3 (2 232 ft.3)
	(Based on 96" x 125" pallet)	69.1 m3 (2 440 ft.3)
	(Standard)	9.12 m3 (322 ft.3)
Lleeble Volume Bulls CC	(Option 1 (Core Rack))	8.76 m3 (309 ft.3)
Usable Volume, Bulk CC	(Option 2 (IFE Rack Size 1))	8.34 m3 (295 ft.3)
	(Option 3 (IFE Rack Size 2))	8.16 m3 (288 ft.3)
Water Volume, Forward CC		138 m3 (4 873 ft.3)
Water Volume, Aft CC		113 m3 (3 991 ft.3)
	(Standard)	11.4 m3 (403 ft.3)
W	(Option 1 (Core Rack))	10.95 m3 (387 ft.3)
Water Volume, Bulk CC	(Option 2 (IFE Rack Size 1))	10.42 m3 (368 ft.3)
	(Option 3 (IFE Rack Size 2))	10.2 m3 (360 ft.3)
Maximum Water Volume, Bulk		11.4 m3 (403 ft.3)
Load Capacity, Forward CC		26 500 kg (58 423 lb)
Load Capacity, Aft CC		24 500 kg (54 013 lb)
Load Capacity, Bulk CC		1 500 kg (3 307 lb)

**ON A/C A350-1000F

5. The table that follows gives characteristics of A350–1000F models, this data is applicable to each weight variant:

	Aircraft Characteristics									
VERSION	WV000	WV002								
Maximum Taxi Weight (MTW)	319900 kg	319900 kg								
Maximum Ramp Weight (MRW)	(705259 lb)	(705259 lb)								
Maximum Take-Off Weight	319000 kg	319000 kg								
(MTOW)	(703275 lb)	(703275 lb)								
Maximum Landing Weight (MLW)	250000 kg	252000 kg								
waxiindin Landing Weight (WEW)	(551156 lb)	(555565 lb)								
Maximum Zero Fuel Weight	238000 kg	240000 kg								
(MZFW)	(524701 lb)	(529110 lb)								

6. The table that follows gives characteristics of A350–1000F models, this data is applicable to each weight variant:

Aircraft Cha	aracteristics
Standard Seating Capacity (in a two class layout)	4 or 10 EC
Usable Fuel Capacity (density = 0.785 kg/l)	164088 L (43348 USgal) 124 650 kg (274 806 lb)
Unequipped Pressurized Volume	1222 m3 (43155 ft.3)
Cockpit Volume	8.23 m3 (291 ft.3)
Main Deck Cargo Compartment (MDCC)	734 m3 (25921 ft.3)
Usable Volume, Forward CC	TBD
Usable Volume, Aft CC	TBD
Usable Volume, Bulk CC	TBD
Courier Area	21.3 m3 (5627 USgal)
Flight Crew Rest Compartment (FCRC)	5.97 m3 (1 577 USgal)

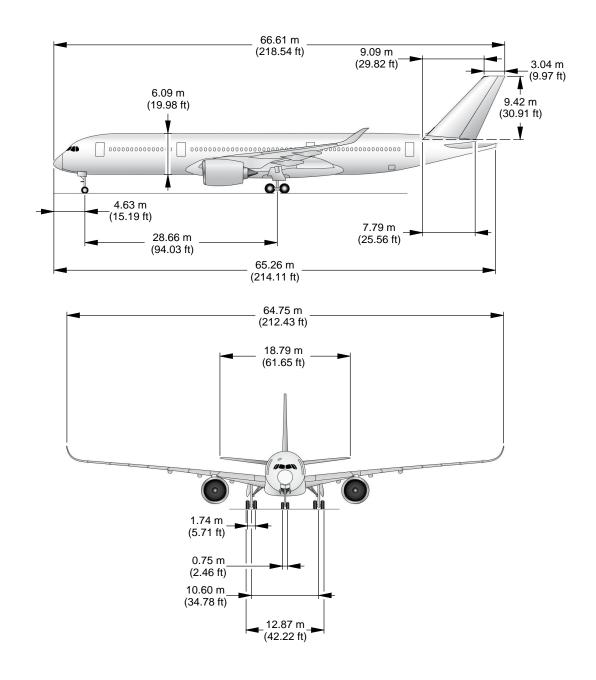
SA350

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

Aircraft Cha	aracteristics
Water Volume, Forward CC	118 m3
, , , , , , , , , , , , , , , , , , , ,	(4167 ft.3)
	1 500 kg
Water Volume, Aft CC	(3 307 lb)
Tracer verame, ruces	113 m3
	(3991 ft.3)
Water Volume Bulk CC	11.4 m3
Water Volume, Bulk CC 	(403 ft.3)
Maximum Water Volume, Bulk CC	12.2 m3
Waxiindiii Watei Volume, Buik CC	(431 ft.3)
Load Capacity, Forward CC	21 308 kg
Load Capacity, Forward CC	(46 976 lb)
Load Capacity, Aft CC	21 308 kg
Load Capacity, Art CC	(46 976 lb)
Load Capacity, Bulk CC	1 500 kg
Load Capacity, Bulk CC	(3 307 lb)

7. The table that follows gives characteristics of A350–1000F models, this data is applicable to each weight variant:

Fuel Tank	Useable fuel	Minimum	Nominal Mass	Maximum Mass	Maximum
Quantities	capacity (liters)	Mass Full at	Full at 0.785	Full for Loads at	Mass Full for
for sizing		0.76 kg/ltr [kg]	kg/ltr [kg]	0.85 kg/ltr [kg]	fuel system at
					0.888 kg/ltr [kg]
Centre tank	105206 L	79957 kg	82587 kg	89425 kg	93423 kg
	(27793 USgal)	(176275 lb)	(182073 lb)	(197149 lb)	(205963 lb)
Wing tanks	29441 L	22375 kg	23111 kg	25025 kg	26143 kg
(Feed tanks) per	(7778 USgal)	(49328 lb)	(50951 lb)	(55171 lb)	(57635 lb)
side					
5 FR Max RCT	20940 L	15914 kg	16438 kg	17799 kg	18595 kg
	(5532 USgal)	(35084 lb)	(36240 lb)	(39240 lb)	(40995 lb)
Total with RCT	185028 L	140621 kg	145247 kg	157274 kg	164305 kg
	(48880 USgal)	(310016 lb)	(320215 lb)	(346730 lb)	(362231 lb)
Total without	164088 L	124707 kg	128809 kg	139475 kg	145710 kg
RCT	(43348 USgal)	(274932 lb)	(283975 lb)	(307490 lb)	(321236 lb)

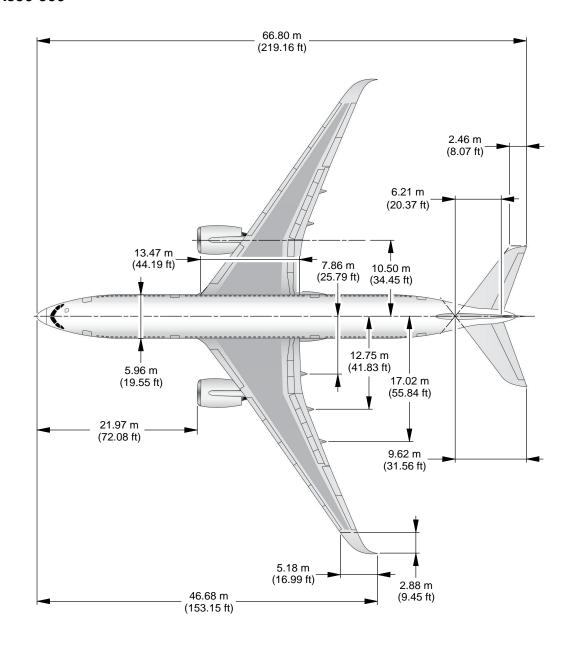

2-2-0 General Aircraft Dimensions

**ON A/C A350-1000 A350-1000F A350-900

General Aircraft Dimensions

1. This section provides general aircraft dimensions.

**ON A/C A350-900

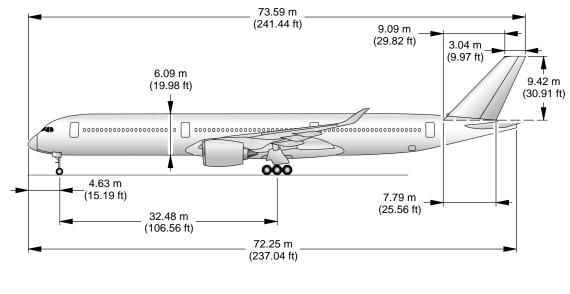


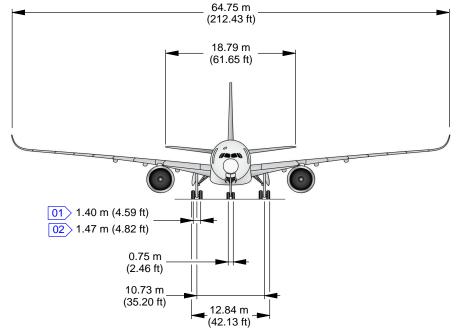
NOTE:RELATED TO AIRCRAFT ATTITUDE AND WEIGHT.

P_AC_020200_1_0010001_01_03

General Aircraft Dimensions (Sheet 1 of 2) FIGURE-2-2-0-991-001-A01

**ON A/C A350-900



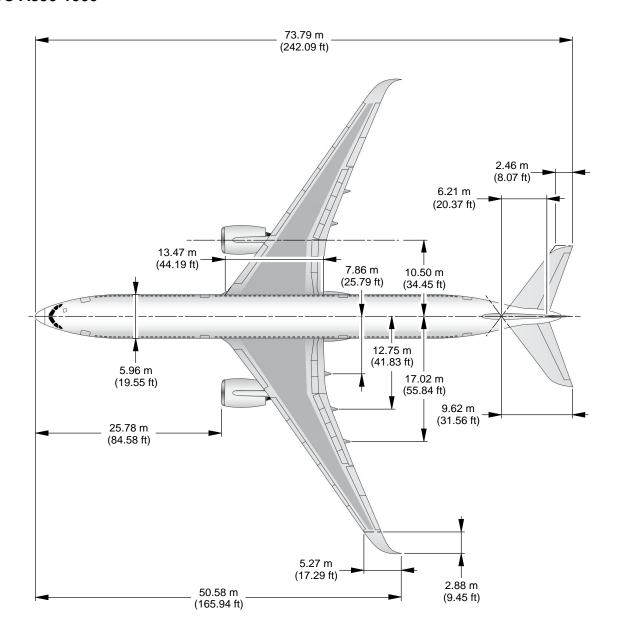

NOTE:RELATED TO AIRCRAFT ATTITUDE AND WEIGHT.

P_AC_020200_1_0010001_02_03

General Aircraft Dimensions (Sheet 2 of 2) FIGURE-2-2-0-991-001-A01

**ON A/C A350-1000

NOTE:

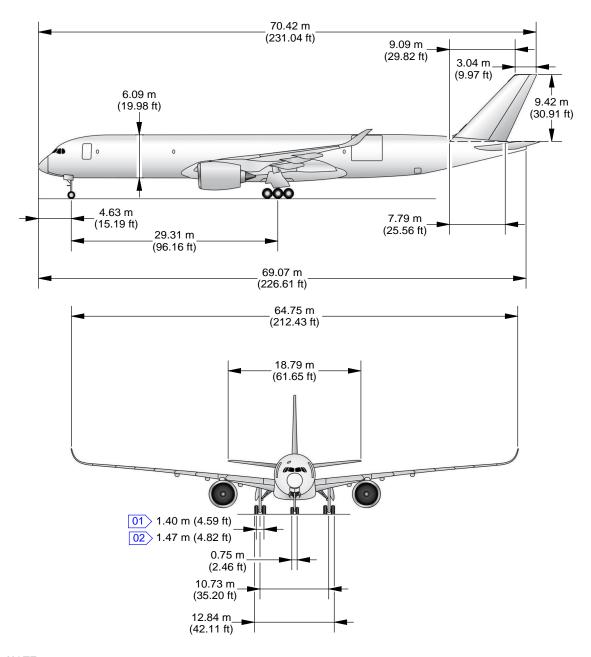

RELATED TO AIRCRAFT ATTITUDE AND WEIGHT.

- 01 FWD & AFT AXLE
- 02 CENTRE AXLE

P_AC_020200_1_0020003_01_00

General Aircraft Dimensions (Sheet 1 of 2) FIGURE-2-2-0-991-002-C01

**ON A/C A350-1000



NOTE:RELATED TO AIRCRAFT ATTITUDE AND WEIGHT.

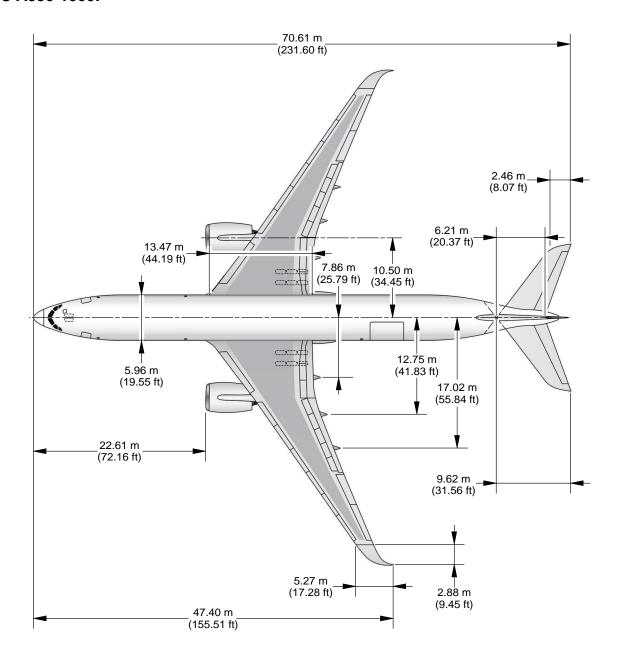
P_AC_020200_1_0020003_02_00

General Aircraft Dimensions (Sheet 2 of 2) FIGURE-2-2-0-991-002-C01

**ON A/C A350-1000F

NOTE:

RELATED TO AIRCRAFT ATTITUDE AND WEIGHT.


01 FWD & AFT AXLE

02 CENTRE AXLE

P_AC_020200_1_0030001_01_00

General Aircraft Dimensions (Sheet 1 of 2) FIGURE-2-2-0-991-003-A01

**ON A/C A350-1000F

NOTE:RELATED TO AIRCRAFT ATTITUDE AND WEIGHT.

P_AC_020200_1_0030001_02_00

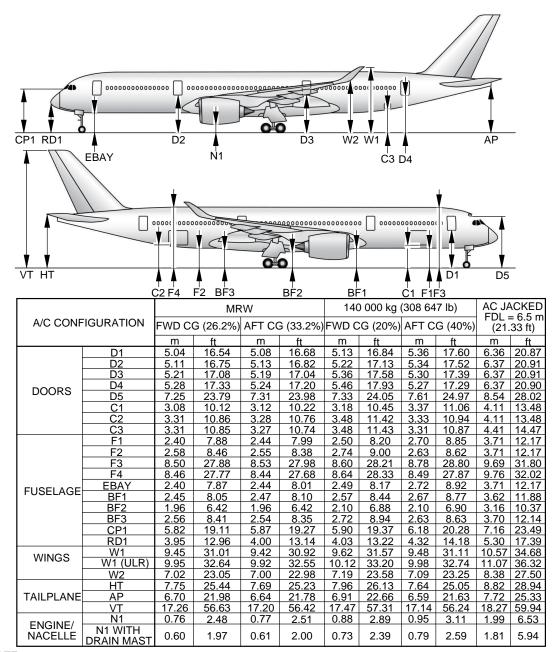
General Aircraft Dimensions (Sheet 2 of 2) FIGURE-2-2-0-991-003-A01

2-3-0 Ground Clearances

**ON A/C A350-1000 A350-1000F A350-900

Ground Clearances

1. This section provides the heights of various points of the aircraft, above the ground, for different aircraft configurations.


Dimensions in the tables are approximate and will vary with tire type, weight and balance and other special conditions.

The dimensions are given for:

- A light weight, for an A/C in maintenance configuration with a FWD CG and an AFT CG,
- An aircraft at MRW with a FWD CG and an AFT CG,
- Aircraft on jacks, FDL at 6.50 m (21.33 ft.).

NOTE: Passenger and cargo door ground clearances are measured from the center of the door sill and from floor level.

**ON A/C A350-900

NOTE:

PASSENGER AND CARGO DOOR GROUND CLEARANCES ARE MEASURED FROM THE CENTER OF THE DOOR SILL AND FROM FLOOR LEVEL.

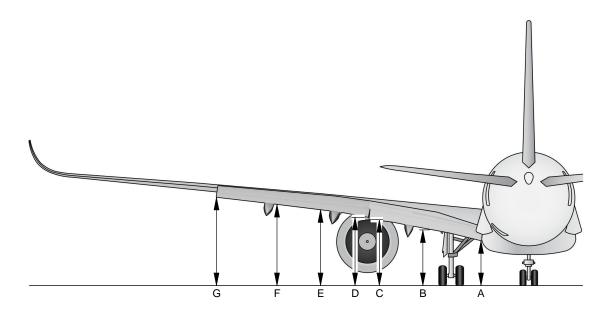
THE VALUES GIVEN IN THE TABLE DEPEND ON THE POSITION OF THE CENTER OF GRAVITY (CG) AND ON THE AIRCRAFT WEIGHT.

P_AC_020300_1_0010001_01_08

Ground Clearances FIGURE-2-3-0-991-001-A01

**ON A/C A350-900

LEADING EDGE SLATS EXTENDED											
		MF	RW		140	000 kg	(308 64	7 lb)			
DESCRIPTION		FWD CG	(26.2%)	AFT CG	AFT CG (33.2%)		G (20%)	AFT CG (40%)			
	m	ft	m	ft	m	ft	m	ft			
01 DN INBD	Α	3.43	11.24	3.44	11.28	3.55	11.66	3.62	11.88		
01 DN OUTBD	В	4.60	15.08	4.60	15.09	4.73	15.51	4.76	15.62		
SLAT 1 INBD	С	4.62	15.17	4.63	15.18	4.76	15.61	4.79	15.70		
SLAT 1/2	D	5.00	16.41	5.00	16.41	5.14	16.86	5.15	16.89		
SLAT 2/3	E	5.36	17.57	5.35	17.56	5.50	18.04	5.49	18.01		
SLAT 3/4	F	5.70	18.70	5.69	18.67	5.85	19.18	5.82	19.08		
SLAT 4/5	G	6.02	19.74	6.01	19.71	6.17	20.24	6.12	20.08		
SLAT 5/6	Н	6.32	20.73	6.31	20.69	6.47	21.24	6.41	21.02		
SLAT 6 OUTBD	J	6.66	21.85	6.64	21.79	6.82	22.37	6.73	22.08		

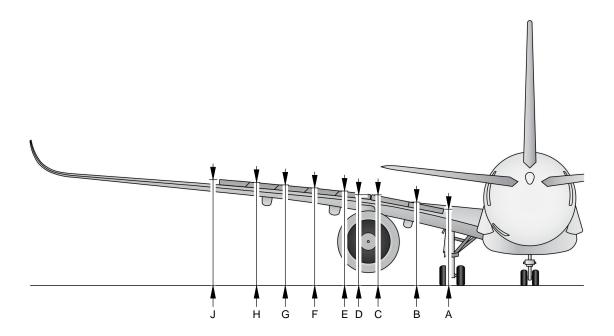

NOTE:

01 DN - DROOP NOSE

THE VALUES GIVEN IN THE TABLE DEPEND ON THE POSITION OF THE CENTER OF GRAVITY (CG) AND ON THE AIRCRAFT WEIGHT. P_AC_020300_1_0020001_01_02

Ground Clearances Leading Edge Slats - Extended FIGURE-2-3-0-991-002-A01

**ON A/C A350-900

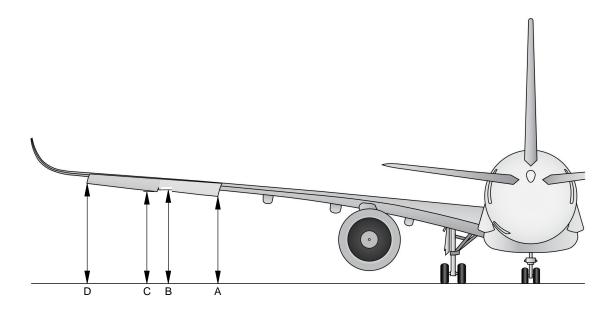

FLAPS EXTENDED										
DESCRIPTION			MRW					(308 64	7 lb)	
		FWD CG	6 (26.2%)	AFT CG	(33.2%)	FWD C	G (20%)	AFT CO	G (40%)	
		m	ft	m	ft	m	ft	m	ft	
FLAP 1 INBD	Α	2.57	8.43	2.56	8.40	2.72	8.92	2.68	8.79	
FLAP 1/2	В	3.30	10.82	3.29	10.79	3.45	11.31	3.40	11.17	
FLAP 2 OUTBD	С	4.10	13.45	4.09	13.41	4.25	13.94	4.20	13.79	
FLAP 3 INBD	D	4.15	13.62	4.14	13.58	4.30	14.11	4.26	13.96	
FLAP 3/4	E	4.90	16.07	4.89	16.03	5.05	16.57	4.99	16.39	
FLAP 4/5	F	5.44	17.85	5.42	17.80	5.60	18.36	5.52	18.12	
FLAP 5 OUTBD	G	5.69	18.65	5.67	18.60	5.84	19.17	5.76	18.91	

NOTE:

THE VALUES GIVEN IN THE TABLE DEPEND ON THE POSITION OF THE CENTER OF GRAVITY (CG) AND ON THE AIRCRAFT WEIGHT. P_AC_020300_1_0030001_01_02

Ground Clearances
Trailing Edge Flaps - Extended
FIGURE-2-3-0-991-003-A01

**ON A/C A350-900

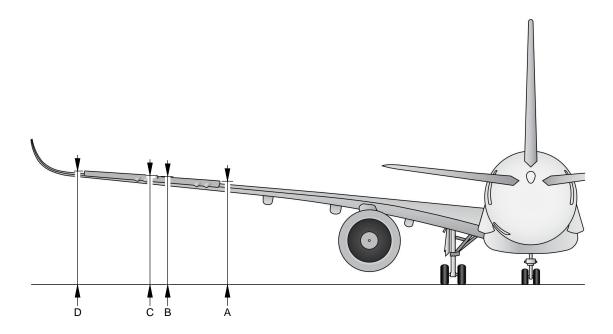

	SPOILERS EXTENDED										
		MF	RW		140	140 000 kg (308 647 lb)					
DESCRIPTION		FWD CG (26.2%) AFT CG (33.2%) F			FWD C	FWD CG (20%) AFT CG (40%)					
		m	ft	m	ft	m	ft	m	ft		
SPOILER 1 INBD	Α	5.03	16.50	5.02	16.47	5.17	16.98	5.14	16.88		
SPOILER 1/2	В	5.49	18.02	5.48	17.99	5.64	18.50	5.61	18.40		
SPOILER 2 OUTBD	С	5.95	19.51	5.94	19.48	6.09	19.99	6.06	19.88		
SPOILER 3 INBD	D	6.09	19.97	6.08	19.95	6.23	20.45	6.20	20.35		
SPOILER 3/4	Е	6.33	20.77	6.32	20.74	6.48	21.26	6.44	21.13		
SPOILER 4/5	F	6.54	21.46	6.53	21.42	6.69	21.95	6.64	21.80		
SPOILER 5/6	G	6.73	22.08	6.72	22.04	6.88	22.58	6.83	22.40		
SPOILER 6/7	Н	6.91	22.66	6.89	22.62	7.06	23.16	7.00	22.96		
SPOILER 7 OUTBD	J	7.08	23.23	7.07	23.19	7.24	23.74	7.17	23.52		

NOTE:

THE VALUES GIVEN IN THE TABLE DEPEND ON THE POSITION OF THE CENTER OF GRAVITY (CG) AND ON THE AIRCRAFT WEIGHT. P_AC_020300_1_0040001_01_02

Ground Clearances Spoilers - Extended FIGURE-2-3-0-991-004-A01

**ON A/C A350-900

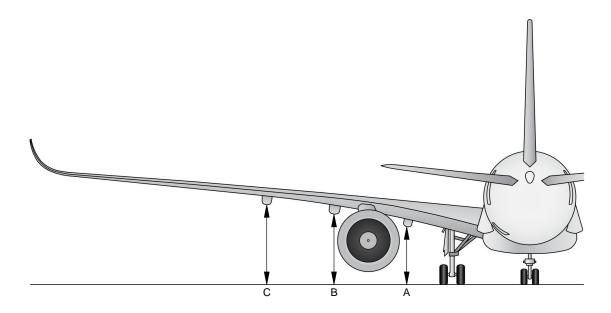

AILERONS DOWN										
DESCRIPTION		MRW				140 000 kg (308 647 lb)				
		FWD CG (26.2%) AFT CG (33.2%			(33.2%)	FWD CG (20%) AFT CG (40%)				
			ft	m	ft	m	ft	m	ft	
AILERON 1 INBD	Α	5.95	19.51	5.93	19.46	6.10	20.03	6.03	19.77	
AILERON 1 OUTBD	В	6.36	20.87	6.34	20.81	6.52	21.40	6.43	21.09	
AILERON 2 INBD	С	6.35	20.83	6.33	20.77	6.51	21.36	6.42	21.05	
AILERON 2 OUTBD	D	6.84	22.45	6.82	22.38	7.01	22.99	6.90	22.62	

NOTE:

THE VALUES GIVEN IN THE TABLE DEPEND ON THE POSITION OF THE CENTER OF GRAVITY (CG) AND ON THE AIRCRAFT WEIGHT. P_AC_020300_1_0050001_01_02

Ground Clearances Ailerons - Down FIGURE-2-3-0-991-005-A01

**ON A/C A350-900

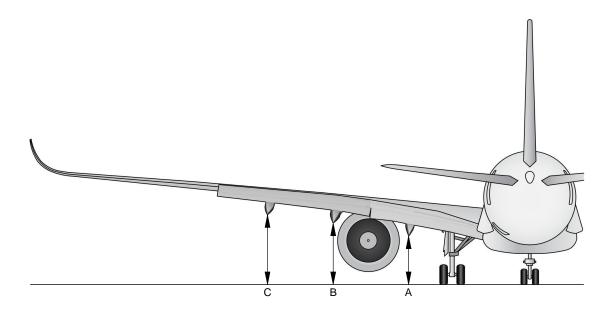

AILERONS UP											
DESCRIPTION		MRW				140 000 kg (308 647 lb)					
		FWD CG	3 (26.2%)	AFT CG	(33.2%)	FWD C	G (20%)	AFT CG (40%)			
		m	ft	m	ft	m	ft	m	ft		
AILERON 1 INBD	Α	6.96	22.85	6.95	22.80	7.12	23.36	7.04	23.11		
AILERON 1 OUTBD	В	7.21	23.64	7.19	23.58	7.37	24.17	7.27	23.86		
AILERON 2 INBD	С	7.22	23.68	7.20	23.61	7.38	24.20	7.28	23.90		
AILERON 2 OUTBD	D	7.49	24.59	7.47	24.51	7.66	25.12	7.55	24.76		

NOTE:

THE VALUES GIVEN IN THE TABLE DEPEND ON THE POSITION OF THE CENTER OF GRAVITY (CG) AND ON THE AIRCRAFT WEIGHT. P_AC_020300_1_0060001_01_02

Ground Clearances Ailerons - Up FIGURE-2-3-0-991-006-A01

**ON A/C A350-900

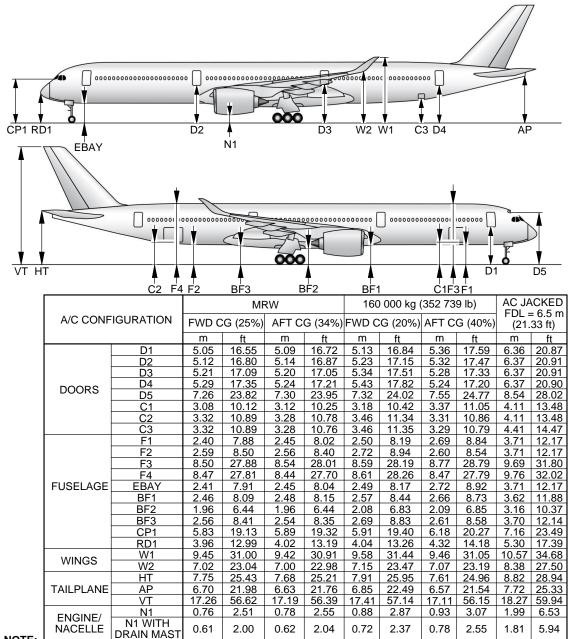

FLAPS TRACKS RETRACTED										
			140 000 kg (308 647 lb)							
DESCRIPTION		FWD CG (26.2%) AFT CG (33.2%) F				FWD CG (20%) AFT CG (40%)				
			ft	m	ft	m	ft	m	ft	
FLAP TRACK 1	Α	3.75	12.32	3.75	12.30	3.90	12.80	3.87	12.71	
FLAP TRACK 2	В	4.56	14.98	4.56	14.95	4.71	15.46	4.67	15.34	
FLAP TRACK 3	С	5.21	17.08	5.19	17.04	5.36	17.58	5.30	17.40	

NOTE:

THE VALUES GIVEN IN THE TABLE DEPEND ON THE POSITION OF THE CENTER OF GRAVITY (CG) AND ON THE AIRCRAFT WEIGHT. P_AC_020300_1_0070001_01_02

Ground Clearances Flap Tracks - Retracted FIGURE-2-3-0-991-007-A01

**ON A/C A350-900


FLAPS TRACKS EXTENDED										
			140 000 kg (308 647 lb)							
DESCRIPTION		FWD CG (26.2%) AFT CG (33.2%) F				FWD CG (20%) AFT CG (40%)				
		m	ft	m	ft	m	ft	m	ft	
FLAP TRACK 1	Α	2.86	9.38	2.85	9.34	3.01	9.87	2.96	9.72	
FLAP TRACK 2	В	3.37	11.07	3.36	11.02	3.53	11.57	3.47	11.37	
FLAP TRACK 3	C	4.04	13.24	4.02	13.19	4.19	13.75	4.12	13.51	

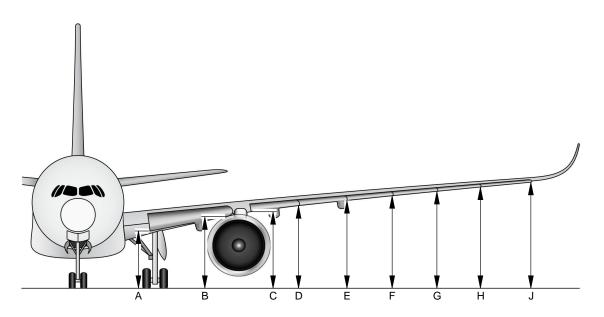
NOTE:

THE VALUES GIVEN IN THE TABLE DEPEND ON THE POSITION OF THE CENTER OF GRAVITY (CG) AND ON THE AIRCRAFT WEIGHT. P_AC_020300_1_0080001_01_02

Ground Clearances Flap Tracks - Extended FIGURE-2-3-0-991-008-A01

**ON A/C A350-1000

NOTE:


PASSENGER AND CARGO DOOR GROUND CLEARANCES ARE MEASURED FROM THE CENTER OF THE DOOR SILL AND FROM FLOOR LEVEL.

THE VALUES GIVEN IN THE TABLE DEPEND ON THE POSITION OF THE CENTER OF GRAVITY (CG) AND ON THE AIRCRAFT WEIGHT.

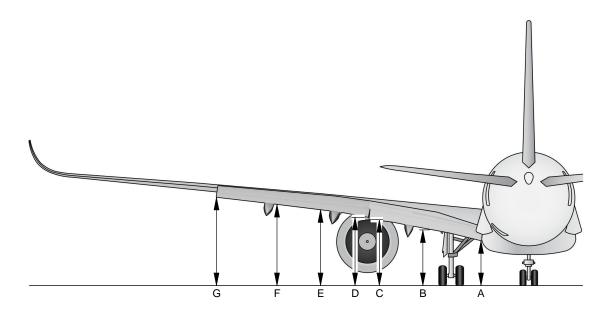
P_AC_020300_1_0090002_01_03

Ground Clearances FIGURE-2-3-0-991-009-B01

**ON A/C A350-1000

LEADING EDGE SLATS EXTENDED										
		160 000 kg (352 739 lb)								
DESCRIPTION		FWD C	G (25%)	AFT CG (34%)		FWD CG (20%)		AFT CO	G (40%)	
		m	ft	m	ft	m	ft	m	ft	
01 DN INBD	Α	3.44	11.28	3.45	11.32	3.55	11.64	3.61	11.84	
01 DN OUTBD	В	4.60	15.10	4.61	15.12	4.72	15.48	4.75	15.57	
SLAT 1 INBD	С	4.63	15.19	4.63	15.21	4.75	15.57	4.77	15.65	
SLAT 1/2	D	5.01	16.43	5.01	16.43	5.12	16.81	5.13	16.84	
SLAT 2/3	Е	5.36	17.59	5.36	17.58	5.48	17.98	5.47	17.96	
SLAT 3/4	F	5.70	18.71	5.69	18.68	5.82	19.11	5.80	19.03	
SLAT 4/5	G	6.02	19.75	6.01	19.71	6.14	20.15	6.10	20.02	
SLAT 5/6	Н	6.32	20.74	6.31	20.69	6.45	21.15	6.39	20.97	
SLAT 6 OUTBD	J	6.66	21.84	6.64	21.78	6.79	22.26	6.71	22.02	

NOTE:

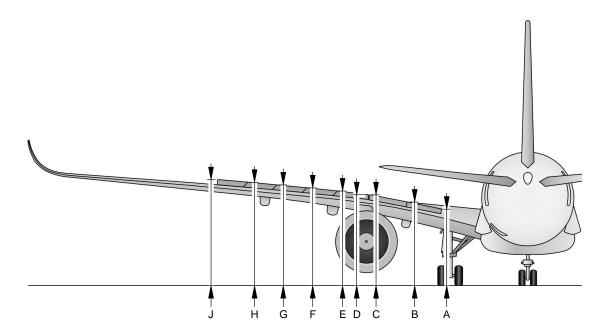

01 DN - DROOP NOSE

THE VALUES GIVEN IN THE TABLE DEPEND ON THE POSITION OF THE CENTER OF GRAVITY (CG) AND ON THE AIRCRAFT WEIGHT. P_AC_020300_1_0100001_01_01

Ground Clearances Leading Edge Slats - Extended FIGURE-2-3-0-991-010-A01

2-3-0

**ON A/C A350-1000

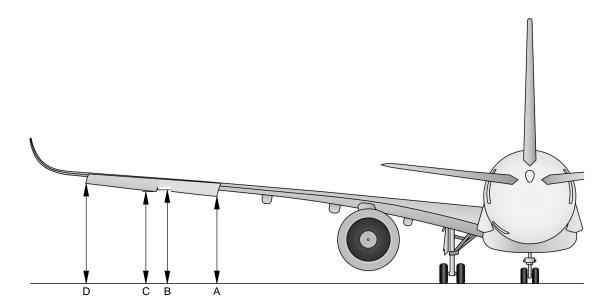

FLAPS EXTENDED										
DESCRIPTION			160 000 kg (352 739 lb)							
		FWD CG (25%) AFT CG (34%)			FWD CG (20%) AFT CG (40%					
		m	ft	m	ft	m	ft	m	ft	
FLAP 1 INBD	Α	2.57	8.44	2.56	8.41	2.69	8.84	2.66	8.73	
FLAP 1/2	В	3.30	10.83	3.29	10.80	3.42	11.23	3.39	11.12	
FLAP 2 OUTBD	С	4.10	13.45	4.09	13.42	4.22	13.86	4.19	13.74	
FLAP 3 INBD	D	4.15	13.63	4.14	13.59	4.28	14.03	4.24	13.91	
FLAP 3/4	E	4.90	16.08	4.89	16.04	5.03	16.49	4.98	16.33	
FLAP 4/5	F	5.44	17.85	5.43	17.80	5.57	18.26	5.51	18.07	
FLAP 5 OUTBD	G	5.69	18.65	5.67	18.60	5.81	19.07	5.75	18.86	

NOTE:

THE VALUES GIVEN IN THE TABLE DEPEND ON THE POSITION OF THE CENTER OF GRAVITY (CG) AND ON THE AIRCRAFT WEIGHT. P_AC_020300_1_0110001_01_01

Ground Clearances
Trailing Edge Flaps - Extended
FIGURE-2-3-0-991-011-A01

**ON A/C A350-1000

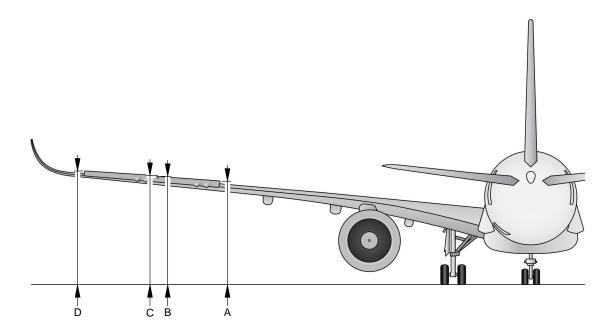

SPOILERS EXTENDED										
DESCRIPTION			160 000 kg (352 739 lb)							
		FWD CG (25%)		AFT CG (34%)		FWD CG (20%)		AFT CG (40%)		
		m	ft	m	ft	m	ft	m	ft	
SPOILER 1 INBD	Α	5.03	16.51	5.02	16.48	5.15	16.91	5.13	16.83	
SPOILER 1/2	В	5.49	18.03	5.49	18.00	5.62	18.43	5.59	18.34	
SPOILER 2 OUTBD	С	5.95	19.52	5.94	19.49	6.07	19.92	6.04	19.83	
SPOILER 3 INBD	D	6.09	19.98	6.08	19.96	6.21	20.38	6.19	20.30	
SPOILER 3/4	Е	6.33	20.78	6.32	20.75	6.46	21.18	6.42	21.08	
SPOILER 4/5	F	6.54	21.46	6.53	21.43	6.67	21.87	6.63	21.74	
SPOILER 5/6	G	6.73	22.09	6.72	22.05	6.86	22.49	6.81	22.35	
SPOILER 6/7	Н	6.91	22.67	6.90	22.62	7.03	23.08	6.98	22.91	
SPOILER 7 OUTBD	J	7.08	23.24	7.07	23.19	7.21	23.65	7.15	23.46	

NOTE:

THE VALUES GIVEN IN THE TABLE DEPEND ON THE POSITION OF THE CENTER OF GRAVITY (CG) AND ON THE AIRCRAFT WEIGHT. P_AC_020300_1_0120001_01_01

Ground Clearances Spoilers - Extended FIGURE-2-3-0-991-012-A01

**ON A/C A350-1000

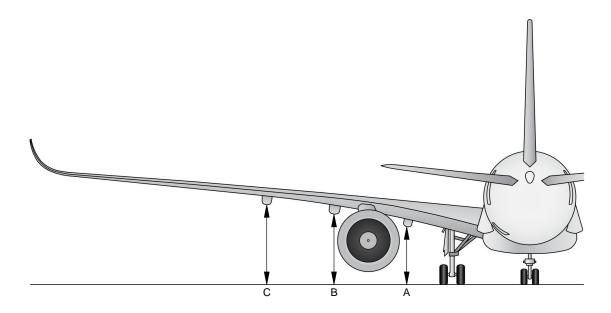

AILERONS DOWN										
DESCRIPTION		MRW				160 000 kg (352 739 lb)				
		FWD CG (25%) AFT			G (34%)	FWD CG (20%)		AFT CG (40%)		
		m	ft	m	ft	m	ft	m	ft	
AILERON 1 INBD	Α	5.95	19.51	5.93	19.46	6.07	19.93	6.01	19.72	
AILERON 1 OUTBD	В	6.36	20.87	6.34	20.81	6.49	21.29	6.41	21.04	
AILERON 2 INBD	С	6.35	20.83	6.33	20.77	6.48	21.25	6.40	21.00	
AILERON 2 OUTBD	D	6.84	22.44	6.82	22.37	6.97	22.87	6.88	22.57	

NOTE:

THE VALUES GIVEN IN THE TABLE DEPEND ON THE POSITION OF THE CENTER OF GRAVITY (CG) AND ON THE AIRCRAFT WEIGHT. $P_AC_020300_1_0130001_01_01$

Ground Clearances Ailerons - Down FIGURE-2-3-0-991-013-A01

**ON A/C A350-1000

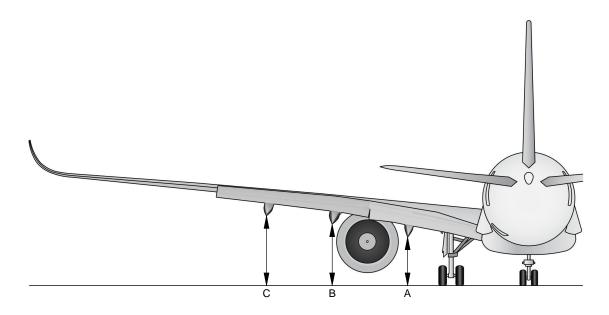

AILERONS UP										
DESCRIPTION			160 000 kg (352 739 lb)							
		FWD CG (25%) AFT CG (34%)			FWD CG (20%) AFT CG (40			3 (40%)		
		m	ft	m	ft	m	ft	m	ft	
AILERON 1 INBD	Α	6.96	22.85	6.95	22.80	7.09	23.27	7.03	23.06	
AILERON 1 OUTBD	В	7.20	23.64	7.19	23.58	7.33	24.06	7.26	23.81	
AILERON 2 INBD	С	7.21	23.67	7.20	23.61	7.34	24.09	7.27	23.84	
AILERON 2 OUTBD	D	7.49	24.58	7.47	24.50	7.62	25.01	7.53	24.70	

NOTE:

THE VALUES GIVEN IN THE TABLE DEPEND ON THE POSITION OF THE CENTER OF GRAVITY (CG) AND ON THE AIRCRAFT WEIGHT. $P_AC_020300_1_0140001_01_01$

Ground Clearances Ailerons - Up FIGURE-2-3-0-991-014-A01

**ON A/C A350-1000

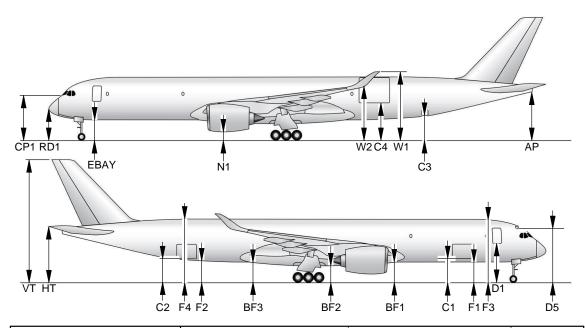

FLAPS TRACKS RETRACTED										
DESCRIPTION			160 000 kg (352 739 lb)							
		FWD C	G (25%)	AFT CG (34%)		FWD CG (20%)		AFT CG (40%)		
		m	ft	m	ft	m	ft	m	ft	
FLAP TRACK 1	Α	3.76	12.33	3.75	12.31	3.88	12.73	3.86	12.65	
FLAP TRACK 2	В	4.57	14.99	4.56	14.96	4.69	15.39	4.66	15.28	
FLAP TRACK 3	С	5.21	17.09	5.20	17.05	5.33	17.49	5.29	17.35	

NOTE:

THE VALUES GIVEN IN THE TABLE DEPEND ON THE POSITION OF THE CENTER OF GRAVITY (CG) AND ON THE AIRCRAFT WEIGHT. P_AC_020300_1_0150001_01_01

Ground Clearances Flap Tracks - Retracted FIGURE-2-3-0-991-015-A01

**ON A/C A350-1000


FLAPS TRACKS EXTENDED											
		MF	160 000 kg (352 739 lb)								
DESCRIPTION	FWD C	G (25%)	AFT CG (34%)		FWD CG (20%)		AFT CG (40%)				
		m	ft	m	ft	m	ft	m	ft		
FLAP TRACK 1	Α	2.86	9.38	2.85	9.35	2.98	9.79	2.95	9.66		
FLAP TRACK 2	В	3.37	11.07	3.36	11.03	3.50	11.48	3.45	11.32		
FLAP TRACK 3	С	4.04	13.24	4.02	13.19	4.16	13.66	4.10	13.46		

NOTE:

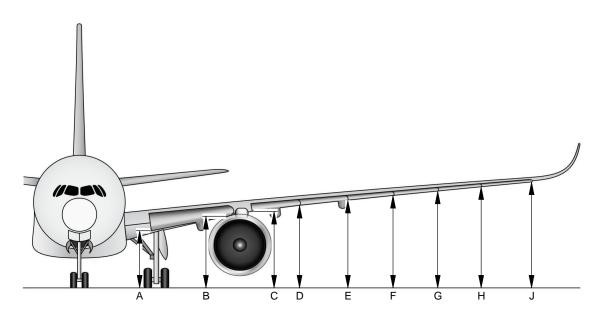
THE VALUES GIVEN IN THE TABLE DEPEND ON THE POSITION OF THE CENTER OF GRAVITY (CG) AND ON THE AIRCRAFT WEIGHT. P_AC_020300_1_0160001_01_01

Ground Clearances Flap Tracks - Extended FIGURE-2-3-0-991-016-A01

**ON A/C A350-1000F

			М	RW		14	0 000 kg	7 lb)	AC JACKED FDL = 6.5 m		
A/C CONFIGU	JRATION	FWD C	G (25%)	AFT CG	(33.05%)	FWD CG	(21.5%)	AFT CO	3 (34%)	(21.3	
		m	ft	m	ft	m	ft	m	ft	m	ft
	D1	5.03	16.50	5.07	16.63	5.16	16.93	5.26	17.26	6.36	20.87
	D5	7.24	23.75	7.26	23.82	7.29	23.92	7.42	24.34	8.54	28.02
	C1	2.81	9.22	2.84	9.32	2.95	9.68	3.02	9.91	4.11	13.48
DOORS	C2	3.05	10.01	3.00	9.84	3.23	10.60	3.12	10.24	4.11	13.48
	C3	3.36	11.02	3.31	10.86	3.54	11.61	3.42	11.22	4.41	14.47
	C4	5.29	17.36	5.26	17.26	5.47	17.95	5.38	17.65	6.38	20.93
	F1	2.40	7.87	2.43	7.97	2.54	8.33	2.62	8.60	3.71	12.17
	F2	2.62	8.60	2.59	8.50	2.80	9.19	2.71	8.89	3.71	12.17
	F3	8.38	27.49	8.41	27.59	8.51	27.92	8.60	28.22	9.69	31.80
	F4	8.71	28.58	8.66	28.41	8.89	29.17	8.77	28.77	9.76	32.02
FUSELAGE	EBAY	2.39	7.84	2.42	7.94	2.51	8.23	2.61	8.56	3.71	12.17
PUSELAGE	BF1	2.39	7.84	2.39	7.84	2.53	8.30	2.56	8.40	3.62	11.88
	BF2	1.98	6.50	1.97	6.46	2.14	7.02	2.12	6.96	3.16	10.37
	BF3	2.59	8.50	2.56	8.40	2.76	9.06	2.69	8.83	3.70	12.14
	CP1	5.81	19.06	5.85	19.20	5.94	19.49	6.05	19.85	7.16	23.49
	RD1	3.93	12.90	3.98	13.06	4.06	13.32	4.18	13.71	5.30	17.39
MINICO	W1	9.49	31.14	9.45	31.00	9.66	31.69	9.57	31.40	10.57	34.68
WINGS	W2	7.27	23.85	7.24	23.75	7.44	24.41	7.37	24.18	8.38	27.50
	HT	7.87	25.82	7.80	25.59	8.07	26.48	7.87	25.82	8.82	28.94
TAILPLANE	AP	6.77	22.21	6.69	21.95	6.97	22.87	6.77	22.21	7.72	25.33
	VT	17.32	56.82	17.24	56.56	17.52	57.48	17.32	56.82	18.27	59.94
ENCINE/	N1	0.78	2.56	0.78	2.56	0.93	3.05	0.94	3.08	1.99	6.53
ENGINE/ NACELLES	N2 WITH DRAIN MAST	0.60	1.97	0.60	1.97	0.75	2.46	0.76	2.49	1.81	5.94

NOTE:


CARGO DOOR GROUND CLEARANCES ARE MEASURED FROM THE CENTER OF THE DOOR SILL AND FROM FLOOR LEVEL.

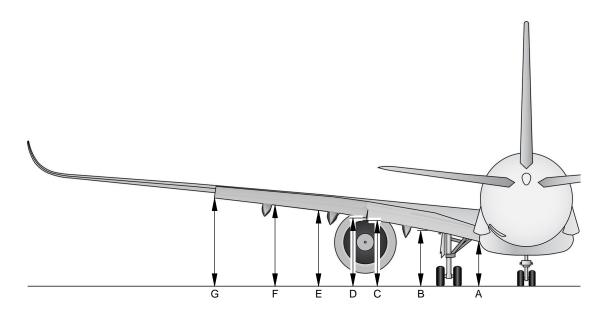
THE VALUES GIVEN IN THE TABLE DEPEND ON THE POSITION OF THE CENTER OF GRAVITY (CG) AND ON THE AIRCRAFT WEIGHT.

P_AC_020300_1_0170001_01_00

Ground Clearances FIGURE-2-3-0-991-017-A01

**ON A/C A350-1000F

LEADING EDGE SLATS EXTENDED											
		MF	RW		14	0 000 kg (308 647	lb)			
DESCRIPTION	FWD C	FWD CG (25%)		AFT CG (33.05%)		G (21.5%)	AFT CG (34%)				
		m	ft	m	ft	m	m ft m				
01 DN INBD	Α	4.03	13.22	4.03	13.22	4.18	13.71	4.19	13.75		
01 DN OUTBD	В	4.89	16.04	4.89	16.04	5.05	16.57	5.04	16.54		
SLAT 1 INBD	С	5.12	16.80	5.11	16.77	5.27	17.29	5.26	17.26		
SLAT 1/2	D	5.47	17.95	5.47	17.95	5.63	18.47	5.61	18.41		
SLAT 2/3	E	5.81	19.06	5.80	19.03	5.98	19.62	5.94	19.49		
SLAT 3/4	F	6.15	20.18	6.14	20.14	6.32	20.73	6.28	20.60		
SLAT 4/5	G	6.46	21.19	6.44	21.13	6.63	21.75	6.58	21.59		
SLAT 5/6	Н	6.73	22.08	6.71	22.01	6.90	22.63	6.84	22.44		
SLAT 6 OUTBD	J	7.04	23.10	7.01	23.00	7.21	23.65	7.14	23.43		

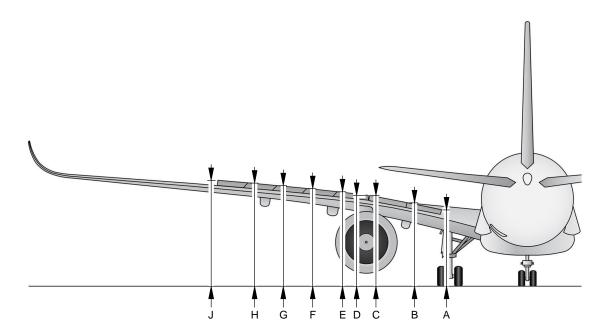

NOTE:

01 DN - DROOP NOSE

THE VALUES GIVEN IN THE TABLE DEPEND ON THE POSITION OF THE CENTER OF GRAVITY (CG) AND ON THE AIRCRAFT WEIGHT. P_AC_020300_1_0180001_01_00

Ground Clearances FIGURE-2-3-0-991-018-A01

**ON A/C A350-1000F

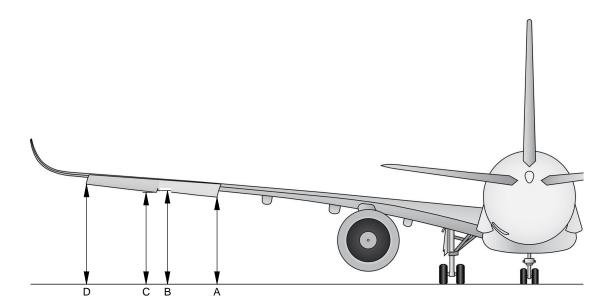

FLAPS EXTENDED										
		MF	RW	140 000 kg (308 647 lb)						
DESCRIPTION		FWD C	G (25%)	AFT CO	3 (33.05%)	FWD C	G (21.5%)	AFT CO	3 (34%)	
	m	ft	m	ft	m	ft	m	ft		
FLAP 1 INBD	Α	3.65	11.98	3.63	11.91	3.81	12.50	3.77	12.37	
FLAP 1/2	В	4.67	15.32	4.65	15.26	4.84	15.88	4.79	15.72	
FLAP 2 OUTBD	С	5.18	17.00	5.16	16.93	5.35	17.55	5.30	17.39	
FLAP 3 INBD	D	5.19	17.03	5.18	16.99	5.36	17.59	5.31	17.42	
FLAP 3/4	Е	5.60	18.37	5.58	18.31	5.77	18.93	5.72	18.77	
FLAP 4/5	F	6.00	19.69	5.98	19.62	6.17	20.24	6.11	20.05	
FLAP 5 OUTBD	G	6.33	20.77	6.30	20.67	6.50	21.33	6.43	21.10	

NOTE:

THE VALUES GIVEN IN THE TABLE DEPEND ON THE POSITION OF THE CENTER OF GRAVITY (CG) AND ON THE AIRCRAFT WEIGHT. P_AC_020300_1_0190002_01_00

Ground Clearances FIGURE-2-3-0-991-019-B01

**ON A/C A350-1000F

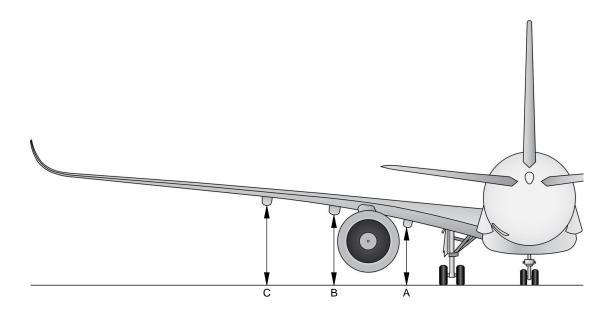

SPOILERS EXTENDED											
		MF	RW	14	0 000 kg (308 647	lb)				
DESCRIPTION		FWD C	G (25%)	AFT CO	3 (33.05%)	FWD C	G (21.5%)	AFT CG (34%)			
		m	ft	m	ft	m	ft	m	ft		
SPOILERS 1 INBD	Α	4.52	14.83	4.50	14.76	4.68	15.35	4.64	15.22		
SPOILERS 1/2	В	4.96	16.27	4.95	16.24	5.13	16.83	5.09	16.70		
SPOILERS 2 OUTBD	С	5.42	17.78	5.40	17.72	5.58	18.31	5.54	18.18		
SPOILERS 3 INBD	D	5.43	17.81	5.41	17.75	5.59	18.34	5.55	18.21		
SPOILERS 3/4	Е	5.68	18.64	5.67	18.60	5.85	19.19	5.80	19.03		
SPOILERS 4/5	F	5.90	19.36	5.88	19.30	6.07	19.91	6.02	19.75		
SPOILERS 5/6	G	6.09	19.98	6.07	19.91	6.26	20.54	6.21	20.37		
SPOILERS 6/7	Н	6.28	20.60	6.26	20.54	6.45	21.16	6.40	21.00		
SPOILERS 7 OUTBD	J	6.45	21.16	6.43	21.10	6.62	21.72	6.56	21.52		

NOTE:

THE VALUES GIVEN IN THE TABLE DEPEND ON THE POSITION OF THE CENTER OF GRAVITY (CG) AND ON THE AIRCRAFT WEIGHT. P_AC_020300_1_0200001_01_00

Ground Clearances FIGURE-2-3-0-991-020-A01

**ON A/C A350-1000F

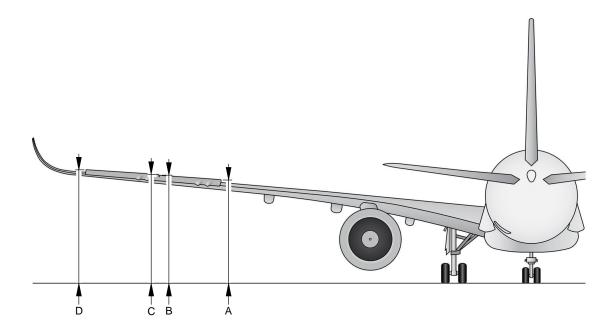

AILERONS DOWN											
		MF	RW		140 000 kg (308 647 lb)						
DESCRIPTION		FWD C	G (25%)	AFT CO	3 (33.05%)	FWD C	G (21.5%)	AFT CG (34%)			
		m	ft	m	ft	m	ft	m	ft		
AILERONS 1 INBD	Α	6.40	21.00	6.38	20.93	6.57	21.56	6.51	21.36		
AILERONS 1 OUTBD	В	6.76	22.18	6.73	22.08	6.93	22.74	6.86	22.51		
AILERONS 2 INBD	С	4.96	16.27	4.95	16.24	5.13	16.83	5.09	16.70		
AILERONS 2 OUTBD	D	7.03	23.06	7.00	22.97	7.20	23.62	7.12	23.36		

NOTE:

THE VALUES GIVEN IN THE TABLE DEPEND ON THE POSITION OF THE CENTER OF GRAVITY (CG) AND ON THE AIRCRAFT WEIGHT. P_AC_020300_1_0210001_01_00

Ground Clearances FIGURE-2-3-0-991-021-A01

**ON A/C A350-1000F

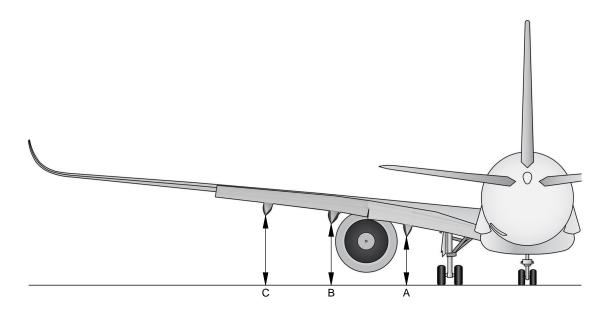

FLAPS TRACKS RETRACTED											
		MF	140 000 kg (308 647 lb)								
DESCRIPTION		FWD C	G (25%)	AFT CG	(33.05%)	FWD CG	(21.5%)	AFT CG (34%)			
		m	ft	m	ft	m	ft	m	ft		
FLAPS TRACK 1	Α	4.26	13.98	4.24	13.91	4.42	14.50	4.38	14.37		
FLAPS TRACK 2	В	5.10	16.73	5.08	16.67	5.27	17.29	5.21	17.10		
FLAPS TRACK 3	С	5.59							18.70		

NOTE:

THE VALUES GIVEN IN THE TABLE DEPEND ON THE POSITION OF THE CENTER OF GRAVITY (CG) AND ON THE AIRCRAFT WEIGHT. P_AC_020300_1_0220002_01_00

Ground Clearances FIGURE-2-3-0-991-022-B01

**ON A/C A350-1000F


AILERONS UP											
		MR	W		140 000 kg (308 647 lb)						
DESCRIPTION		FWD C	G (25%)	AFT CG	(33.05%)	FWD CG	6 (21.5%)	AFT CG (34%)			
				m	ft	m	ft	m	ft		
AILERON 1 INBD	Α	5.39	17.68	5.36	17.59	5.55	18.21	5.49	18.01		
AILERON 1 OUTBD	В	5.92	19.42	5.88	19.29	6.09	19.98	6.01	19.72		
AILERON 2 INBD	С	4.10	13.45	4.08	13.39	4.27	14.01	4.22	13.85		
AILERON 2 OUTBD	D	6.38	20.93	6.35	20.83	6.55	21.49	6.47	21.23		

NOTE:

THE VALUES GIVEN IN THE TABLE DEPEND ON THE POSITION OF THE CENTER OF GRAVITY (CG) AND ON THE AIRCRAFT WEIGHT. P_AC_020300_1_0470002_01_00

Ground Clearances FIGURE-2-3-0-991-047-B01

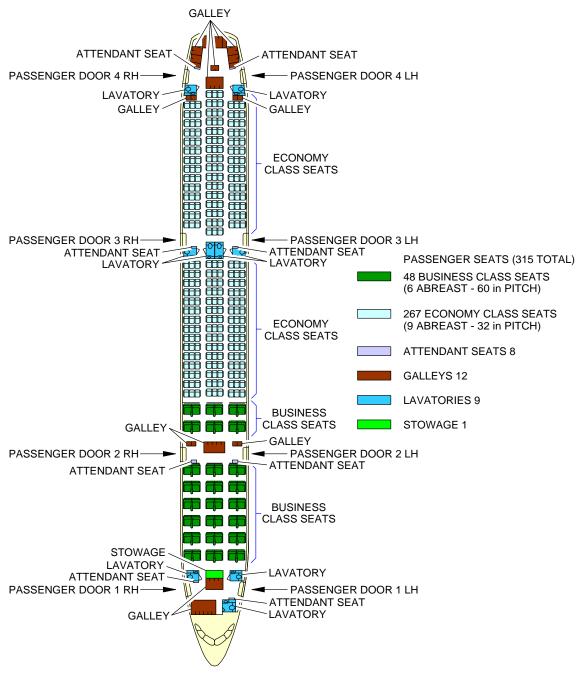
**ON A/C A350-1000F

FLAPS TRACKS EXTENDED											
			MR	W		140 000 kg (308 647 lb)					
DESCRIPTION		FWD C	G (25%)	AFT CG	(33.05%)	FWD CG	(21.5%)	AFT CG (34%)			
		m	ft	m	ft	m	ft	m	ft		
FLAP TRACK 1	Α	3.36	11.02	3.34	10.96	3.52	11.55	3.47	11.38		
FLAP TRACK 2	В	3.90	12.80	3.88	12.73	4.08	13.39	4.00	13.12		
FLAP TRACK 3	С	4.42	14.50	4.39	14.40	4.59	15.06	4.51	14.80		

NOTE:

THE VALUES GIVEN IN THE TABLE DEPEND ON THE POSITION OF THE CENTER OF GRAVITY (CG) AND ON THE AIRCRAFT WEIGHT. $P_AC_020300_1_0480001_01_00$

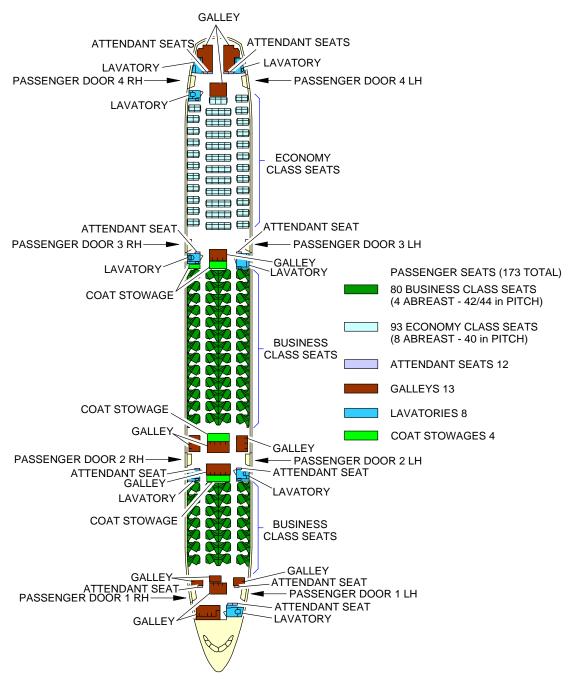
Ground Clearances FIGURE-2-3-0-991-048-A01


2-4-0 Interior Arrangements - Plan View

**ON A/C A350-1000 A350-1000F A350-900

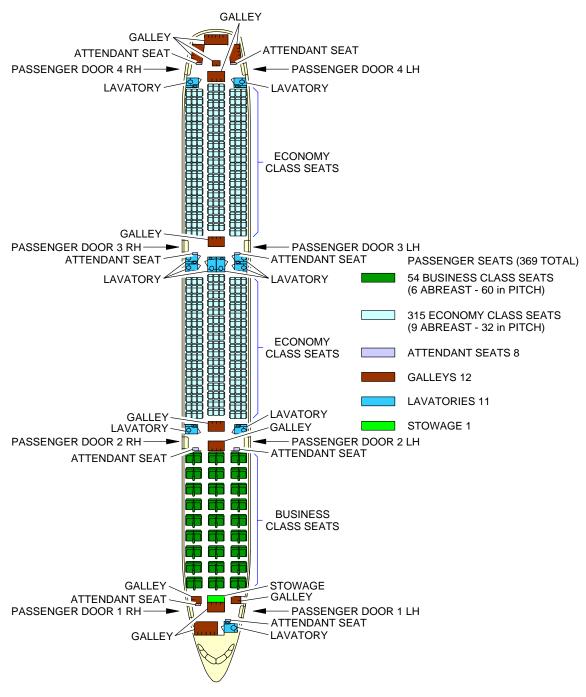
Interior Arrangements - Plan View

1. This section provides the standard configuration.


**ON A/C A350-900

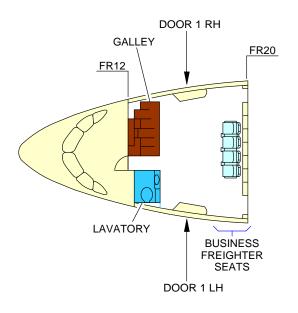
P_AC_020400_1_0010001_01_02

Standard Configuration (Sheet 1 of 2) FIGURE-2-4-0-991-001-A01


**ON A/C A350-900

P_AC_020400_1_0010001_02_00

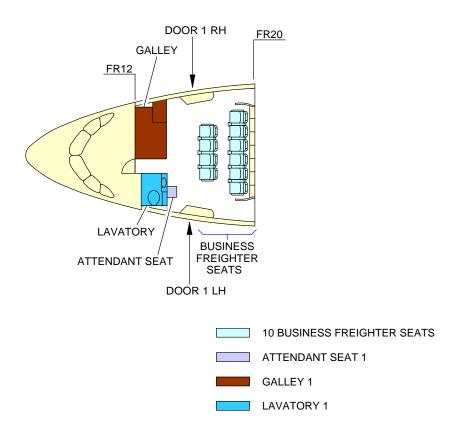
Standard Configuration
Standard Configuration (ULR) (Sheet 2 of 2)
FIGURE-2-4-0-991-001-A01


**ON A/C A350-1000

P_AC_020400_1_0020001_01_00

Standard Configuration FIGURE-2-4-0-991-002-A01

**ON A/C A350-1000F



4 BUSINESS FREIGHTER SEATS
GALLEY 1
LAVATORY 1

P_AC_020400_1_0030001_01_00

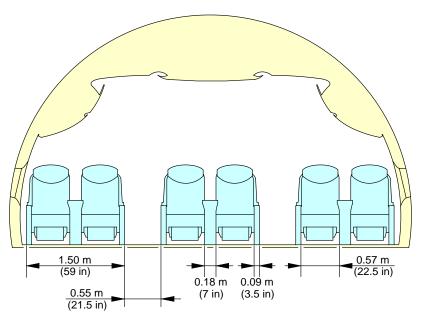
Courier Area (Sheet 1 of 2) FIGURE-2-4-0-991-003-A01

**ON A/C A350-1000F

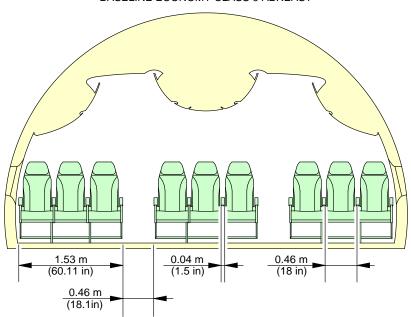
P_AC_020400_1_0030001_02_00

Courier Area (Sheet 2 of 2) FIGURE-2-4-0-991-003-A01

2-5-0 Interior Arrangements - Cross Section


**ON A/C A350-1000 A350-1000F A350-900

Interior Arrangements - Cross Section

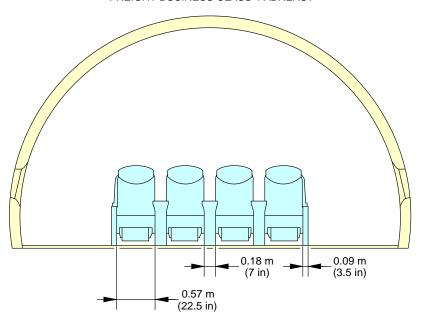

1. This section provides the typical configuration.

**ON A/C A350-1000 A350-900

BUSINESS CLASS / FIRST CLASS 6 ABREAST

BASELINE ECONOMY CLASS 9 ABREAST

NOTE:


AISLE WIDTH MAY VARY DEPENDING ON ACTUAL CABIN CONFIGURATION SELECTED BY CUSTOMER

P_AC_020500_1_0010001_01_01

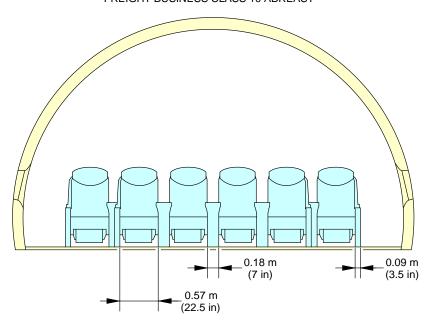
Typical Configuration FIGURE-2-5-0-991-001-A01

**ON A/C A350-1000F

FREIGHT BUSINESS CLASS 4 ABREAST

TYPICAL CONFIGURATION

NOTE:


AISLE WIDTH MAY VARY DEPENDING ON ACTUAL CABIN CONFIGURATION SELECTED BY CUSTOMER

P_AC_020500_1_0010034_01_00

Typical Configuration (Sheet 1 of 2) FIGURE-2-5-0-991-001-b01

**ON A/C A350-1000F

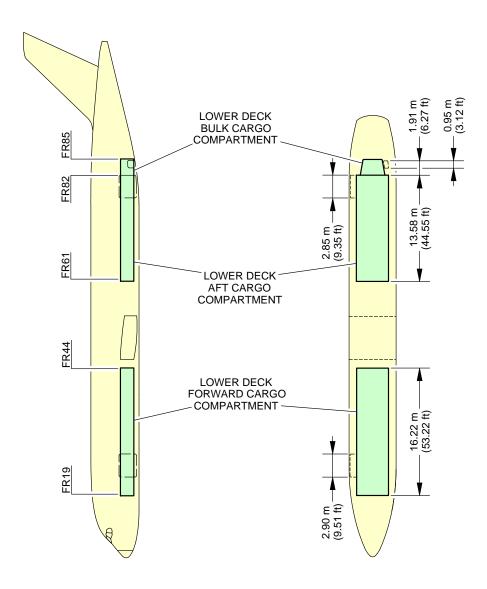
FREIGHT BUSINESS CLASS 10 ABREAST

NOTE:

AISLE WIDTH MAY VARY DEPENDING ON ACTUAL CABIN CONFIGURATION SELECTED BY CUSTOMER

P_AC_020500_1_0010034_02_00

Typical Configuration (Sheet 2 of 2) FIGURE-2-5-0-991-001-b01

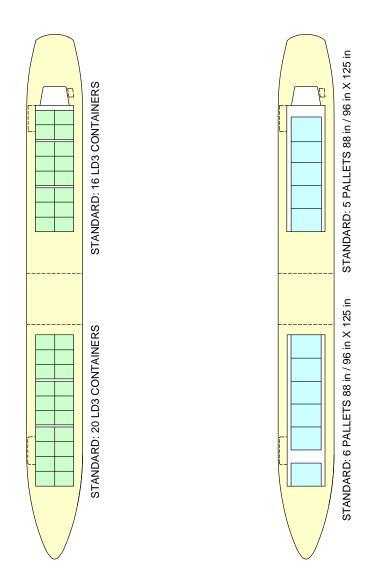

2-6-0 Cargo Compartments

**ON A/C A350-1000 A350-1000F A350-900

Cargo Compartments

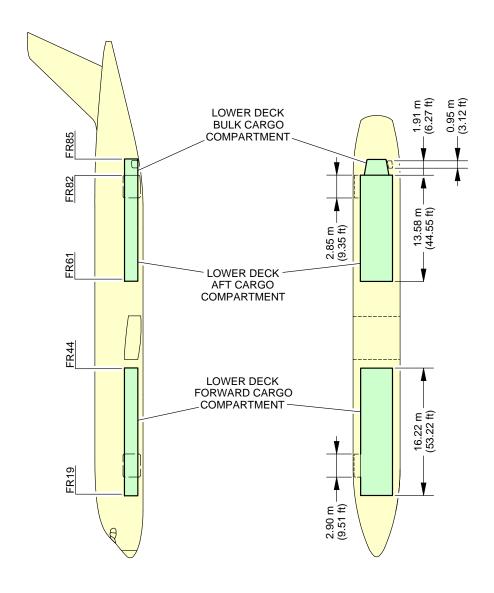
- 1. This section provides the following data about cargo compartments:
 - Locations and dimensions,
 - Loading combinations.

**ON A/C A350-900



P_AC_020600_1_0020003_01_01

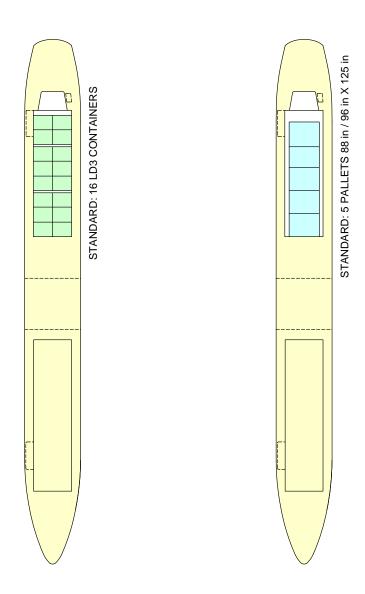
Cargo Compartments Locations and Dimensions1 of 2) 2-6-0-991-002-C01


**ON A/C A350-900

P_AC_020600_1_0020003_02_01

Cargo Compartments Loading Combinations2 of 2) 2-6-0-991-002-C01

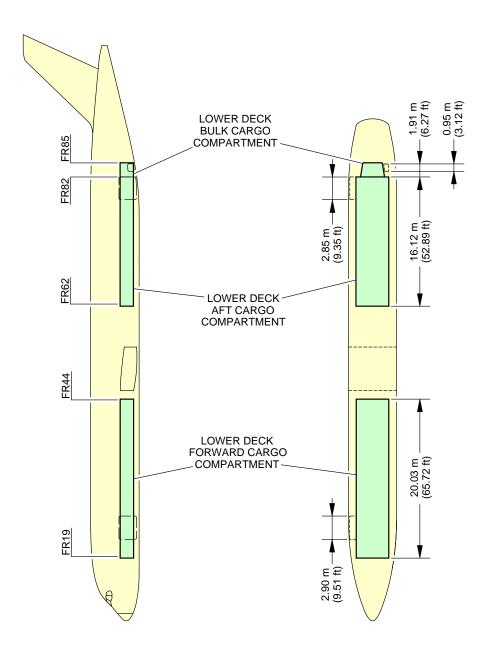
**ON A/C A350-900


NOTE:

IN THE ULR CONFIGURATION BECAUSE OF THE DEACTIVATION OF THE FORWARD CARGO COMPARTMENT, NO CARGO OPERATION IS POSSIBLE. P_AC_020600_1_0030001_01_01

Cargo Compartments Locations and Dimensions (Sheet 1 of 2) FIGURE-2-6-0-991-003-A01

**ON A/C A350-900

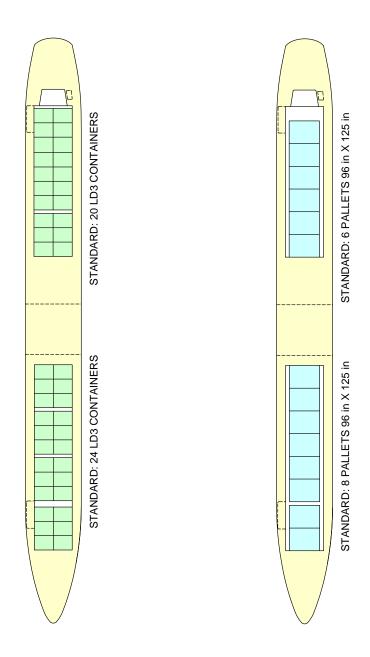


NOTE:

IN THE ULR CONFIGURATION BECAUSE OF THE DEACTIVATION OF THE FORWARD CARGO COMPARTMENT, NO CARGO OPERATION IS POSSIBLE. P_AC_020600_1_0030001_02_01

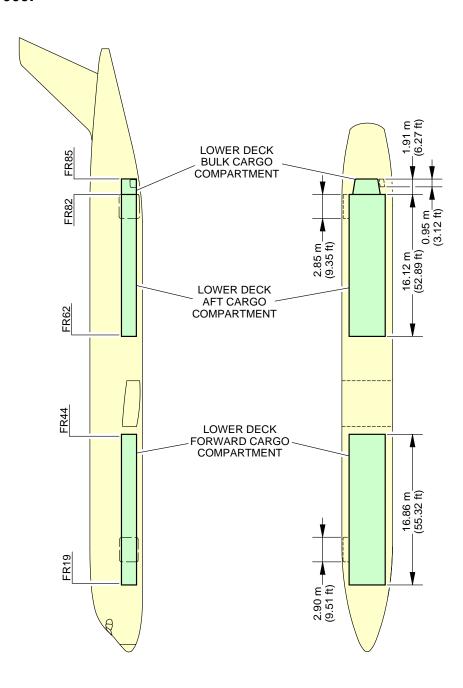
Cargo Compartments Loading Combinations (Sheet 2 of 2) FIGURE-2-6-0-991-003-A01

**ON A/C A350-1000



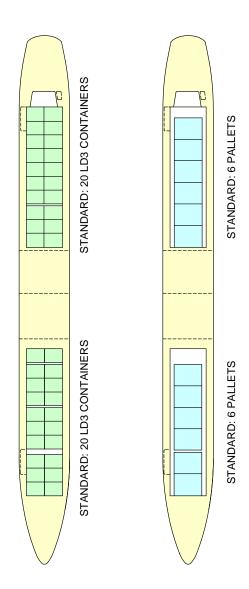
P_AC_020600_1_0040001_01_01

Cargo Compartments Locations and Dimensions (ULR) (Sheet 1 of 2) FIGURE-2-6-0-991-004-A01


**ON A/C A350-1000

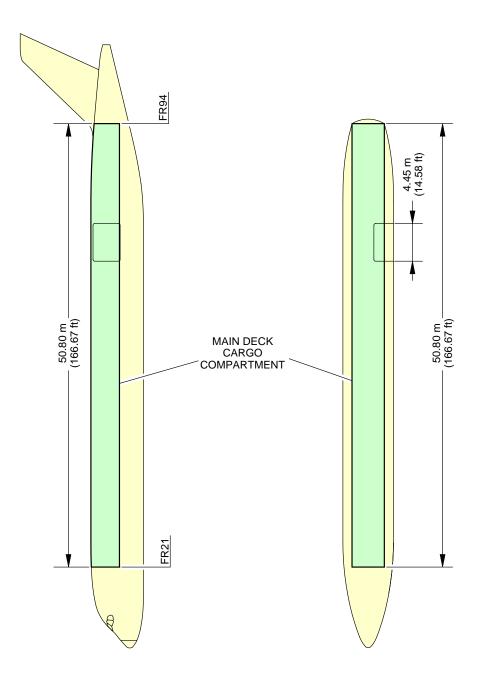
P_AC_020600_1_0040001_02_01

Cargo Compartments Loading Combinations (ULR) (Sheet 2 of 2) FIGURE-2-6-0-991-004-A01


**ON A/C A350-1000F

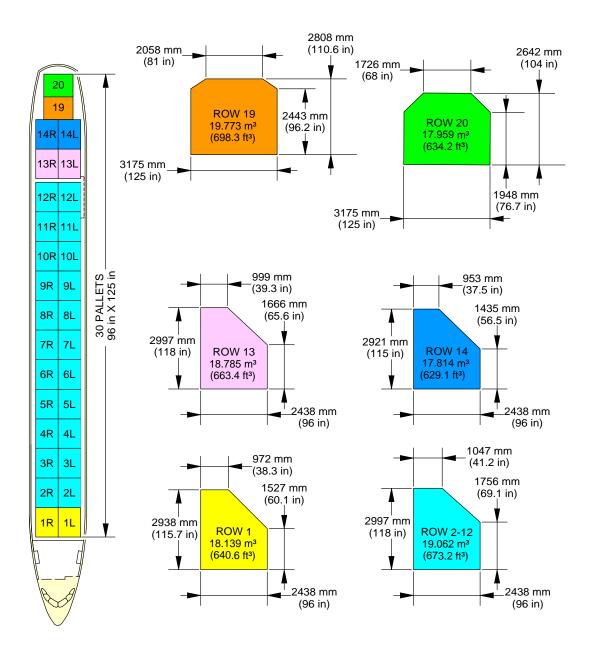
P_AC_020600_1_0080001_01_01

Lower Deck Cargo Compartments (Sheet 1 of 2) FIGURE-2-6-0-991-008-A01


**ON A/C A350-1000F

P_AC_020600_1_0080001_02_00

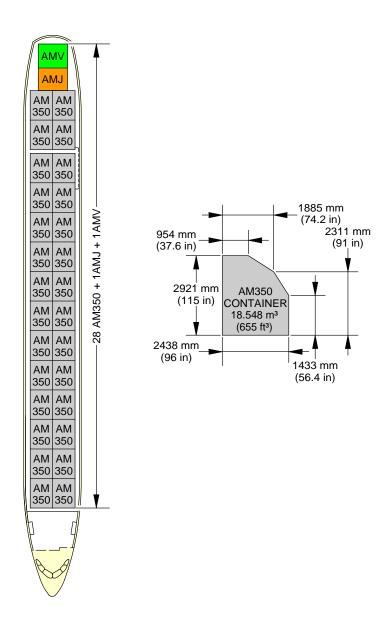
Lower Deck Cargo Compartments (Sheet 2 of 2) FIGURE-2-6-0-991-008-A01


**ON A/C A350-1000F

P_AC_020600_1_0350001_01_01

Main Deck Cargo Compartment (Sheet 1 of 3) FIGURE-2-6-0-991-035-A01

**ON A/C A350-1000F



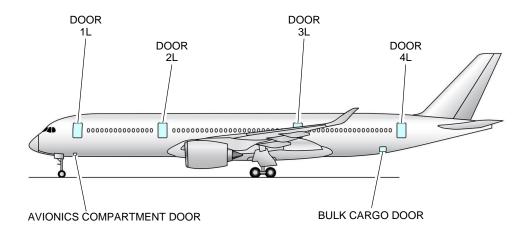
P_AC_020600_1_0350001_02_01

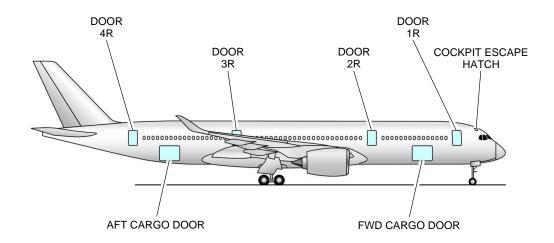
Main Deck Cargo Compartment (Sheet 2 of 3) FIGURE-2-6-0-991-035-A01

**ON A/C A350-1000F

P_AC_020600_1_0350001_03_00

Main Deck Cargo Compartment 3 of 3) 2-6-0-991-035-A01

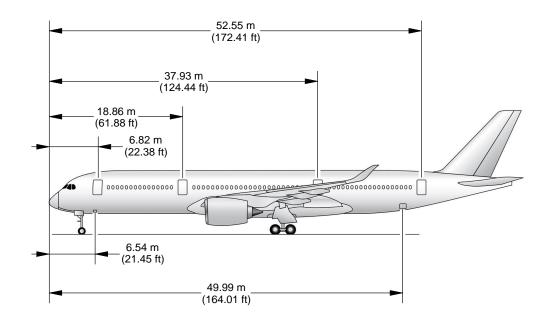

2-7-0 Door Clearances and Location

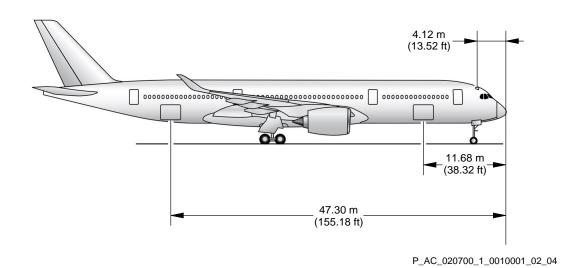

**ON A/C A350-1000 A350-1000F A350-900

Door Clearances and Location

1. This section provides door clearances and location.

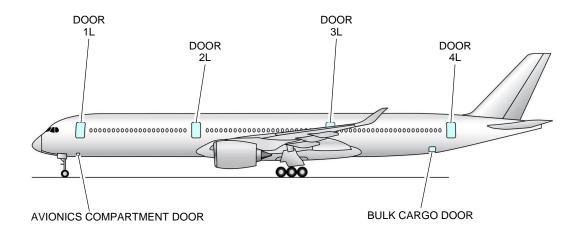
**ON A/C A350-900

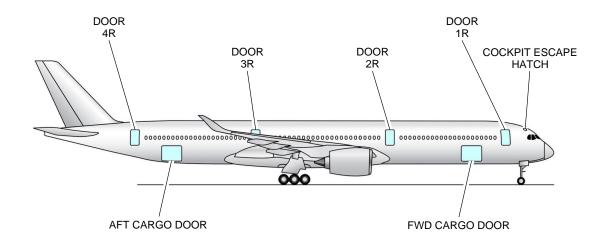




P_AC_020700_1_0010001_01_04

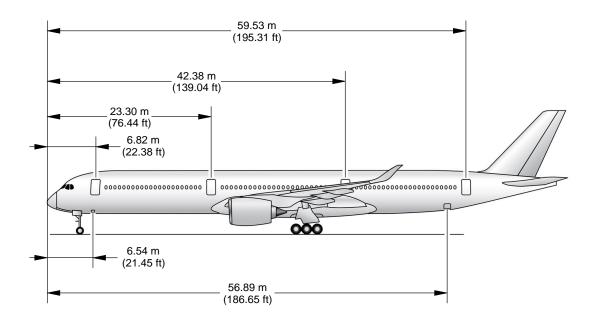
Door Identification and Location Door Identification (Sheet 1 of 2) FIGURE-2-7-0-991-001-A01

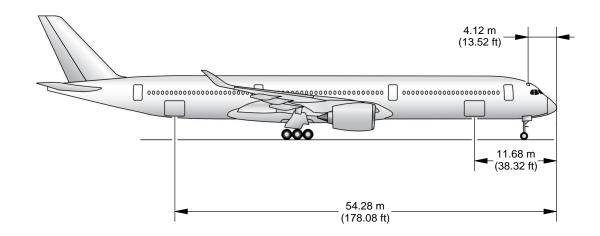

**ON A/C A350-900



Door Identification and Location Door Location (Sheet 2 of 2) FIGURE-2-7-0-991-001-A01

**ON A/C A350-1000

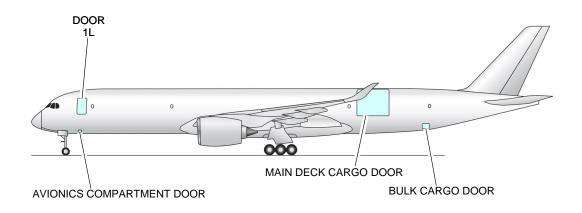


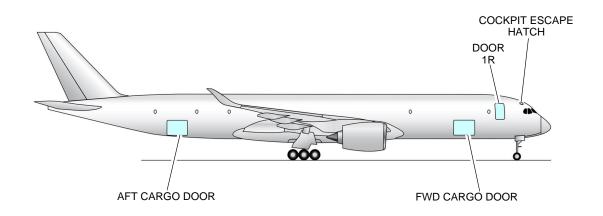


P_AC_020700_1_0010004_01_01

Door Identification and Location Door Identification (Sheet 1 of 2) FIGURE-2-7-0-991-001-D01

**ON A/C A350-1000

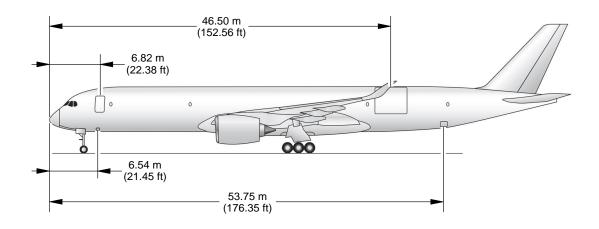


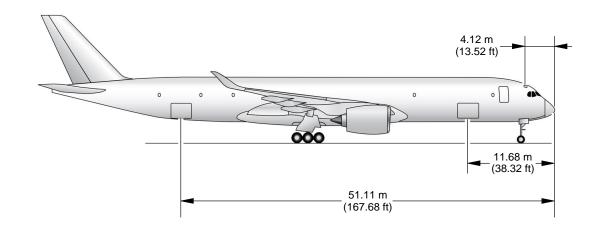


P_AC_020700_1_0010004_02_01

Door Identification and Location Door Location (Sheet 2 of 2) FIGURE-2-7-0-991-001-D01

**ON A/C A350-1000F

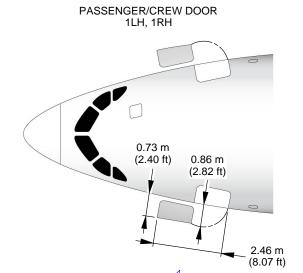




P_AC_020700_1_0010005_01_02

Door Identification and Location (Sheet 1 of 2) FIGURE-2-7-0-991-001-E01

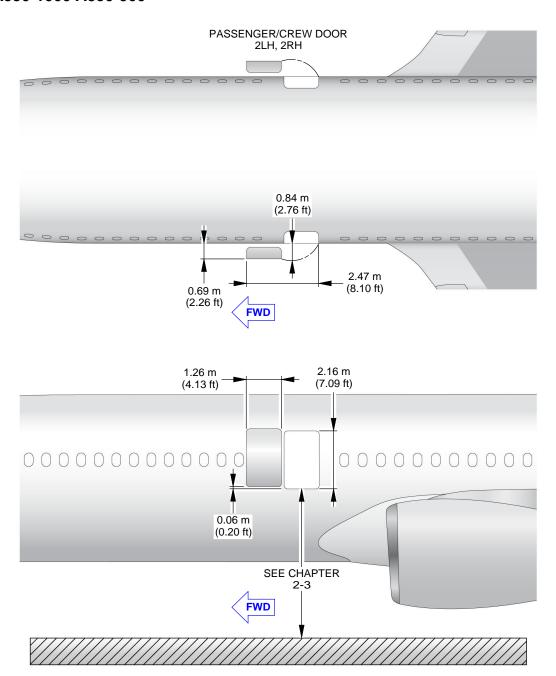
**ON A/C A350-1000F



P_AC_020700_1_0010005_02_02

Door Identification and Location (Sheet 2 of 2) FIGURE-2-7-0-991-001-E01

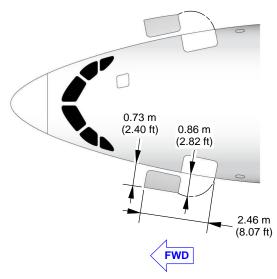
**ON A/C A350-1000 A350-900

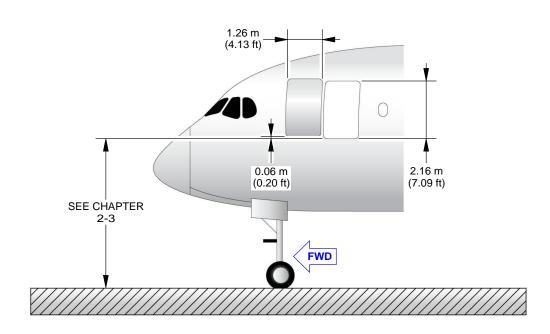

FWD

P_AC_020700_1_0020003_01_01

Forward Passenger/Crew Doors (Sheet 1 of 2) FIGURE-2-7-0-991-002-C01

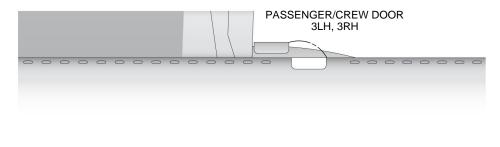

**ON A/C A350-1000 A350-900

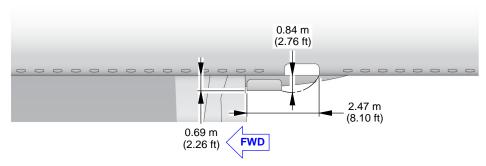


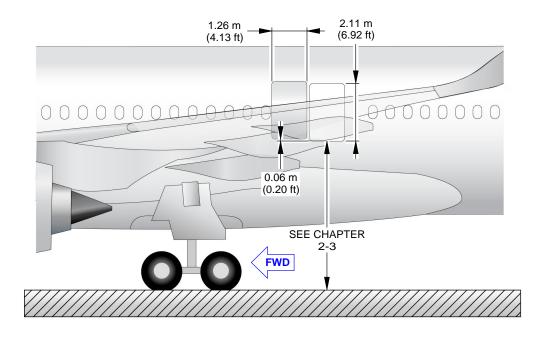

P_AC_020700_1_0020003_02_01

Forward Passenger/Crew Doors (Sheet 2 of 2) FIGURE-2-7-0-991-002-C01

**ON A/C A350-1000F

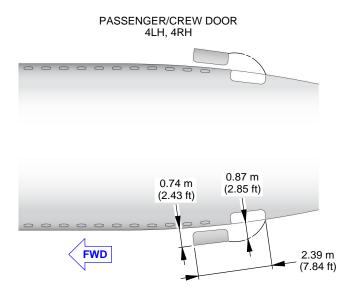


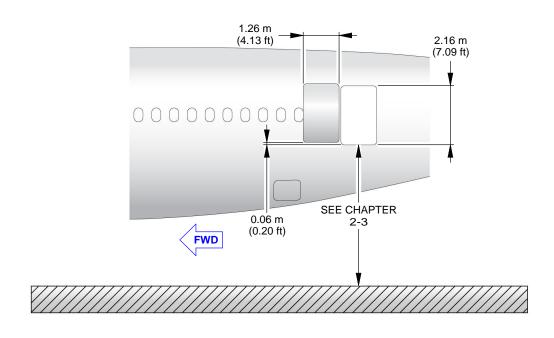



P_AC_020700_1_0020005_01_00

Forward Courier/Crew Doors FIGURE-2-7-0-991-002-E01

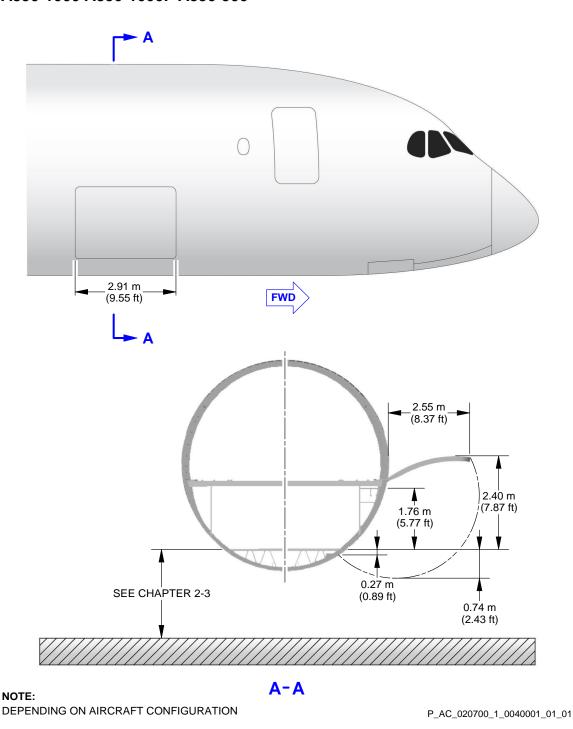
**ON A/C A350-1000 A350-900

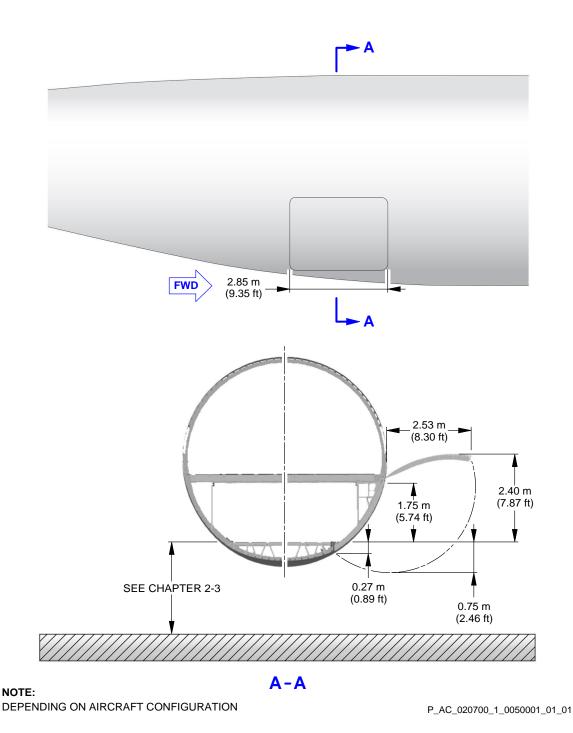




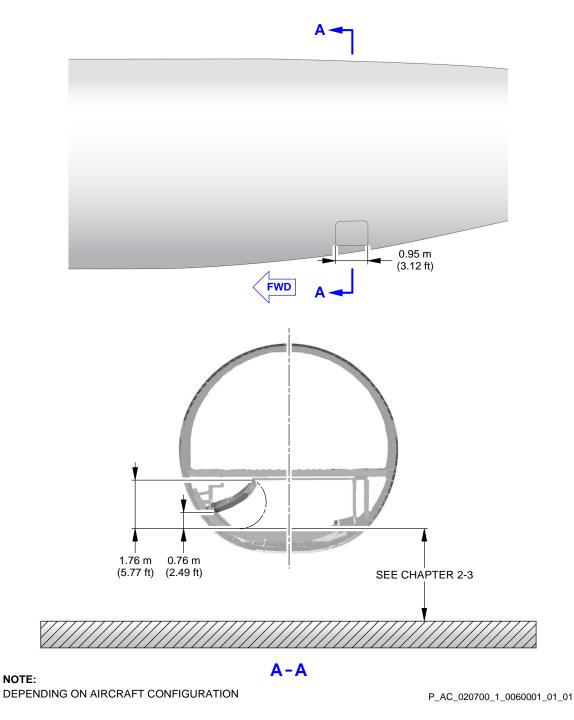
P_AC_020700_1_0030001_01_01

Aft Passenger/Crew Doors (Sheet 1 of 2) FIGURE-2-7-0-991-003-A01

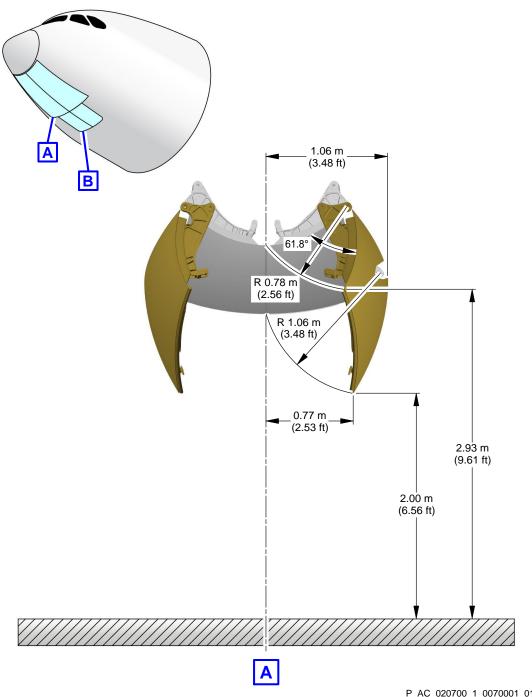

**ON A/C A350-1000 A350-900



P_AC_020700_1_0030001_02_01

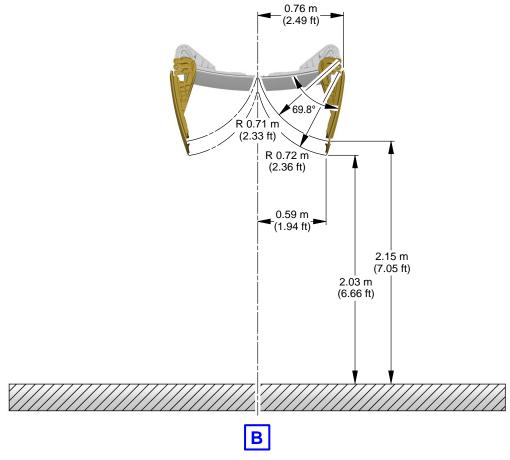

Aft Passenger/Crew Doors (Sheet 2 of 2) FIGURE-2-7-0-991-003-A01

Forward Cargo Compartment Door FIGURE-2-7-0-991-004-A01



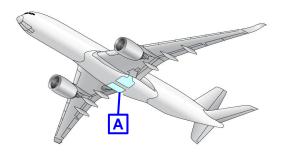
Aft Cargo Compartment Door FIGURE-2-7-0-991-005-A01

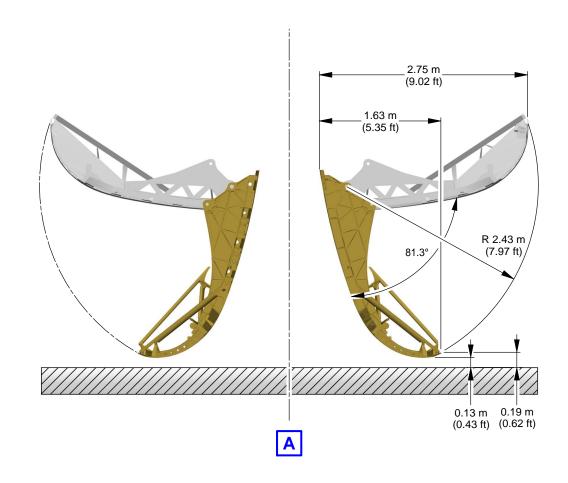
Bulk Cargo Compartment Door FIGURE-2-7-0-991-006-A01


**ON A/C A350-1000 A350-1000F A350-900

P_AC_020700_1_0070001_01_02

Nose Landing Gear Doors Forward Nose Landing Gear Doors (Sheet 1 of 2) FIGURE-2-7-0-991-007-A01

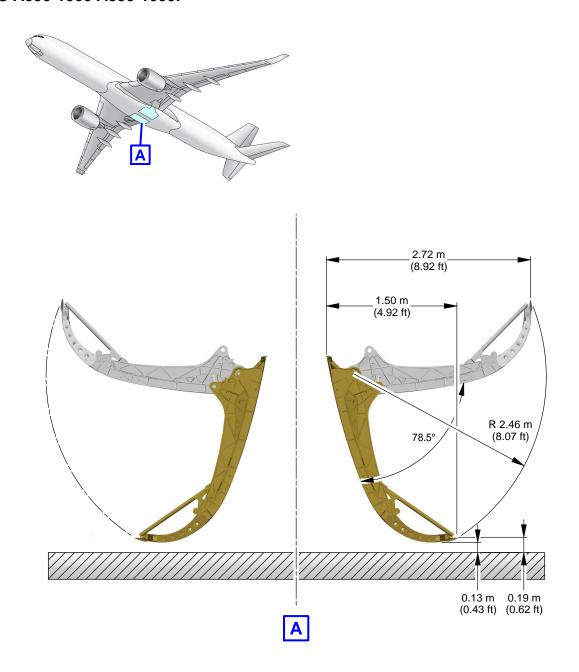

**ON A/C A350-1000 A350-1000F A350-900



P_AC_020700_1_0070001_02_01

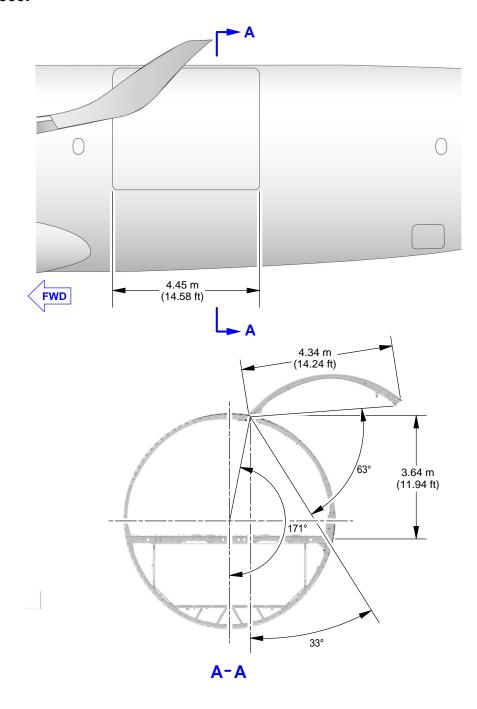
Nose Landing Gear Doors
Aft Nose Landing Gear Doors (Sheet 2 of 2)
FIGURE-2-7-0-991-007-A01

**ON A/C A350-900

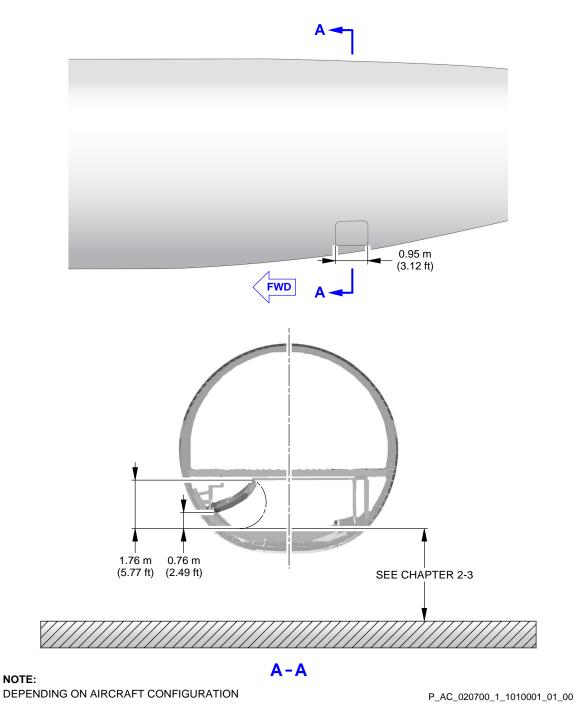


P_AC_020700_1_0080001_01_01

Main Landing Gear Doors FIGURE-2-7-0-991-008-A01

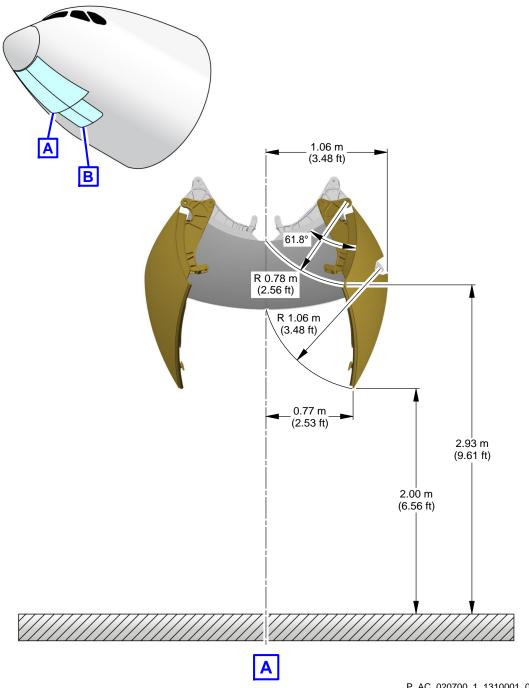

**ON A/C A350-1000 A350-1000F

P_AC_020700_1_0080002_01_01


Main Landing Gear Doors FIGURE-2-7-0-991-008-B01

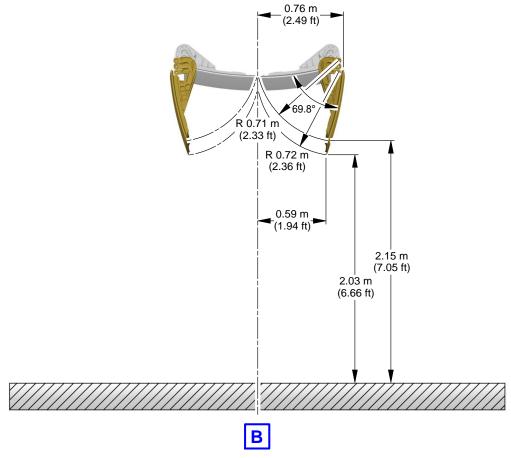
**ON A/C A350-1000F

P_AC_020700_1_0110002_01_01


Main Deck Cargo Door FIGURE-2-7-0-991-011-B01

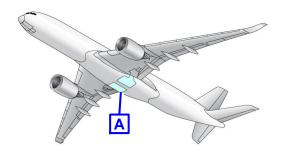
Bulk Cargo Compartment Door 2-7-0-991-101-A01

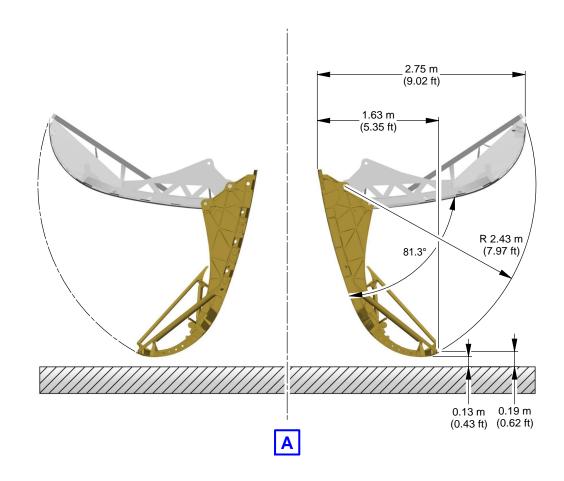
2-7-0


**ON A/C A350-1000 A350-1000F A350-900

P_AC_020700_1_1310001_01_00

Nose Landing Gear Doors 1 of 2) 2-7-0-991-131-A01

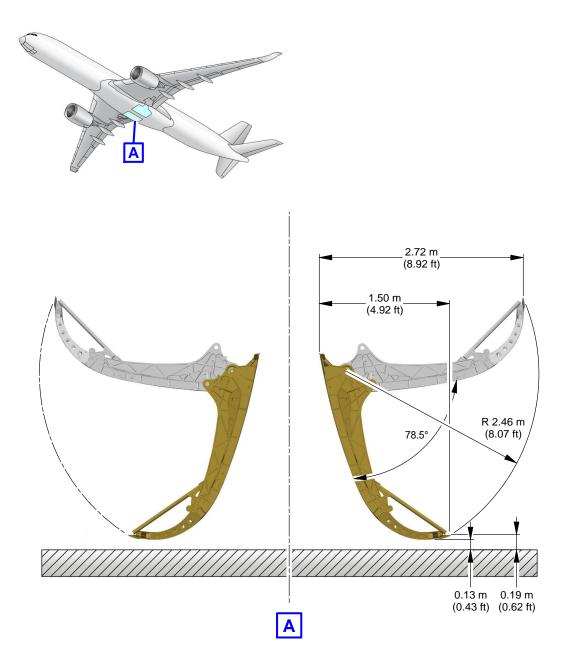

**ON A/C A350-1000 A350-1000F A350-900



P_AC_020700_1_1310001_02_00

Nose Landing Gear Doors 2 of 2) 2-7-0-991-131-A01

**ON A/C A350-900



P_AC_020700_1_1320001_01_00

Main Landing Gear Doors 2-7-0-991-132-A01

**ON A/C A350-1000 A350-1000F

P_AC_020700_1_1320002_01_00

Main Landing Gear Doors 2-7-0-991-132-B01

2-8-0 Escape Slides

**ON A/C A350-1000 A350-1000F A350-900

Escape Slides

1. General

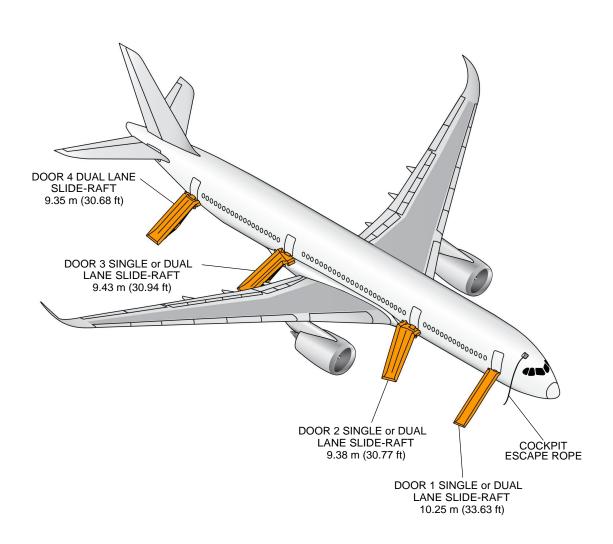
This section provides the location of cabin escape facilities and related clearances.

**ON A/C A350-1000 A350-900

2. Location

Escape facilities are provided at the following locations:

- One cockpit escape rope is kept in a dedicated stowage compartment adjacent to the escape hatch.
- One single or dual lane slide-rafts can be installed at doors 1 to 3 (total 6).
- One dual lane slide-raft at door 4 (total two).


**ON A/C A350-1000F

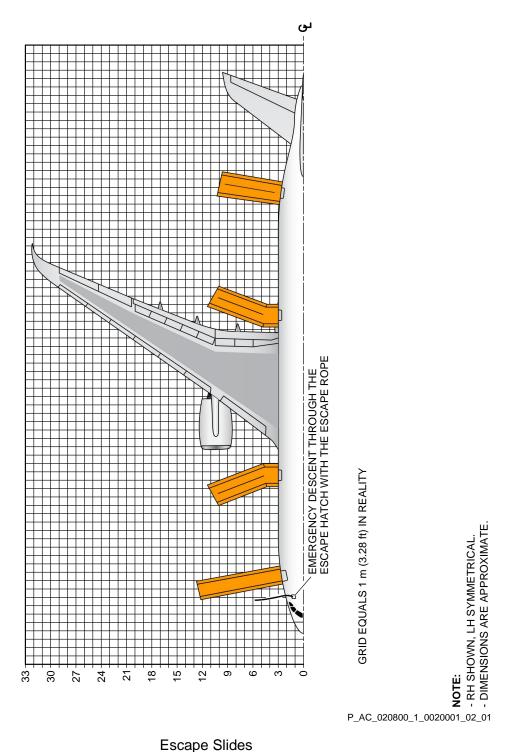
Location

Escape facilities are provided at the following locations:

- One cockpit escape rope is kept in a dedicated stowage compartment adjacent to the escape hatch.
- One single or dual lane slide-rafts can be installed at door 1 (total two).

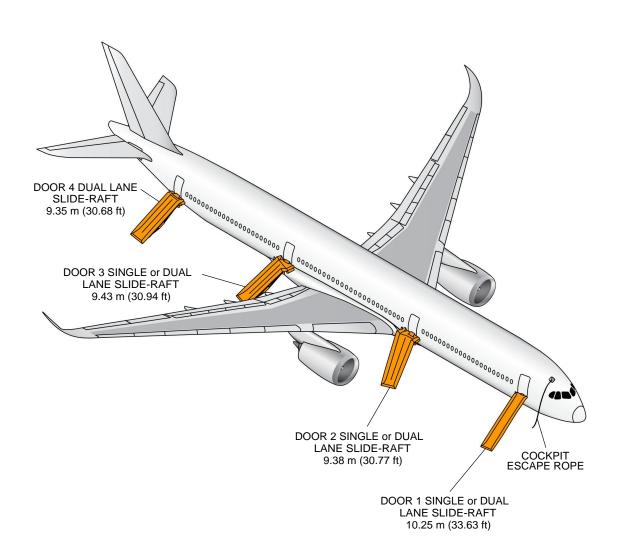
**ON A/C A350-900

NOTE:


RH SHOWN, LH SYMMETRICAL.

P_AC_020800_1_0020001_01_02

Escape Slides
Escape Slides - Location (Sheet 1 of 2)
FIGURE-2-8-0-991-002-A01

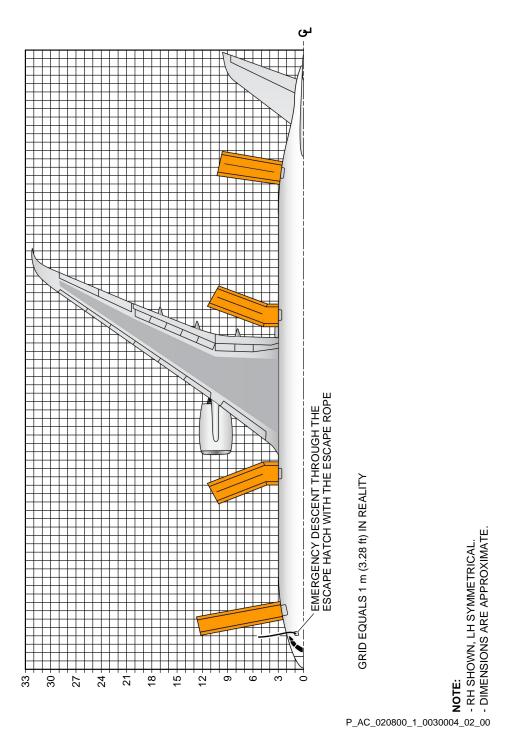

**ON A/C A350-900

EMERGENCY EVACUATION

Escape Slides
Escape Slides - Dimensions (Sheet 2 of 2)
FIGURE-2-8-0-991-002-A01

**ON A/C A350-1000

NOTE:


RH SHOWN, LH SYMMETRICAL.

P_AC_020800_1_0030004_01_01

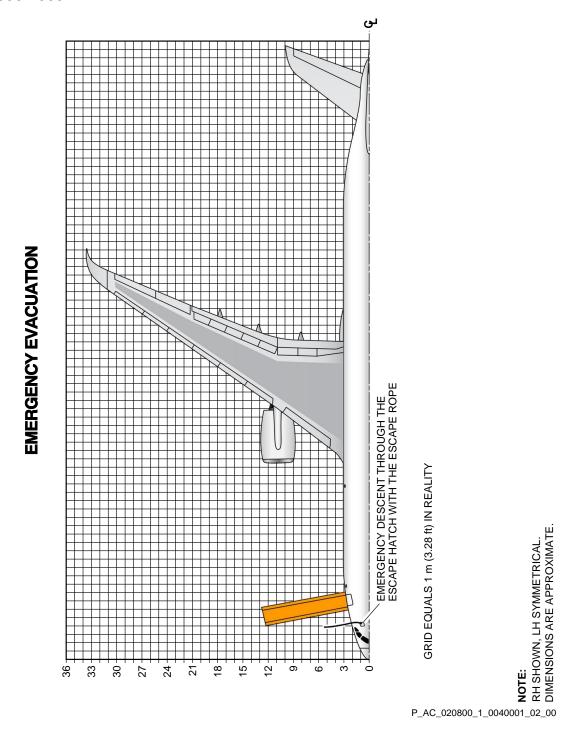
Escape Slides
Escape Slides - Location (Sheet 1 of 2)
FIGURE-2-8-0-991-003-D01

**ON A/C A350-1000

EMERGENCY EVACUATION

Escape Slides
Escape Slides - Dimensions (Sheet 2 of 2)
FIGURE-2-8-0-991-003-D01

**ON A/C A350-1000F


NOTE:

01 RH SHOWN, LH SYMMETRICAL.

P_AC_020800_1_0040001_01_00

Escape Slides
Escape Slides - Location (Sheet 1 of 2)
FIGURE-2-8-0-991-004-A01

**ON A/C A350-1000F

Escape Slides
Escape Slides - Dimensions (Sheet 2 of 2)
FIGURE-2-8-0-991-004-A01

2-9-0 Landing Gear

**ON A/C A350-1000 A350-1000F A350-900

Landing Gear

**ON A/C A350-900

MLG System Description

The two MLGs are mounted in the LH and RH wing just outboard of the wing root within the trailing edge.

The MLGs retract sideways into bays in the fuselage. Each MLG has a four wheel twin-tandem bogie.

Each MLG has one related main door operated by a single door actuator.

Each MLG has a gear uplock and a door uplock.

The MLG has a double side stay arrangement to improve load distribution on the composite wing.

Each side stay has a separate lock stay assembly to provide a positive means to lock the landing gear in the extended position for landing and ground manoeuvres.

Each MLG leg contains a single-stage oleo shock strut consisting of a sliding piston and a main fitting that is supported by the two folding side stays and pivots on the top of the main fitting for extension/retraction.

In-flight, the MLGs are retracted and locked up.

The MLG doors are closed and locked to enclose the MLG bay in flight and on the ground, opening only when the landing gear is extending or retracting.

Hydraulic power for the MLG extension/retraction comes from the green hydraulic system.

**ON A/C A350-1000 A350-1000F

MLG System Description

The two MLGs are mounted in the LH and RH wing just outboard of the wing root within the trailing edge.

The MLGs retract sideways into bays in the fuselage. Each MLG has a six wheel triple-tandem bogie.

Each MLG has one related main door operated by a single door actuator.

Each MLG has a gear uplock and a door uplock.

The MLG has a double side stay arrangement to improve load distribution on the composite wing.

Each side stay has a separate lock stay assembly to provide a positive means to lock the landing gear in the extended position for landing and ground manoeuvres.

Each MLG leg contains a single-stage oleo shock strut consisting of a sliding piston and a main fitting that is supported by the two folding side stays and pivots on the top of the main fitting for extension/retraction.

In-flight, the MLGs are retracted and locked up.

The MLG doors are closed and locked to enclose the MLG bay in flight and on the ground, opening only when the landing gear is extending or retracting.

Hydraulic power for the MLG extension/retraction comes from the green hydraulic system.

**ON A/C A350-1000 A350-1000F A350-900

3. NLG System Description

The NLG is located in the forward lower fuselage on the aircraft centerline below the cockpit. It is forward retracting and consists of a twin wheel axle mounted on a main fitting that incorporates a single-stage oleo shock strut supported by a forward drag stay.

The NLG main fitting accommodates the steering assembly for the Nose Wheel Steering (NWS) system.

In-flight, the NLG is retracted and locked up while the four sideways opening NLG Doors are closed and locked to enclose the NLG bay.

The two forward doors are each operated by two independent door actuators.

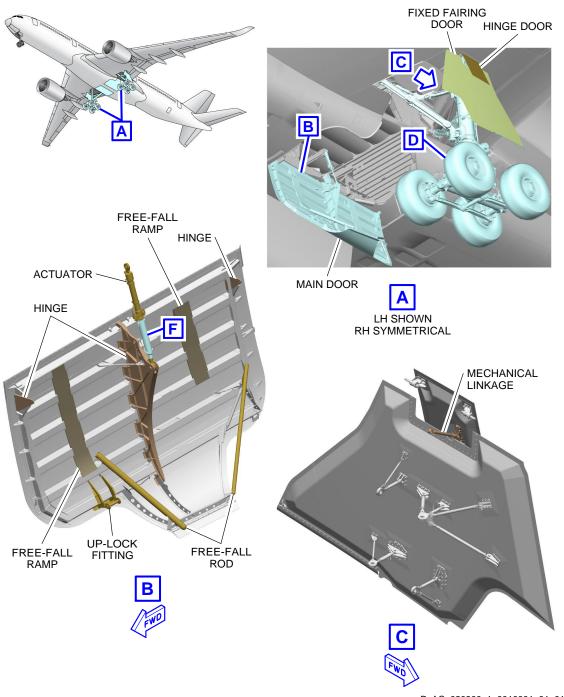
When retracted, the NLG is held by an uplock and the two main NLG doors are held by a single door uplock assembly, containing an uplock hook for each door.

The hydraulically powered forward NLG doors are also closed after the NLG is extended.

The aft doors are mechanically driven and remain open when the NLG is extended.

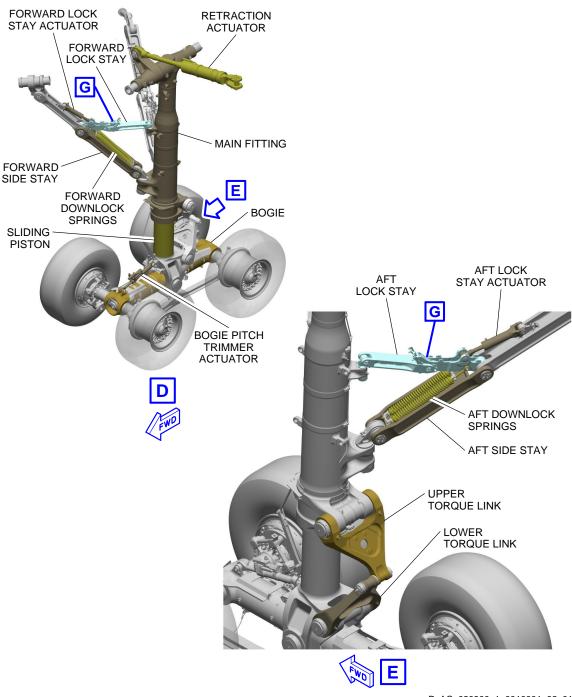
Hydraulic power for the NLG extension/retraction comes from the yellow hydraulic system.

Electric power to the navigation lights can be provided through the tow truck power connector on the 2GN service panel, See FIGURE 2-9-0-991-002-A. See AC 5-4-3 for connector definition.


Landing Gear Extension and Retraction System

The Landing Gear Extension and Retraction System (LGERS) is made up of three sub-systems:

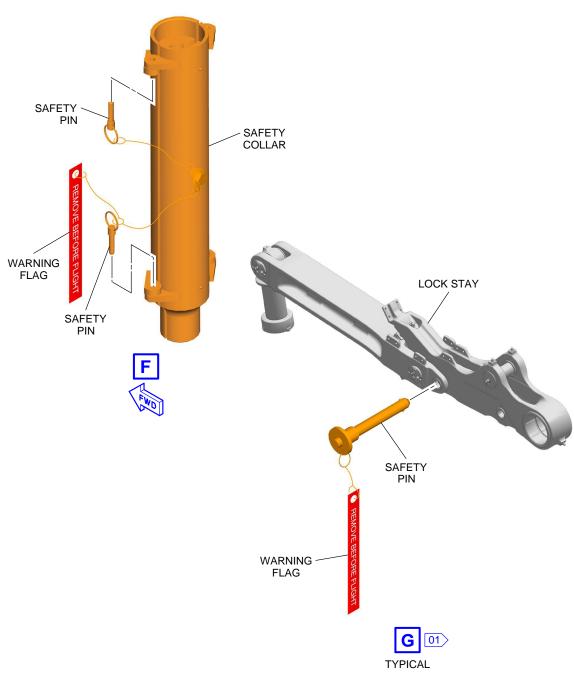
- Normal extension and retraction system, for normal extension and retraction,
- Alternate extension system, for extension in flight if the normal system is unavailable,
- Ground door opening system, to allow on-ground access to the landing gear bays for maintenance purposes.


**ON A/C A350-900

P_AC_020900_1_0010001_01_01

Main Landing Gear Doors Overview (Sheet 1 of 3) FIGURE-2-9-0-991-001-A01

**ON A/C A350-900

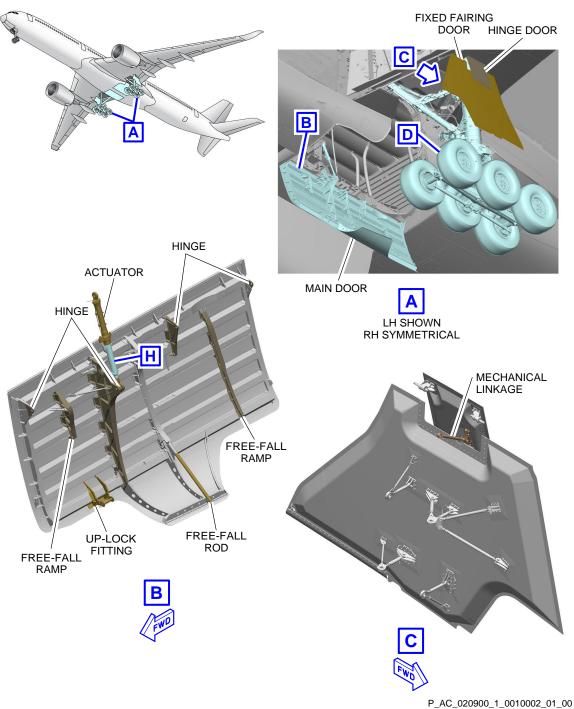

P_AC_020900_1_0010001_02_01

Main Landing Gear Overview (Sheet 2 of 3) FIGURE-2-9-0-991-001-A01

©A350

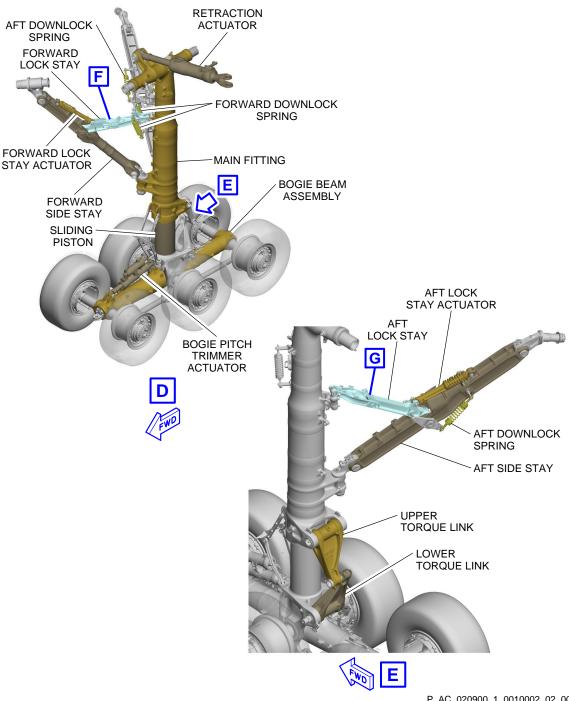
AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

**ON A/C A350-900


NOTE:

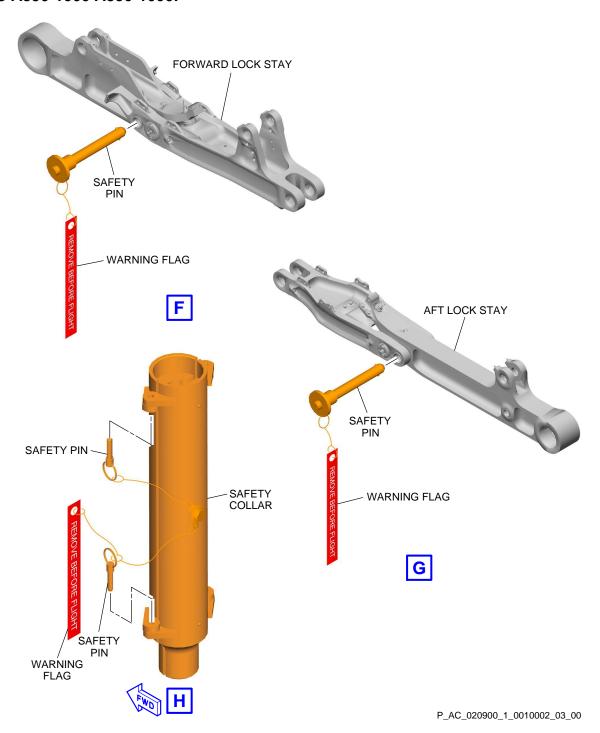
01) FORWARD LOCK STAY SHOWN, AFT SIMILAR

P_AC_020900_1_0010001_03_02

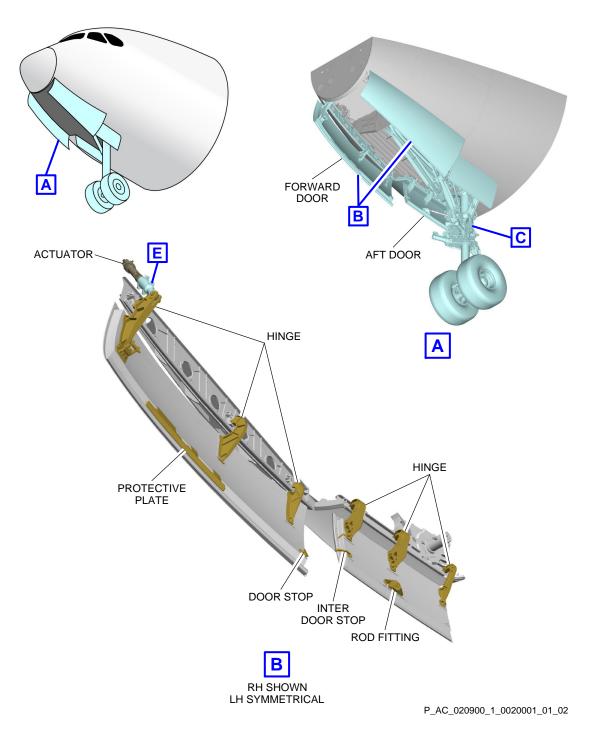

Main Landing Gear Safety Devices (Sheet 3 of 3) FIGURE-2-9-0-991-001-A01

**ON A/C A350-1000 A350-1000F

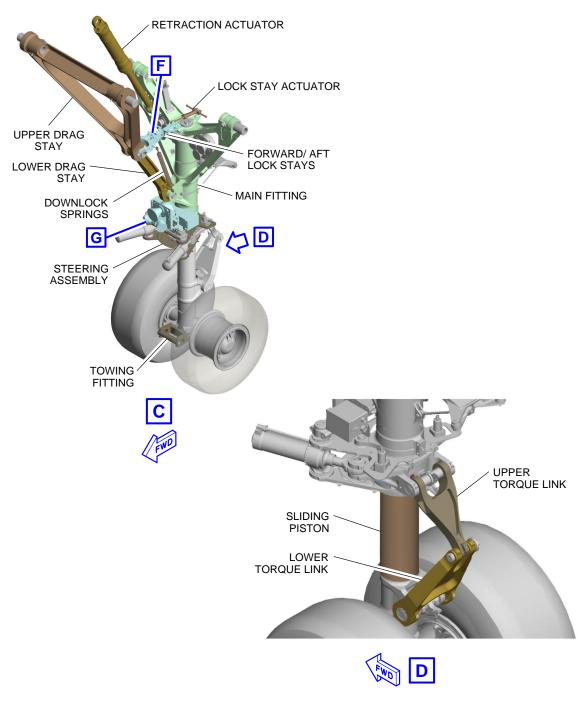
Main Landing Gear Doors Overview (Sheet 1 of 3) FIGURE-2-9-0-991-001-B01


**ON A/C A350-1000 A350-1000F

P_AC_020900_1_0010002_02_00

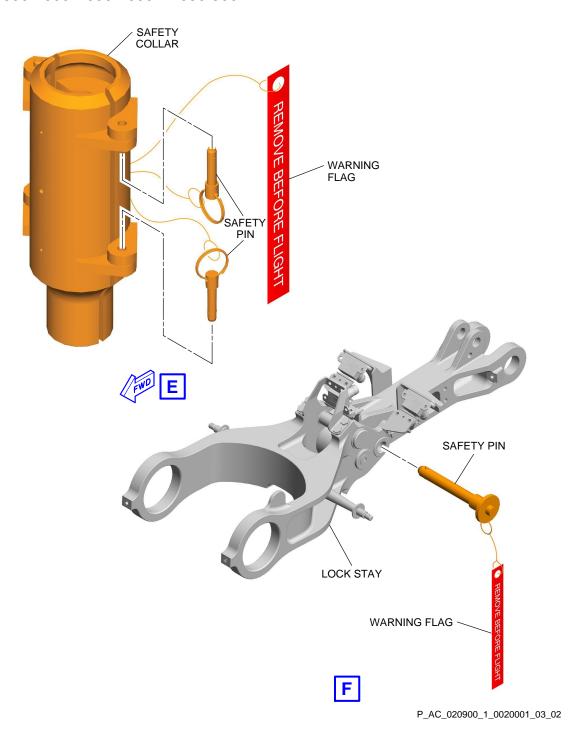

Main Landing Gear Overview (Sheet 2 of 3) FIGURE-2-9-0-991-001-B01

**ON A/C A350-1000 A350-1000F

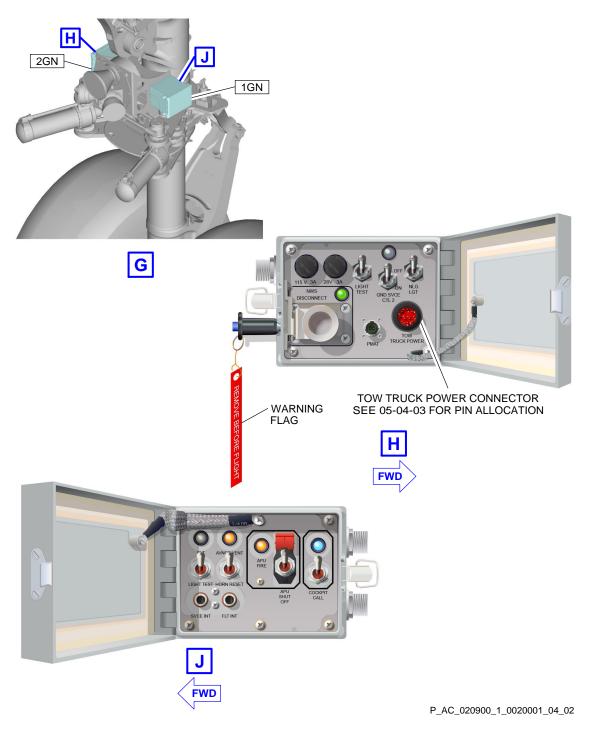

Main Landing Gear Safety Devices (Sheet 3 of 3) FIGURE-2-9-0-991-001-B01

**ON A/C A350-1000 A350-1000F A350-900

Nose Landing Gear Doors Overview (Sheet 1 of 4) FIGURE-2-9-0-991-002-A01


**ON A/C A350-1000 A350-1000F A350-900

P_AC_020900_1_0020001_02_01


Nose Landing Gear Overview (Sheet 2 of 4) FIGURE-2-9-0-991-002-A01

**ON A/C A350-1000 A350-1000F A350-900

Nose Landing Gear Safety Devices (Sheet 3 of 4) FIGURE-2-9-0-991-002-A01

**ON A/C A350-1000 A350-1000F A350-900

Nose Landing Gear Service Panels (Sheet 4 of 4) FIGURE-2-9-0-991-002-A01

2-9-1 Landing Gear Maintenance Pits

**ON A/C A350-1000 A350-900

Landing Gear Maintenance Pits

**ON A/C A350-900

General

The minimum maintenance pit envelopes for landing gear shock absorber maintenance are shown in Figures FIGURE 2-9-1-991-001-A, FIGURE 2-9-1-991-002-A, FIGURE 2-9-1-991-003-A and FIGURE 2-9-1-991-004-A.

The landing gears are shown with simplified gear structure.

The three envelopes show the minimum dimensions for these maintenance operations:

- Extension and retraction
- Gear removal
- Piston removal.

Pit envelopes shown represent minimum sizing required to accommodate landing gear tires and removal tooling. Dimensions for the below cases are to be added in the shown envelopes:

- Clearance allowances for working area
- Operator access
- Functional clearances
- Tooling
- Civil engineering considerations.

The maintenance pits are symmetrical about the aircraft centerline and all dimensions shown are minimum dimensions with zero clearances.

The dimensions for the pits have been determined as follows:

- The aircraft starting condition is with weight on wheels supported by jacks over the pits.
- The pit depths are then based on the shock absorbers lowering to the fully extended position plus allowances for tooling.
- The length and width of the pits allow the gear to rotate after the weight is taken off the landing gear
- The landing gear tires are in the maximum grown condition
- The MLG wheels, brakes and bogie beams are removed before the piston is removed
- The NLG wheels are removed before the piston is removed
- Both the MLG and the NLG pistons are removed vertically.

The pit depth for the MLG piston removal is based on the removal pallet support leg being installed at its maximum length (upper pin hole position).

The landing gear piston trolley for MLG and NLG may be positioned FWD or AFT of the landing gears depending on the chosen removal orientation (rotation FWD or AFT).

Dimensions for elevators and associated mechanisms must be added to those in Figures FIGURE 2-9-1-991-001-A, FIGURE 2-9-1-991-002-A, FIGURE 2-9-1-991-003-A and FIGURE 2-9-1-991-004-A.

A. Elevators

These can be either mechanical or hydraulic. They are used to:

- Permit easy movement of persons and equipment around the landing gears
- Lift and remove landing gear assemblies out of the pits.

B. Jacking

The aircraft must be in position over the pits to put the gear on the elevators. The jack must be installed and engaged with all the jacking points, AC 2-14-1 for aircraft maintenance jacking. When lowering the elevators, the aircraft weight will be transferred from the wheels to the jacks. The landing gears must not be in contact with the elevators during retraction/extension tests.

The aircraft must not bend when it is jacked and when its weight is off the wheels. When tripod support jacks are used, the tripod-base circle radius must be limited because the locations required for positioning the columns are close to the sides of the pits.

**ON A/C A350-1000

2. General

The minimum maintenance pit envelopes for landing gear shock absorber maintenance are shown in Figures FIGURE 2-9-1-991-005-B, FIGURE 2-9-1-991-006-A, FIGURE 2-9-1-991-007-A and FIGURE 2-9-1-991-008-A.

The landing gears are shown with simplified gear structure.

The three envelopes show the minimum dimensions for these maintenance operations:

- Extension and retraction
- Gear removal
- Piston removal.

Pit envelopes shown represent minimum sizing required to accommodate landing gear tires and removal tooling. Dimensions for the below cases are to be added in the shown envelopes:

- Clearance allowances for working area
- Operator access
- Functional clearances
- Tooling
- Civil engineering considerations.

The maintenance pits are symmetrical about the aircraft centerline and all dimensions shown are minimum dimensions with zero clearances.

The dimensions for the pits have been determined as follows:

- The aircraft starting condition is with weight on wheels supported by jacks over the pits.
- The pit depths are then based on the shock absorbers lowering to the fully extended position plus allowances for tooling.
- The length and width of the pits allow the gear to rotate after the weight is taken off the landing gear
- The landing gear tires are in the maximum grown condition
- The MLG wheels, brakes and bogie beams are removed before the piston is removed
- The NLG wheels are removed before the piston is removed
- Both the MLG and the NLG pistons are removed vertically.

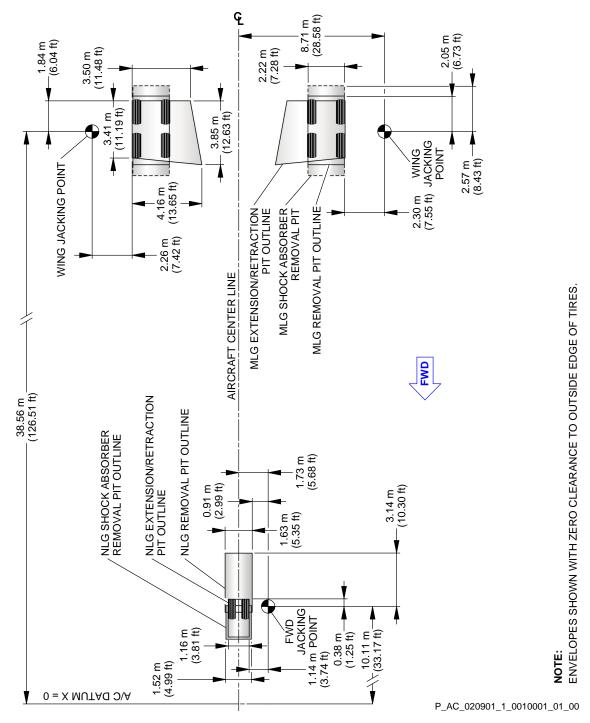
The pit depth for the MLG piston removal is based on the removal pallet support leg being installed at its maximum length (upper pin hole position).

The landing gear piston trolley for NLG may be positioned FWD or AFT of the landing gear depending on the chosen removal orientation (rotation FWD or AFT).

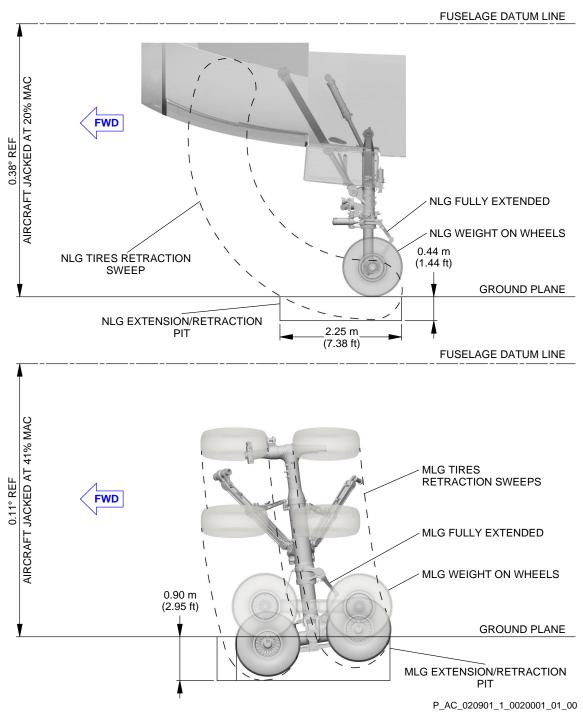
The landing gear piston trolley for MLG will be positioned AFT of the landing gear, due to design of the tool.

Dimensions for elevators and associated mechanisms must be added to those in Figures FIGURE 2-9-1-991-005-B, FIGURE 2-9-1-991-006-A, FIGURE 2-9-1-991-007-A and FIGURE 2-9-1-991-008-A.

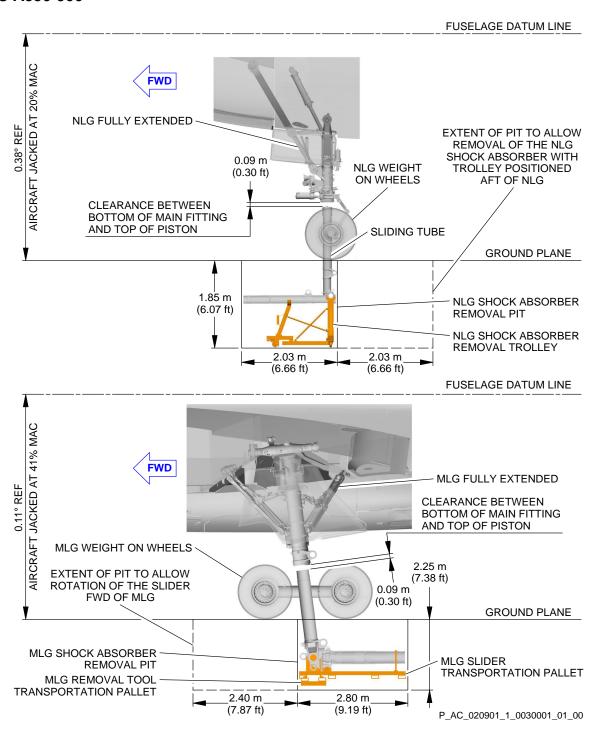
A. Elevators

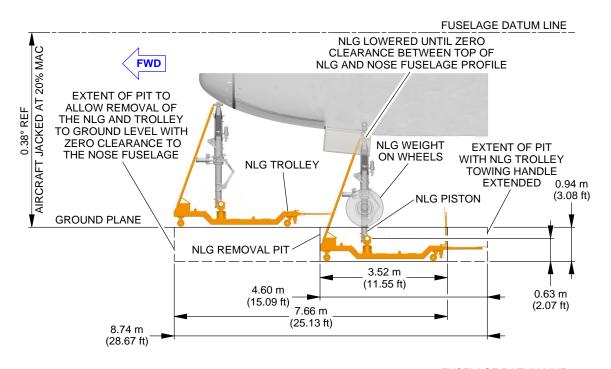

These can be either mechanical or hydraulic. They are used to:

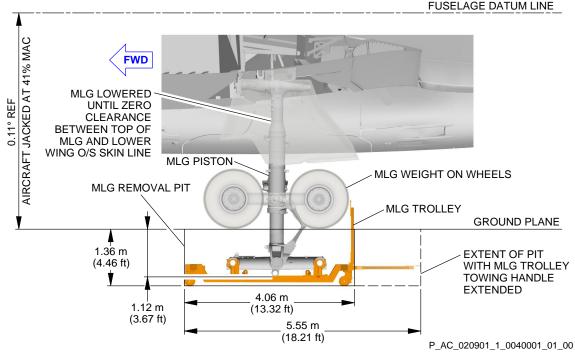
- Permit easy movement of persons and equipment around the landing gears
- Lift and remove landing gear assemblies out of the pits.


B. Jacking

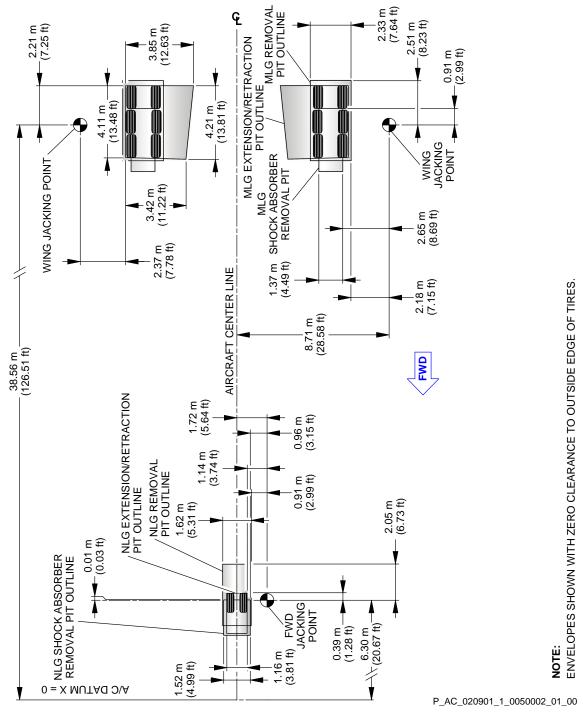
The aircraft must be in position over the pits to put the gear on the elevators. The jack must be installed and engaged with all the jacking points, AC 2-14-1 for aircraft maintenance jacking. When lowering the elevators, the aircraft weight will be transferred from the wheels to the jacks. The landing gears must not be in contact with the elevators during retraction/ extension tests.


The aircraft must not bend when it is jacked and when its weight is off the wheels. When tripod support jacks are used, the tripod-base circle radius must be limited because the locations required for positioning the columns are close to the sides of the pits.

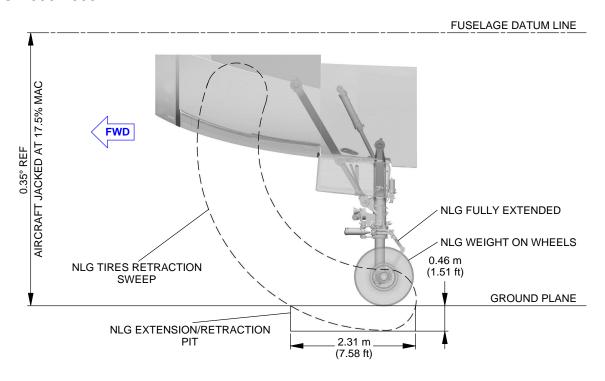

Maintenance Pit Envelopes FIGURE-2-9-1-991-001-A01

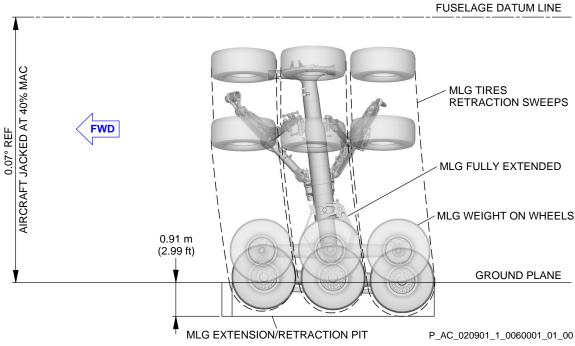


NLG/MLG Extension/Retraction Pit FIGURE-2-9-1-991-002-A01

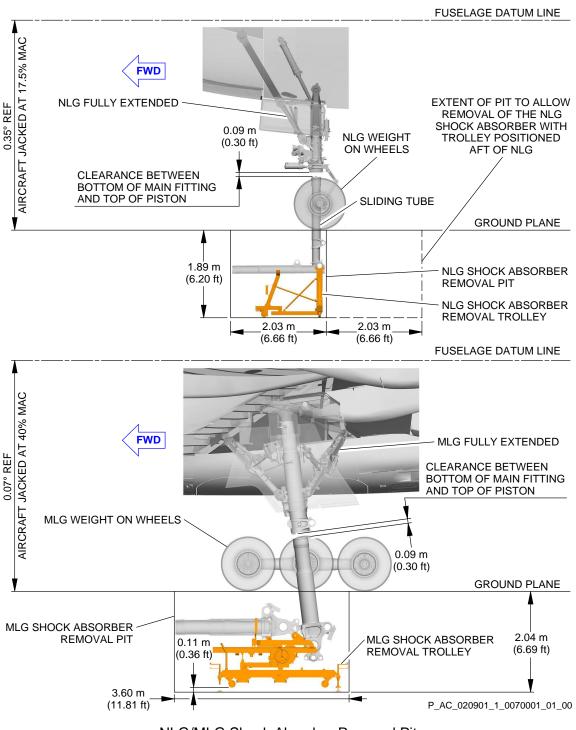


NLG/MLG Shock Absorber Removal Pit FIGURE-2-9-1-991-003-A01

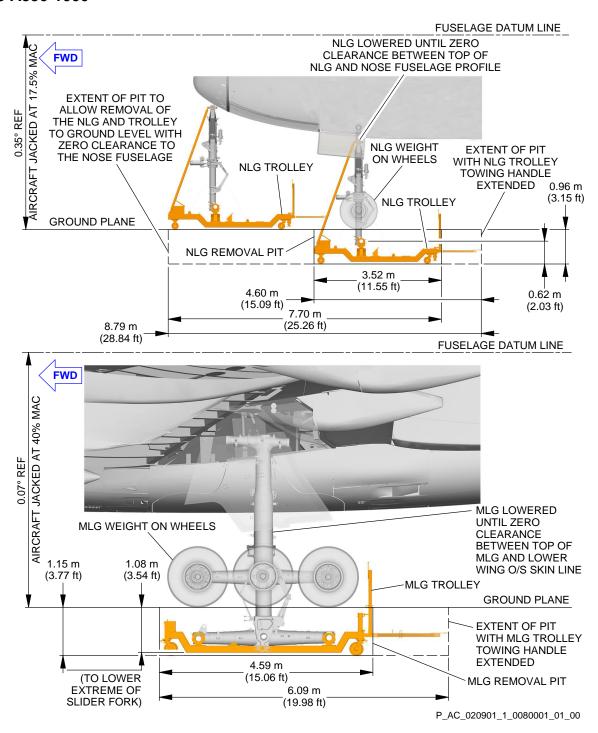




NLG/MLG Removal Pit FIGURE-2-9-1-991-004-A01



Maintenance Pit Envelopes FIGURE-2-9-1-991-005-B01

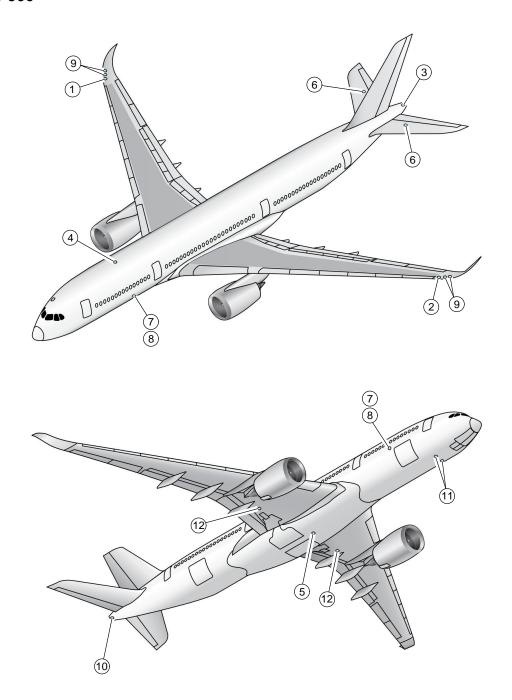


NLG/MLG Extension/Retraction Pit FIGURE-2-9-1-991-006-A01

NLG/MLG Shock Absorber Removal Pit FIGURE-2-9-1-991-007-A01

NLG/MLG Removal Pit FIGURE-2-9-1-991-008-A01

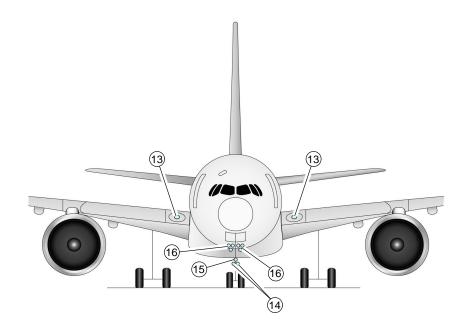
2-10-0 Exterior Lighting

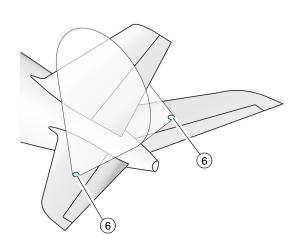

**ON A/C A350-1000 A350-1000F A350-900

Exterior Lighting

1. This section provides the location of the aircraft exterior lighting.

EXTERIOR LIGHTING	
ITEM	DESCRIPTION
1	RIGHT NAVIGATION LIGHT (GREEN)
2	LEFT NAVIGATION LIGHT (RED)
3	TAIL NAVIGATION LIGHT (WHITE)
4	UPPER ANTI-COLLISION LIGHT/BEACON (RED)
5	LOWER ANTI-COLLISION LIGHT/BEACON (RED)
6	LOGO LIGHTS
7	ENGINE SCAN LIGHTS
8	WING SCAN LIGHTS
9	WING STROBE LIGHT (HIGH INTENSITY, WHITE)
10	TAIL STROBE LIGHT (HIGH INTENSITY, WHITE)
11	TAXI CAMERA LIGHTS (NLG)
12	TAXI CAMERA LIGHTS (MLG)
13	LANDING LIGHTS
14	RUNWAY TURN-OFF LIGHTS
15	TAXI LIGHTS
16	TAKE-OFF LIGHTS
17	CARGO COMPARTMENT FLOOD LIGHTS
18	LANDING GEAR BAY/WELL LIGHTS (DOME)

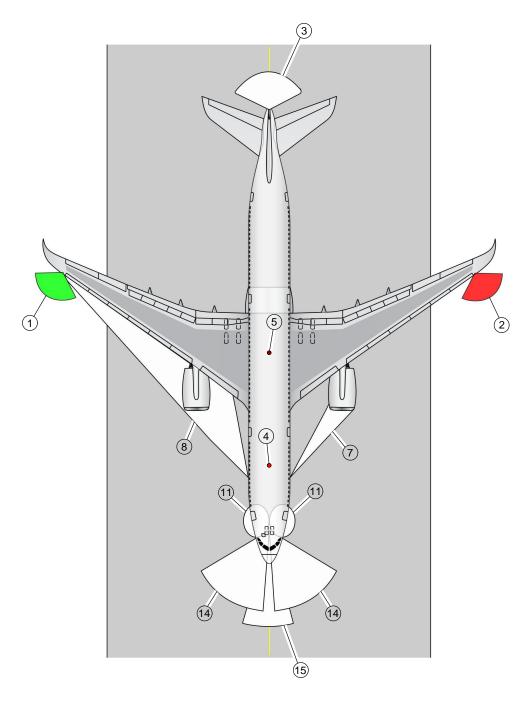

**ON A/C A350-900



P_AC_021000_1_0010002_01_01

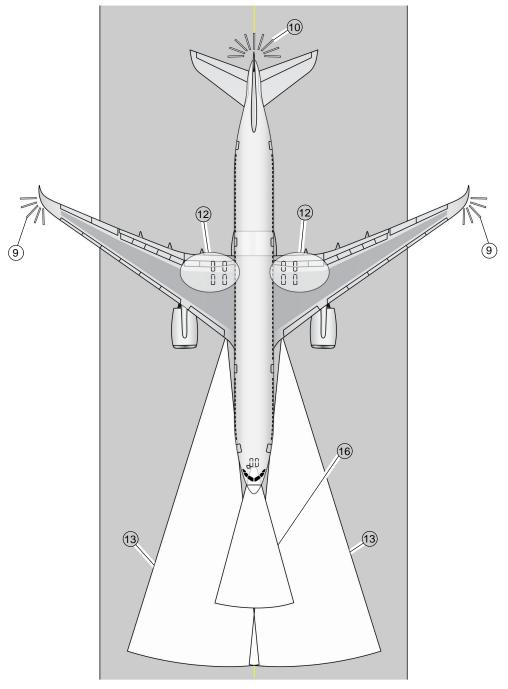
Exterior Lighting FIGURE-2-10-0-991-001-B01

**ON A/C A350-900



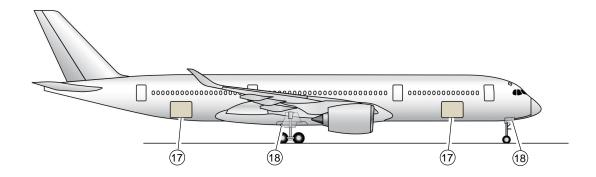
P_AC_021000_1_0020001_01_00

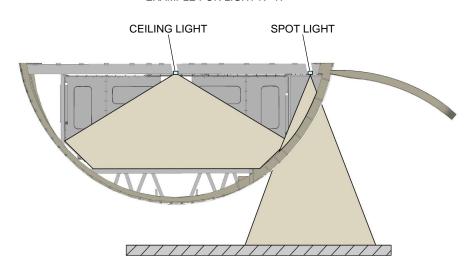
Exterior Lighting FIGURE-2-10-0-991-002-A01


**ON A/C A350-900

P_AC_021000_1_0030002_01_01

Exterior Lighting FIGURE-2-10-0-991-003-B01

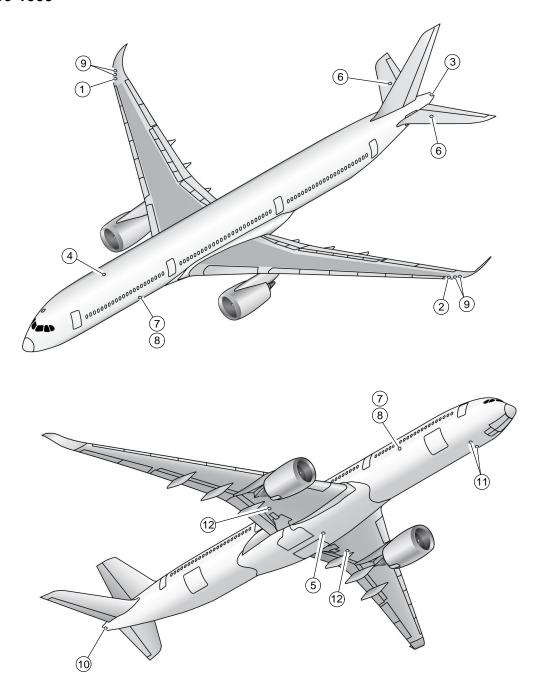

**ON A/C A350-900


P_AC_021000_1_0040001_01_01

Exterior Lighting FIGURE-2-10-0-991-004-A01

**ON A/C A350-900

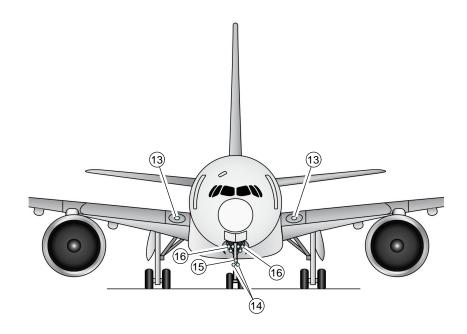
EXAMPLE FOR LIGHT N° 17

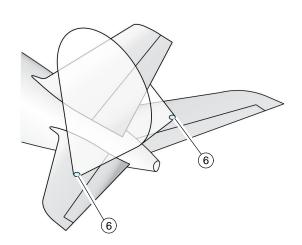

P_AC_021000_1_0050001_01_01

Exterior Lighting FIGURE-2-10-0-991-005-A01

©A350

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

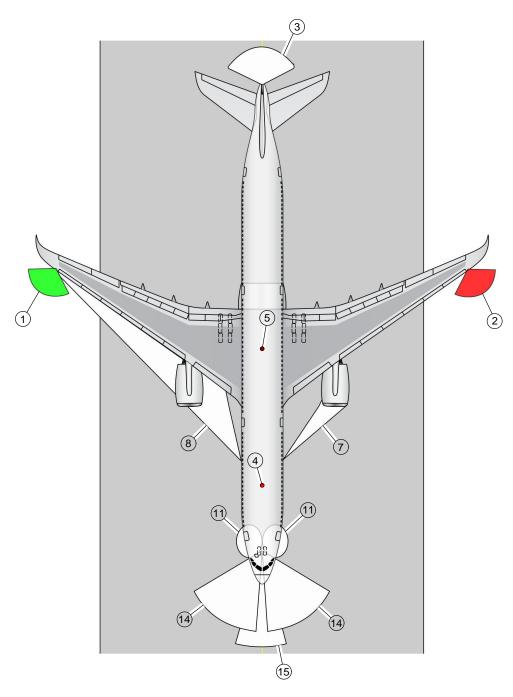

**ON A/C A350-1000



P_AC_021000_1_0060001_01_00

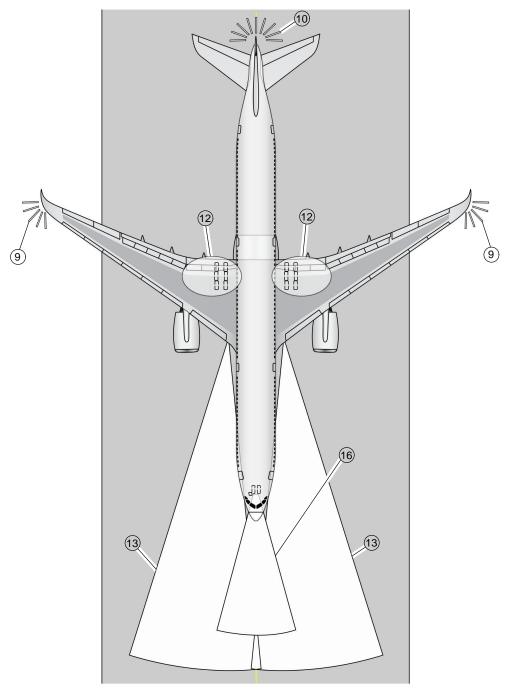
Exterior Lighting FIGURE-2-10-0-991-006-A01

**ON A/C A350-1000



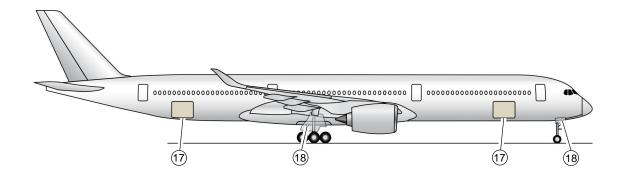
P_AC_021000_1_0070001_01_00

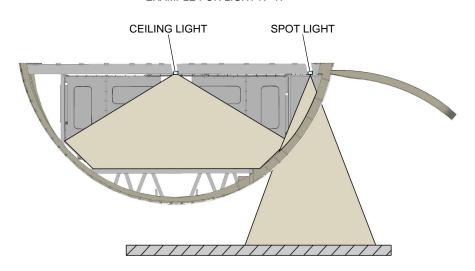
Exterior Lighting FIGURE-2-10-0-991-007-A01


**ON A/C A350-1000

P_AC_021000_1_0080001_01_00

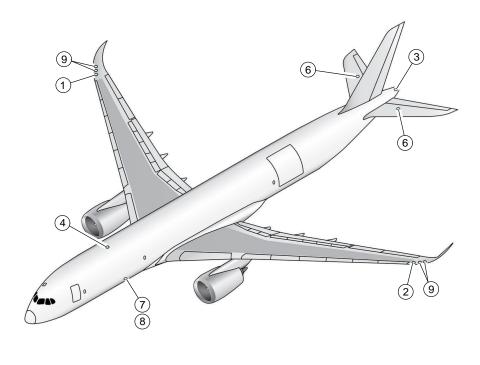
Exterior Lighting FIGURE-2-10-0-991-008-A01

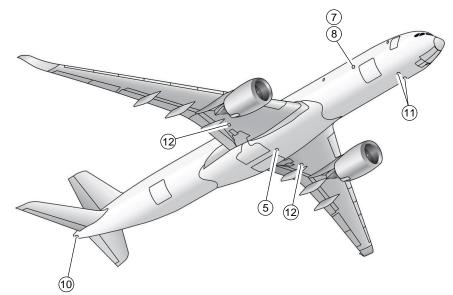

**ON A/C A350-1000


P_AC_021000_1_0090001_01_00

Exterior Lighting FIGURE-2-10-0-991-009-A01

**ON A/C A350-1000

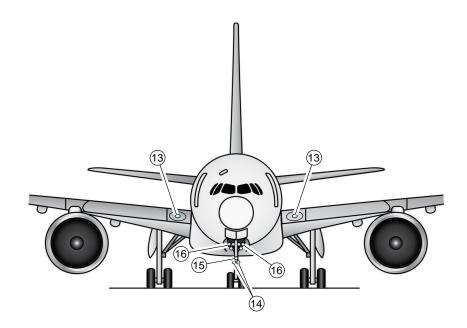

EXAMPLE FOR LIGHT N° 17

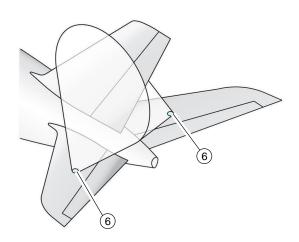


P_AC_021000_1_0100001_01_00

Exterior Lighting FIGURE-2-10-0-991-010-A01

**ON A/C A350-1000F

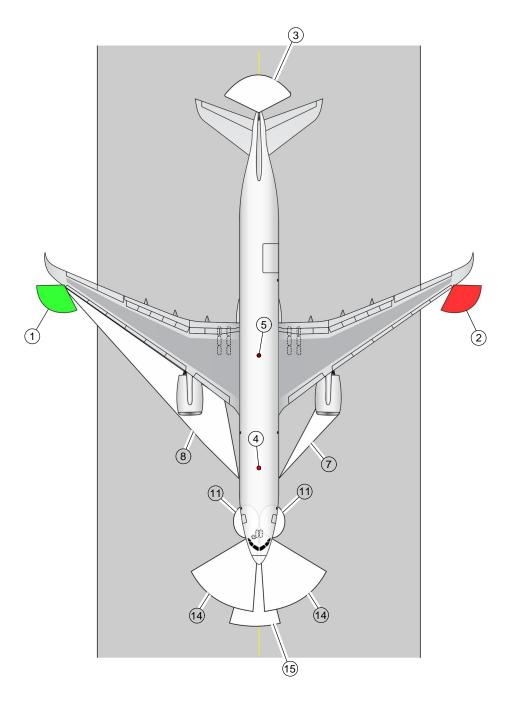




P_AC_021000_1_0110001_01_00

Exterior Lighting (Sheet 1 of 5) FIGURE-2-10-0-991-011-A01

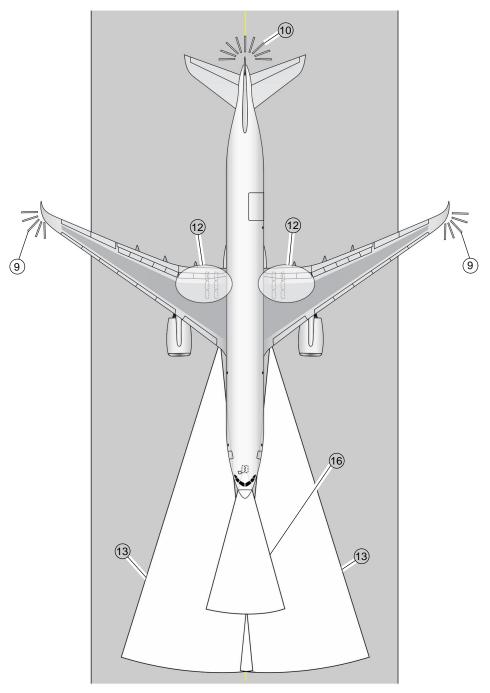
**ON A/C A350-1000F



P_AC_021000_1_0110001_02_00

Exterior Lighting (Sheet 2 of 5) FIGURE-2-10-0-991-011-A01

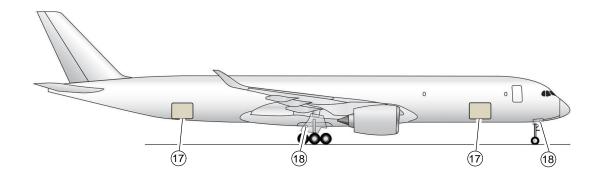
**ON A/C A350-1000F

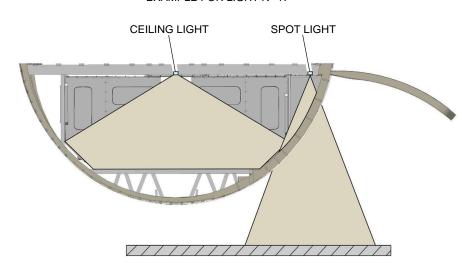


P_AC_021000_1_0110001_03_00

Exterior Lighting (Sheet 3 of 5) FIGURE-2-10-0-991-011-A01

Page 14


**ON A/C A350-1000F


P_AC_021000_1_0110001_04_00

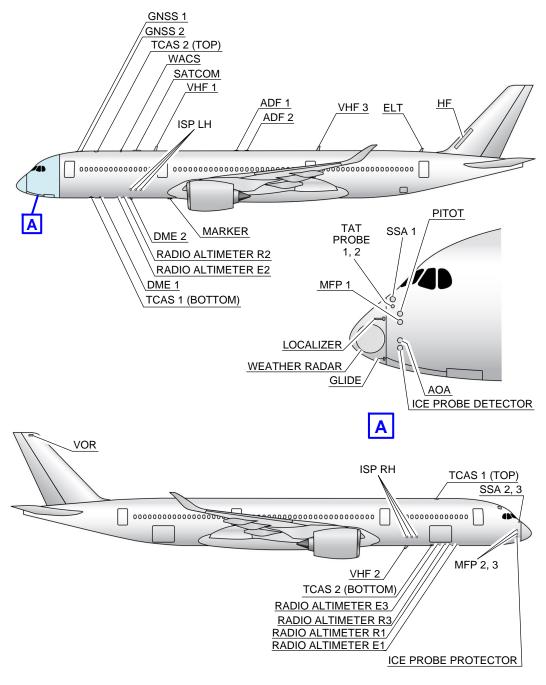
Exterior Lighting (Sheet 4 of 5) FIGURE-2-10-0-991-011-A01

**ON A/C A350-1000F

EXAMPLE FOR LIGHT N° 17

P_AC_021000_1_0110001_05_00

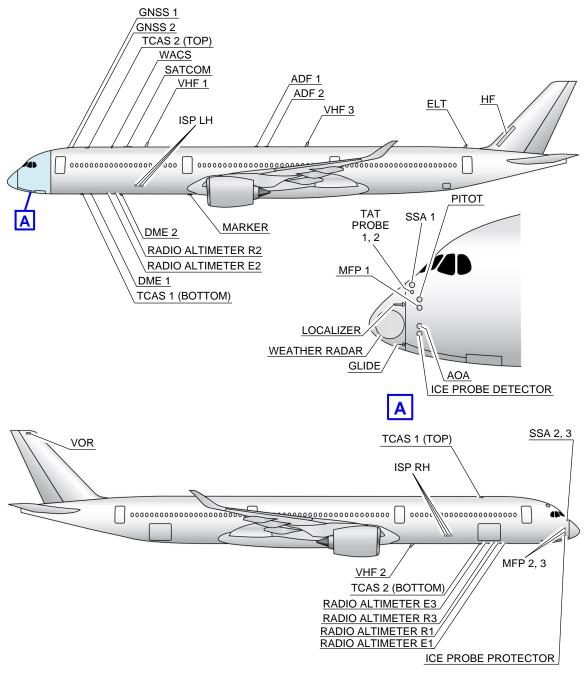
Exterior Lighting (Sheet 5 of 5) FIGURE-2-10-0-991-011-A01


2-11-0 Antennas and Probes Location

**ON A/C A350-1000 A350-1000F A350-900

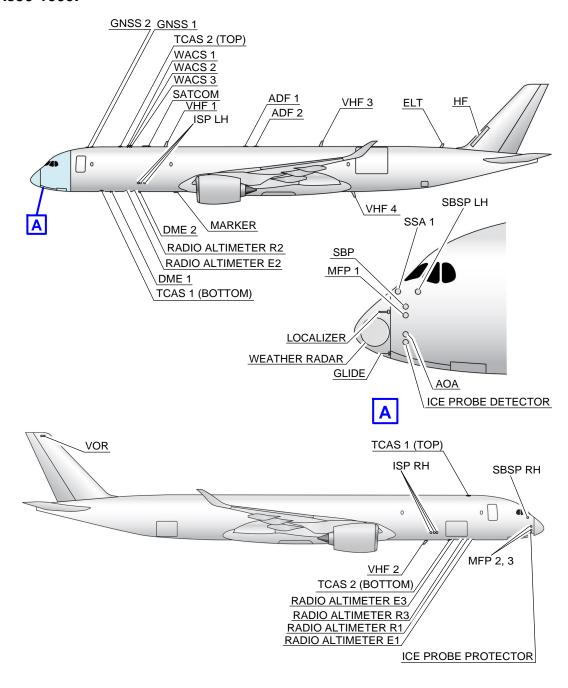
Antennas and Probes Location

1. This section provides the location of antennas and probes.


**ON A/C A350-900

P_AC_021100_1_0010001_01_02

Antennas and Probes Location FIGURE-2-11-0-991-001-A01


**ON A/C A350-1000

P_AC_021100_1_0020001_01_01

Antennas and Probes Location FIGURE-2-11-0-991-002-A01

**ON A/C A350-1000F

P_AC_021100_1_0030001_01_01

Antennas and Probes Location FIGURE-2-11-0-991-003-A01

2-12-0 Engine and Nacelle

**ON A/C A350-1000 A350-1000F A350-900

Engine and Nacelle

1. Power Plant

The A350–900 and A350–1000 has two main power plants, one installed under each wing on a pylon.

Each power plant can be lowered for removal from its pylon.

The power plant comprises the:

- Nacelle.
- Engine.

Nacelle

The nacelle comprises the following assemblies:

- Air intake.
- Fan cowls,
- Thrust reverser,
- Exhaust system.

A. Fan Cowl

A power door opening system is installed to assist in opening the cowls.

The cowls have access doors for fan case-mounted components.

B. Thrust Reverser

The engine thrust reverser consists primarily of an inner fixed structure and an outer translating sleeve.

The fan exhaust stream is reversed by the cascades and blocker doors, which form part of the translating sleeve actuated by an electrical Thrust Reverser Actuation System (TRAS). A power door opening system is used to assist thrust reverser cowl opening.

The thrust reverser latching system is designed so that the remote latches close only when the hooks are engaged.

Means are provided to latch and secure a thrust reverser in the stowed position.

Means are provided to permit actuation of the thrust reversers without engine operation, for maintenance purposes, either using the TRAS powered by the aircraft or by manual drive with external Ground Support Equipment (GSE).

C. Exhaust System

The exhaust system consists of a primary nozzle and a center body plug.

The exhaust system is designed to optimize aerodynamics and acoustic performance.

3. Engine

A. Ignition

Each engine is equipped with a dual ignition system controlled by the FADEC.

Each engine is equipped with an automatic flame-out protection.

B. Cooling System

A nacelle cooling and ventilating system automatically provides the airflow required for cooling engine and nacelle accessories and associated structure.

C. Power Control

Forward thrust of each engine is controlled by a throttle control lever mounted on the center pedestal in the cockpit.

Thrust reverser control is by means of a separate lever for each engine.

D. Engine Master Control

Engine fuel shutoff is controlled by switches installed on the center pedestal.

E. Emergency Shutdown

Actuation of the fire controls closes the associated LP valves.

F. Indicating

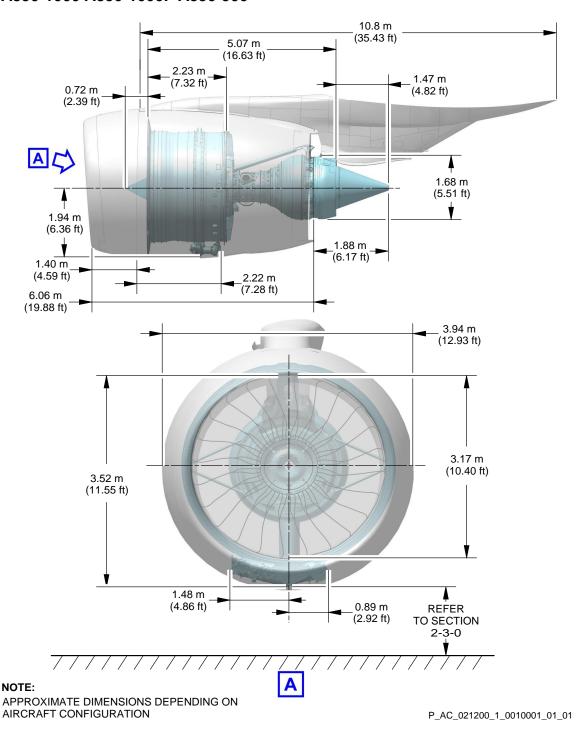
Indications for each engine are displayed on the Control and Display System (CDS).

G. Oil

The propulsion system has an independent integral oil system that is able to provide the appropriate quantity of oil, at the temperature necessary for continuous propulsion system operation, for all achievable conditions within the propulsion system operating envelope. Means are provided for gravity filling.

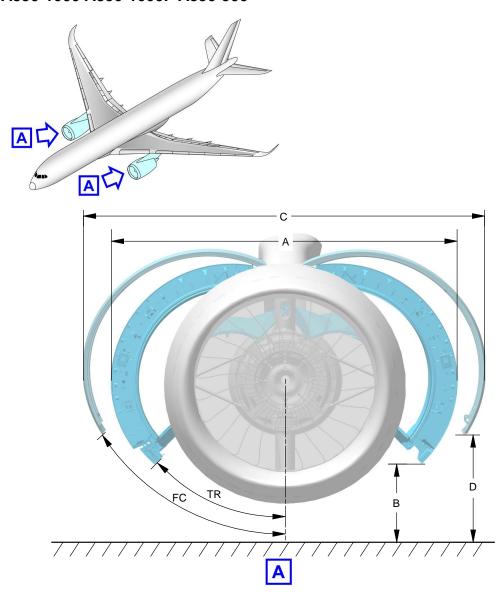
It is possible to visually check and replenish the engine oil level without opening the fan cowl door.

Magnetic chip detectors are installed in the lubrication system.


H. Starting

The engine is equipped with a pneumatic air turbine starter.

The starter can be supplied with air either from the APU, or the other engine, or an Air Start Unit (AS).


Standard types of GSE can be used.

**ON A/C A350-1000 A350-1000F A350-900

Engine and Nacelle (Sheet 1 of 3) FIGURE-2-12-0-991-001-A01

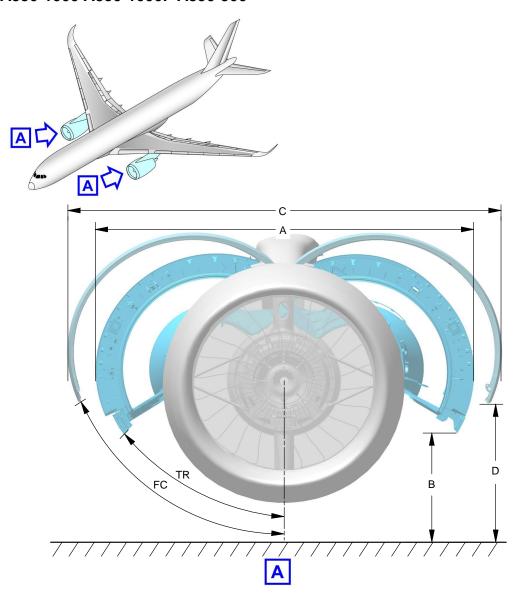
**ON A/C A350-1000 A350-1000F A350-900

	А	В		С
TR=28.5°	5.50 m (18.04 ft)	1.01 m (3.31 ft)	FC=37°	6.39 r (20.96

APPROXIMATE DIMENSIONS DEPENDING ON AIRCRAFT CONFIGURATION.

FC: FAN COWL AND TR: THRUST REVERSER

NOTE:


6.39 m 1.28 m 20.96 ft) (4.20 ft)

P_AC_021200_1_0010001_02_00

D

Engine and Nacelle (Sheet 2 of 3) FIGURE-2-12-0-991-001-A01

**ON A/C A350-1000 A350-1000F A350-900

		A	В
TR:	=45°	6.42 m (21.06 ft)	1.51 m (4.95 ft)

	C	ט
FC=50°	7.13 m (23.40 ft)	1.81 m (5.94 ft)

NOTE:

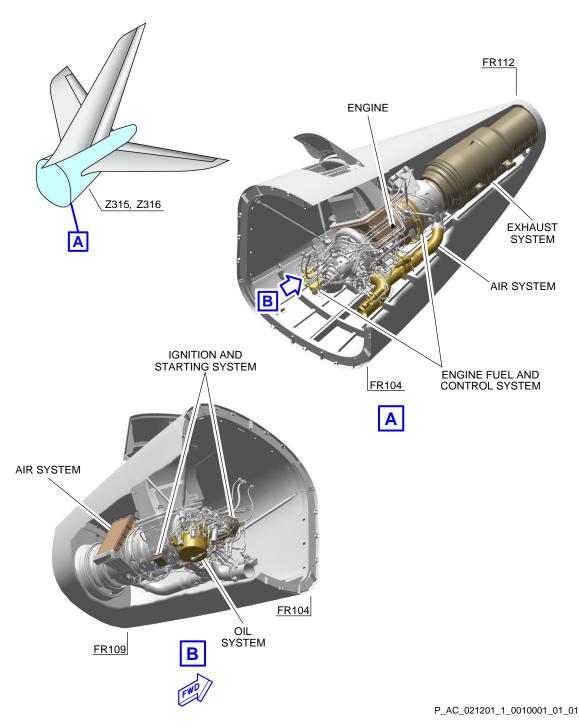
APPROXIMATE DIMENSIONS DEPENDING ON AIRCRAFT CONFIGURATION.

FC: FAN COWL AND TR: THRUST REVERSER

P_AC_021200_1_0010001_03_00

Engine and Nacelle (Sheet 3 of 3) FIGURE-2-12-0-991-001-A01

2-12-1 Auxiliary Power Unit


**ON A/C A350-1000 A350-1000F A350-900

Auxiliary Power Unit

1. General

The Auxiliary Power Unit (APU) is installed at the rear part of the fuselage in the tail cone. An air intake system with a flap-type door is installed on the top right area of the tail cone. The exhaust gases pass overboard at the end of the fuselage cone.

**ON A/C A350-1000 A350-1000F A350-900

Auxiliary Power Unit FIGURE-2-12-1-991-001-A01

2-13-0 Leveling, Symmetry and Alignment

**ON A/C A350-1000 A350-1000F A350-900

Leveling, Symmetry and Alignment

**ON A/C A350-1000 A350-900

Quick Leveling

There are three alternative procedures to level the aircraft:

- Quick leveling procedure with Air Data/Inertial Reference System (ADIRS),
- Quick leveling procedure with a spirit level in the passenger compartment,
- Quick leveling procedure with a spirit level in the FWD cargo compartment.

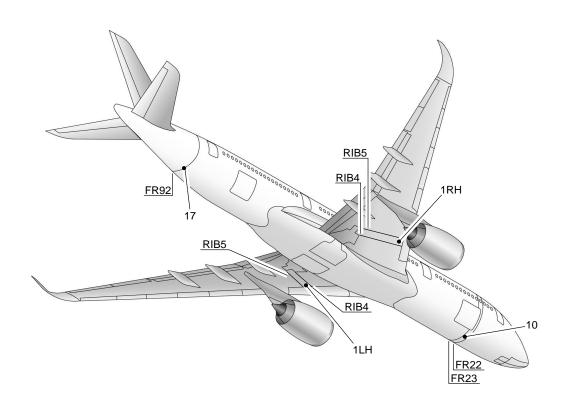
**ON A/C A350-1000F

Quick Leveling

There are two alternative procedures to level the aircraft:

- Quick leveling procedure with Air Data/Inertial Reference System (ADIRS),
- Quick leveling procedure with a spirit level in the FWD cargo compartment.

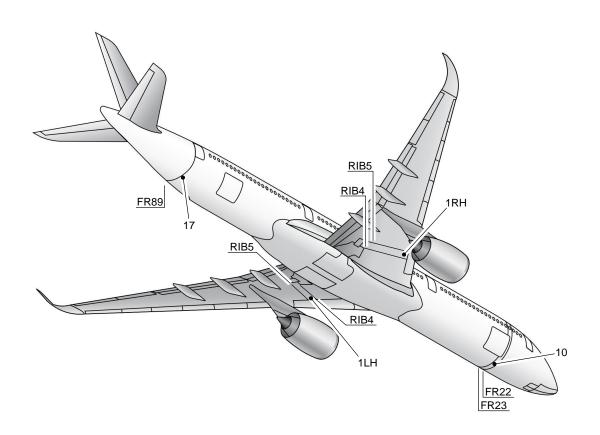
**ON A/C A350-1000 A350-1000F A350-900


Precise Leveling

For precise leveling, it is necessary to install sighting rods in the receptacles located under the fuselage (points 10 and 17 for longitudinal leveling) and under the wings (points 1 LH and 1 RH for lateral leveling) and use a sighting tube. With the aircraft on jacks, adjust the jacks until the reference marks on the sighting rods are aligned in the sighting plane (aircraft level).

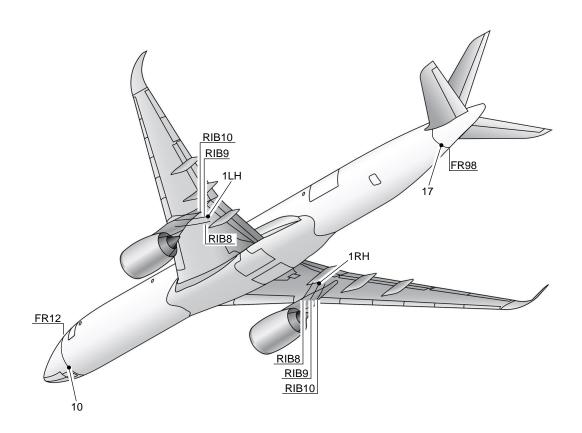
4. Symmetry and Alignment Check

Possible deformation of the aircraft is measured by photogrammetry.


**ON A/C A350-900

P_AC_021300_1_0010001_01_00

Location of Leveling Points FIGURE-2-13-0-991-001-A01


**ON A/C A350-1000

P_AC_021300_1_0020001_01_00

Location of Leveling Points FIGURE-2-13-0-991-002-A01

**ON A/C A350-1000F

P_AC_021300_1_0030001_01_00

Location of Leveling Points FIGURE-2-13-0-991-003-A01

2-14-1 Jacking for Maintenance

**ON A/C A350-1000 A350-1000F A350-900

Jacking for Maintenance

**ON A/C A350-900

- 1. Aircraft Jacking Points for Maintenance
 - A. The A350-900 can be jacked:
 - At not more than 164000 kg (361558 lb),
 - Within the limits of the permissible wind speed when the aircraft is jacked outside a closed environment.
 - B. Primary Jacking Points

The aircraft is provided with three primary jacking points:

- One located on the forward lower left fuselage (FR12),
- Two located under the wings (one under each wing, RIB9).4.11 m (13.48 ft.)
- C. Auxiliary Jacking Point (Safety Stay)
 - When the aircraft is on jacks, a safety stay is placed under the fuselage at FR98 to prevent tail tipping caused by accidental displacement of the aircraft center of gravity.
 - The safety point must not be used for lifting the aircraft.

**ON A/C A350-1000 A350-1000F

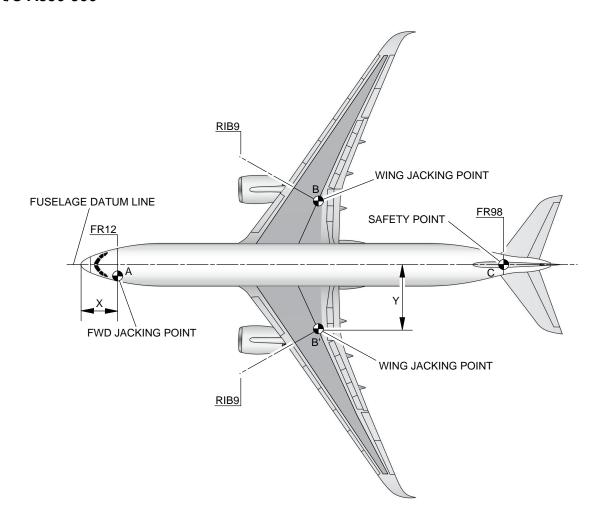
- 2. Aircraft Jacking Points for Maintenance
 - A. The A350-1000 and A350-1000F can be jacked:
 - At not more than 189550 kg (417887 lb),
 - Within the limits of the permissible wind speed when the aircraft is jacked outside a closed environment.
 - B. Primary Jacking Points

The aircraft is provided with three primary jacking points:

- One located on the forward lower left fuselage (FR12),
- Two located under the wings (one under each wing, RIB9).
- C. Auxiliary Jacking Point (Safety Stay)
 - When the aircraft is on jacks, a safety stay is placed under the fuselage at FR98 to prevent tail tipping caused by accidental displacement of the aircraft center of gravity.
 - The safety point must not be used for lifting the aircraft.

**ON A/C A350-1000 A350-1000F A350-900

3. Jacks and Safety Stay


A. Jack Design

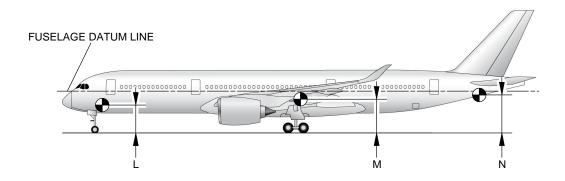
- The maximum eligible static load given in table (FIGURE 2-14-1-991-002-B) are the maximum loads applicable on jack fittings.
- In fully retracted position (jack stroke at minimum), the height of the jacks is such that the jack may be placed beneath the aircraft under the most adverse conditions, namely, tires deflated and shock absorbers depressurized, with a sufficient clearance between the aircraft jacking point and the jack upper end.
- The jacks stroke enables the aircraft to be jacked up so that the Fuselage Datum Line (FDL) may be positioned up to 6.50 m (21.33 ft.) from the ground to allow all required maintenance procedure and in particular, the removal/installation of the landing-gear shock absorbers.

B. Safety Stay

The stay stroke enables the aircraft tail to be supported up to the Fuselage Datum Line (FDL) positioned at 6.50 m (21.33 ft.) from the ground.

**ON A/C A350-900

		>	<	•	Y	MAXIMUM LOAD ELIGIBLE		
		m	ft	m	ft	daN		
FORWARD FUSELA JACKING POINT	GE A	4.77	15.65	-1.72	-5.64	17 670		
WING JACKING	В	33.22 108.99		8.71	28.58	79 488		
POINT	B'	33.22	108.99	-8.71	-28.58	79 206		
SAFETY STAY C		58.75	192.75	0	0	7 652		


NOTE:

SAFETY STAY IS NOT USED FOR JACKING.

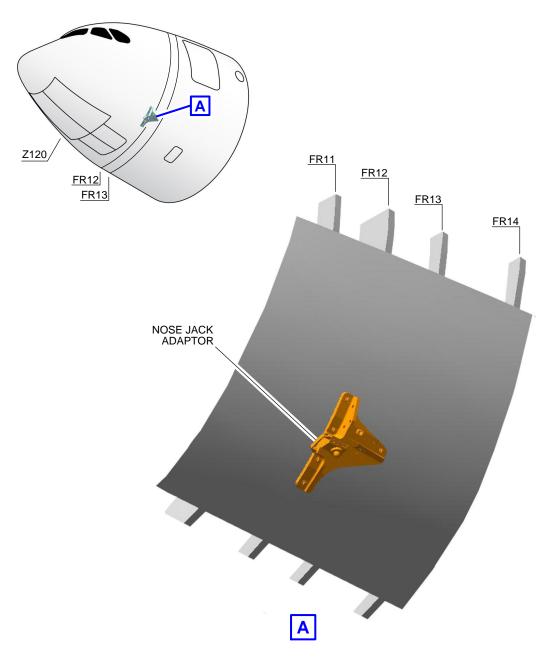
P_AC_021401_1_0010001_01_02

Jacking for Maintenance Jacking Points Location (Sheet 1 of 5) FIGURE-2-14-1-991-001-A01

**ON A/C A350-900

	CG			HEI	GHT		
CONFIGURATION	POSITION	I	_	ľ	Л	1	١
	(% MAC)	m	ft	m	ft	m	ft
	20	3.08	10.10	4.69 LH	15.39 LH	4.91	16.11
AIRCRAFT ON WHEELS, SHOCK-ABSORBER	20	3.00	10.10	4.17 RH	13.68 RH	4.51	10.11
DEFLATED, TIRES DEFLATED (RH)	42	3.37	11.06	4.67 LH	15.32 LH	4.64	15.22
	,,_	0.07	11.00	4.18 RH	13.71 RH	7.07	10.22
A/C ON JACKS, FDL AT 6.50 m (21.33 ft), A/C FUSELAGE PARALLEL TO THE GROUND, SHOCK-ABSORBER RELAXED, CLEARANCE OF MAIN GEAR WHEELS = 0.30 m (0.98 ft)	20	4.32	14.17	5.66	18.57	6.09	19.98
(STANDARD TIRES 01), CLEARANCE OF NOSE GEAR WHEELS = 0.85 m (2.79 ft) (STANDARD TIRES 01)	42	4.32	14.17	5.66	18.57	6.09	19.98
AIRCRAFT ON WHEELS (STANDARD TIRES 01)	20	3.03	9.94	4.60	15.09	5.23	17.16
MAXIMUM JACKING WEIGHT = 164 000 kg (361 558 lb)	42	3.31	10.86	4.59	15.06	4.96	16.27
AIRCRAFT ON WHEELS (STANDARD TIRES 01)	20	3.08	10.10	4.65	15.26	5.28	17.32
A/C WEIGHT = 130 727 kg (288 204 lb)	42	3.42	11.22	4.63	15.19	4.95	16.24

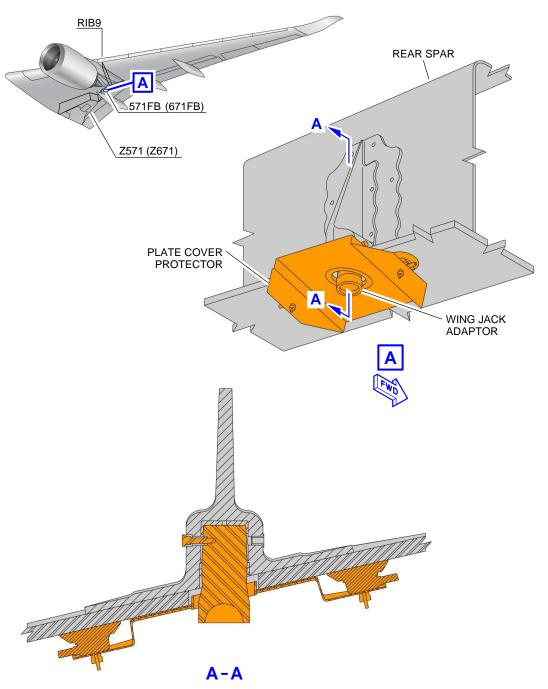
NOTE:


O1 STANDARD TIRES: NOSE LANDING GEAR = 1 050 x 395 R16

MAIN LANDING GEAR = 1 400 x 530 R23

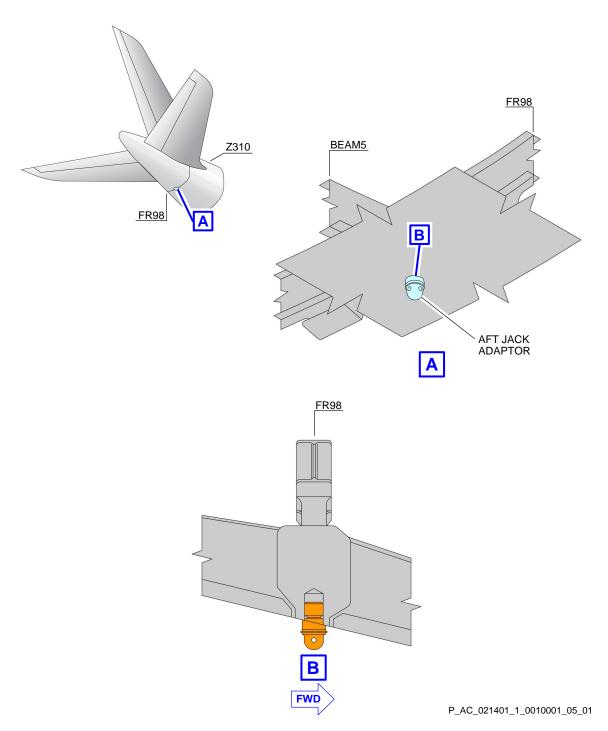
P_AC_021401_1_0010001_02_02

Jacking for Maintenance Jacking Dimensions (Sheet 2 of 5) FIGURE-2-14-1-991-001-A01

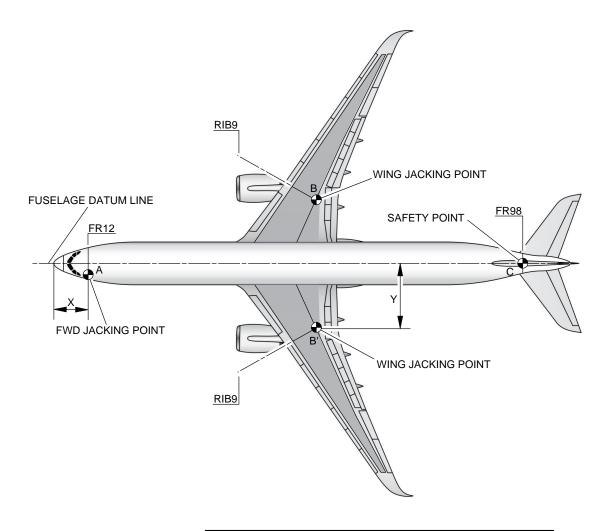

**ON A/C A350-900

P_AC_021401_1_0010001_03_00

Jacking for Maintenance Forward Jacking Point (Sheet 3 of 5) FIGURE-2-14-1-991-001-A01


**ON A/C A350-900

P_AC_021401_1_0010001_04_01

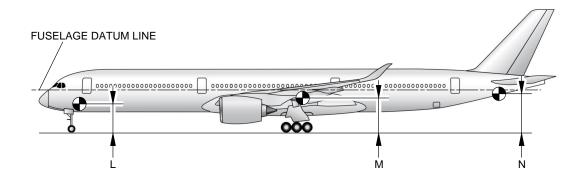

Jacking for Maintenance Wing Jacking Point (Sheet 4 of 5) FIGURE-2-14-1-991-001-A01

**ON A/C A350-900

Jacking for Maintenance Auxiliary Jacking Point - Safety (Sheet 5 of 5) FIGURE-2-14-1-991-001-A01

**ON A/C A350-1000

		X		•	′	MAXIMUM LOAD ELIGIBLE		
		m	ft	m	ft	daN		
FORWARD FUSELA JACKING POINT	ORWARD FUSELAGE ACKING POINT A		15.65	-1.72	-5.64	16 911		
WING JACKING	В	37.03 121.49		8.71	28.58	90 764		
POINT	B'	37.03	121.49	-8.71	-28.58	89 247		
SAFETY STAY		65.73	215.65	0	0	7 652		


NOTE:

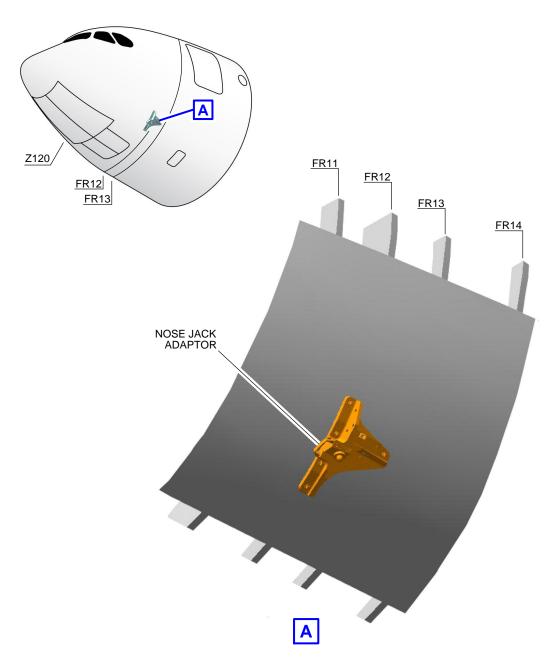
SAFETY STAY IS NOT USED FOR JACKING.

P_AC_021401_1_0020002_01_03

Jacking Points Location FIGURE-2-14-1-991-002-B01

**ON A/C A350-1000

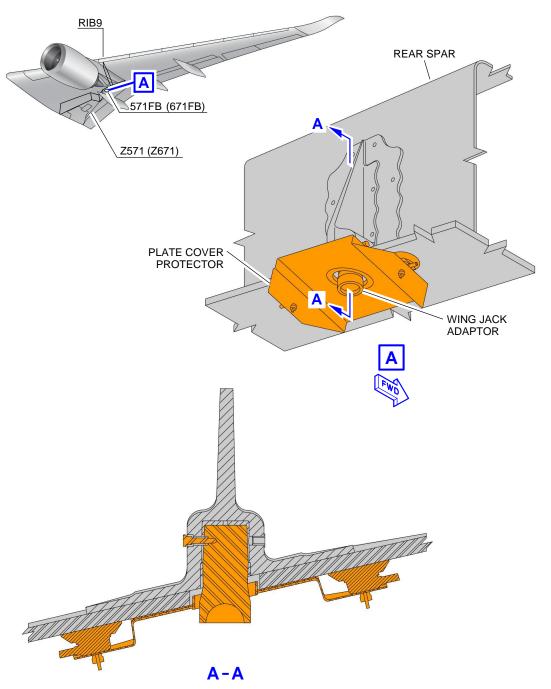
	CG			HEI	GHT		
CONFIGURATION	POSITION		-	N	Л	ı	N
	(% MAC)	m	ft	m	ft	m	ft
	21.5	3.09	10.14	4.65 LH	15.26 LH	4.81	15.78
AIRCRAFT ON WHEELS, SHOCK-ABSORBER	21.0	0.00	10.14	4.11 RH	13.48 RH	4.01	15.76
DEFLATED, TIRES DEFLATED (RH)	41.1	3.33	10.93	4.64 LH	15.22 LH	4.59	15.06
				4.11 RH	13.48 RH	1.00	10.00
A/C ON JACKS, FDL AT 6.50 m (21.33 ft), A/C FUSELAGE PARALLEL TO THE GROUND, SHOCK-ABSORBER RELAXED, CLEARANCE OF MAIN GEAR WHEELS = 0.40 m (1.31 ft)	21.5	4.32	14.17	5.66	18.57	6.09	19.98
(STANDARD TIRES 01), CLEARANCE OF NOSE GEAR WHEELS = 0.85 m (2.79 ft) (STANDARD TIRES 01)	41.1	4.32	14.17	5.66	18.57	6.09	19.98
AIRCRAFT ON WHEELS (STANDARD TIRES 01)	21.5	3.04	9.97	4.56	14.96	5.15	16.90
MAXIMUM JACKING WEIGHT = 189 550 kg (417 887 lb)	41.1	3.27	10.73	4.55	14.93	4.92	16.14
AIRCRAFT ON WHEELS (STANDARD TIRES 01)	21.5	3.10	10.17	4.62	15.16	5.20	17.06
A/C WEIGHT = 145 986 kg (321 844 lb)	41.1	3.39	11.12	4.60	15.09	4.91	16.11


NOTE:

O1 STANDARD TIRES: NOSE LANDING GEAR = 1 050 x 395 R16
MAIN LANDING GEAR = 50 x 20 R22

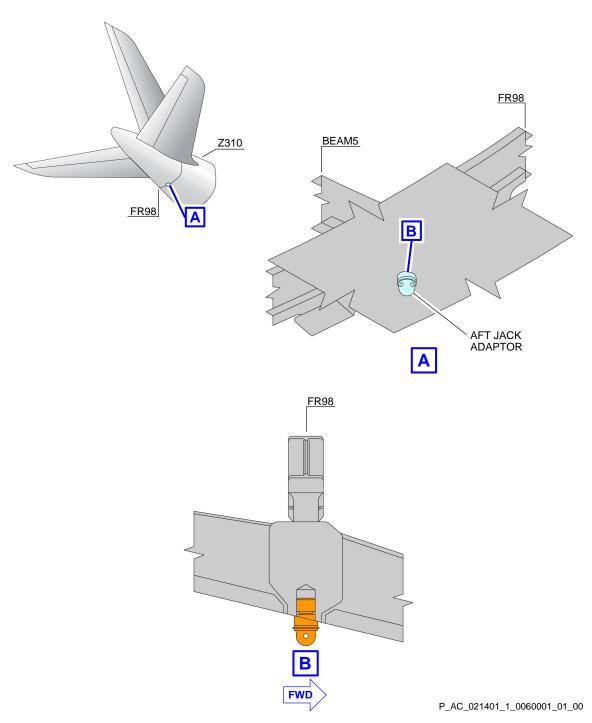
P_AC_021401_1_0030002_01_02

Jacking Dimensions FIGURE-2-14-1-991-003-B01


**ON A/C A350-1000

P_AC_021401_1_0040002_01_00

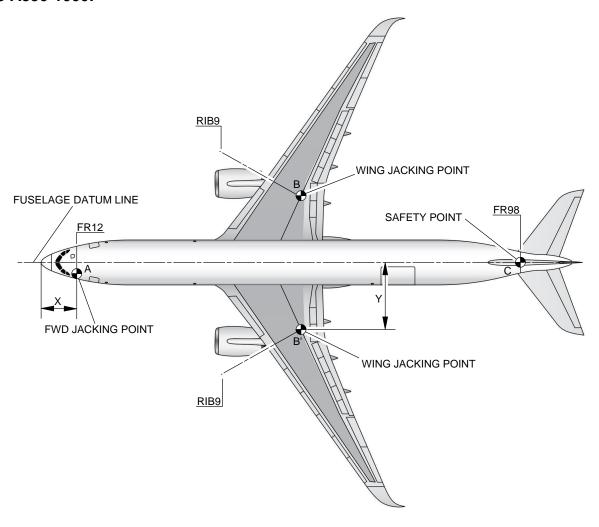
Forward Jacking Point FIGURE-2-14-1-991-004-B01


**ON A/C A350-1000

P_AC_021401_1_0050001_01_00

Wing Jacking Point FIGURE-2-14-1-991-005-A01

**ON A/C A350-1000



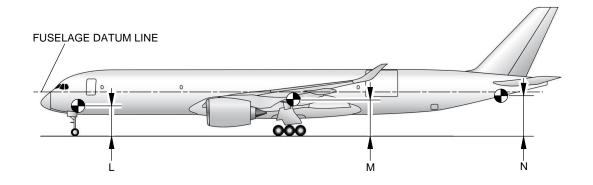
Auxiliary Jacking Point - Safety FIGURE-2-14-1-991-006-A01

©A350

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

**ON A/C A350-1000F

		Х	Х		(MAXIMUM LOAD ELIGIBLE		
	m		ft	m	ft	daN		
FORWARD FUSELAGE JACKING POINT	4.7	7	15.65	-1.72	-5.64	18 771		
WING JACKING	33.8	86	111.09	8.71	28.58	90 764		
POINT	33.8	86	111.09	-8.71	-28.58	89 247		
SAFETY STAY	62.5	6	205.25	0	0	7 652		


P_AC_021401_1_0070001_01_00

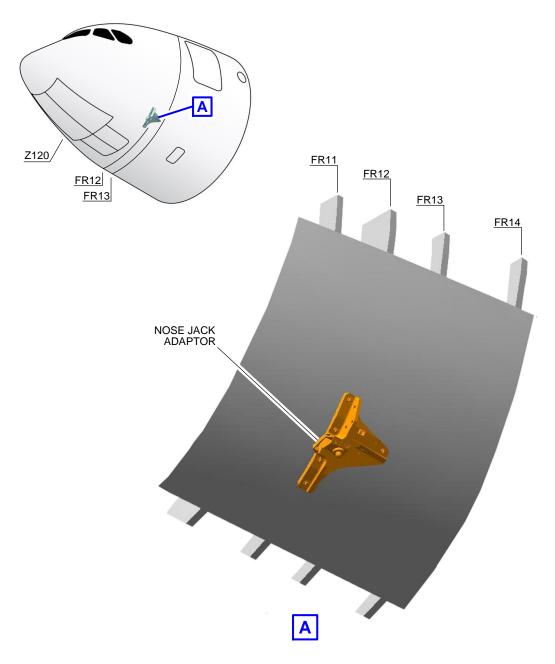
Jacking for Maintenance (Sheet 1 of 5) FIGURE-2-14-1-991-007-A01

©A350

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

**ON A/C A350-1000F

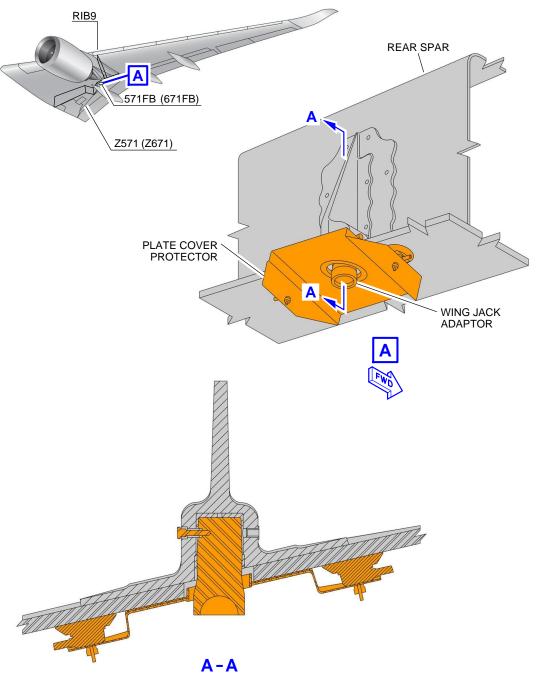
	CG			HEI	GHT		
CONFIGURATION	POSITION	ı	L	N	Л	1	N
	(% MAC)	m	ft	m	ft	m	ft
	21.5	3.07	10.07	4.65 LH	15.26 LH	4.83	15.85
AIRCRAFT ON WHEELS, SHOCK-ABSORBER	21.0	3.07	10.07	4.10 RH	13.45 RH	4.00	13.03
DEFLATED, TIRES DEFLATED (RH)	36.07	3.20	10.50	4.64 LH	15.22 LH	4.69	15.39
	00.01	0.20	10.00	4.11 RH	13.48 RH	7.00	10.00
A/C ON JACKS, FDL AT 6.50 m (21.33 ft), A/C FUSELAGE PARALLEL TO THE GROUND, SHOCK-ABSORBER RELAXED, CLEARANCE OF MAIN GEAR WHEELS = 0.40 m (1.31 ft)	21.5	4.32	14.17	5.66	18.57	6.09	19.98
(STANDARD TIRES 01), CLEARANCE OF NOSE GEAR WHEELS = 0.85 m (2.79 ft) (STANDARD TIRES 01)	36.07	4.32	14.17	5.66	18.57	6.09	19.98
AIRCRAFT ON WHEELS (STANDARD TIRES 01)	21.5	3.02	9.91	4.56	14.96	5.19	17.03
MAXIMUM JACKING WEIGHT = 189 550 kg (417 886.56 lb)	36.07	3.14	10.30	4.55	14.93	5.04	16.54
AIRCRAFT ON WHEELS (STANDARD TIRES 01)	21.5	3.10	10.17	4.65	15.26	5.28	17.32
A/C WEIGHT = 128 400 kg (283 073.78 lb)	36.07	3.27	10.73	4.64	15.22	5.08	16.67


NOTE

O1 STANDARD TIRES: NOSE LANDING GEAR = 1 050 x 395 R16
MAIN LANDING GEAR = 50 x 20 R22

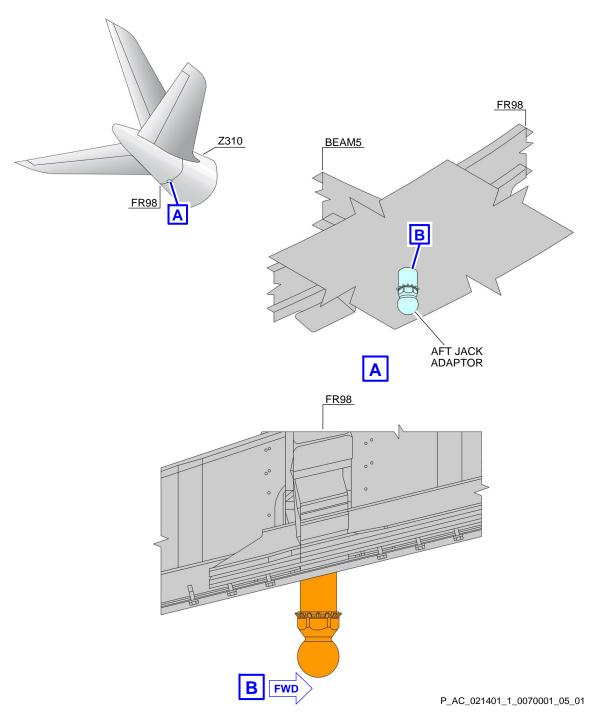
P_AC_021401_1_0070001_02_00

Jacking for Maintenance (Sheet 2 of 5) FIGURE-2-14-1-991-007-A01


**ON A/C A350-1000F

P_AC_021401_1_0070001_03_00

Jacking for Maintenance (Sheet 3 of 5) FIGURE-2-14-1-991-007-A01


**ON A/C A350-1000F

P_AC_021401_1_0070001_04_00

Jacking for Maintenance (Sheet 4 of 5) FIGURE-2-14-1-991-007-A01

**ON A/C A350-1000F

Jacking for Maintenance (Sheet 5 of 5) FIGURE-2-14-1-991-007-A01

2-14-2 Jacking of the Landing Gear

**ON A/C A350-1000 A350-1000F A350-900

Jacking of the Landing Gear

General

To replace either the wheel or brake unit assemblies on any of the landing gears, it is necessary to lift the landing gear with a jack.

The landing gear can be lifted by a pillar jack or with a cantilever jack.

NOTE: You can lift the aircraft at Maximum Ramp Weight (MRW).

**ON A/C A350-900

Nose Landing Gear (NLG)

To lift the NLG axle with a jack, a dome shaped pad is installed between the wheels.

The reaction loads at the jacking position are shown in FIGURE 2-14-2-991-002-A.

NOTE: The maximum load at NLG jacking point is 33 758 daN.

3. Main Landing Gear (MLG)

To lift the MLG bogie with jacks, a dome shaped pad is installed below the forward and aft ends of each bogie beam.

Each pair of wheels and brake units can be replaced on the end of the bogie that is lifted.

Both forward and aft ends of the bogie beam can be lifted together, but the bogie beam must be kept level during the lift to prevent damage.

The reaction loads at the jacking position are shown in FIGURE 2-14-2-991-003-A.

NOTE: The maximum load at each MLG jacking point is 83 892.5 daN.

**ON A/C A350-1000

4. Nose Landing Gear (NLG)

To lift the NLG axle with a jack, a dome shaped pad is installed between the wheels. The reaction loads at the jacking position are shown in FIGURE 2-14-2-991-004-A.

NOTE: The maximum load at NLG jacking point is 34 609 daN.

5. Main Landing Gear (MLG)

To lift the MLG bogie with jacks, a dome shaped pad is installed below the forward and aft ends of each bogie beam.

Each pair of wheels and brake units can be replaced on the end of the bogie that is lifted. To lift the center MLG wheel off the ground, operate both the forward and aft MLG wheel-change jacks at the same time.

Both forward and aft ends of the bogie beam can be lifted together, but the bogie beam must be kept level during the lift to prevent damage.

The reaction loads at the jacking position are shown in FIGURE 2-14-2-991-005-A.

NOTE: The maximum load at each MLG jacking point is 95 803.5 daN.

**ON A/C A350-1000F

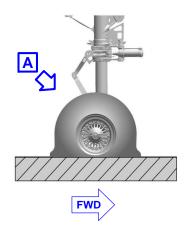
Nose Landing Gear (NLG)

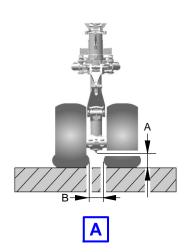
To lift the NLG axle with a jack, a dome shaped pad is installed between the wheels. The reaction loads at the jacking position are shown in FIGURE 2-14-2-991-006-B.

NOTE: The maximum load at NLG jacking point is 38 591 daN.

7. Main Landing Gear (MLG)

To lift the MLG bogie with jacks, a dome shaped pad is installed below the forward and aft ends of each bogie beam.


Each pair of wheels and brake units can be replaced on the end of the bogie that is lifted. To lift the center MLG wheel off the ground, operate both the forward and aft MLG wheel-change jacks at the same time.


Both forward and aft ends of the bogie beam can be lifted together, but the bogie beam must be kept level during the lift to prevent damage.

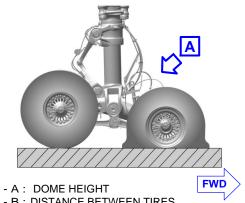
The reaction loads at the jacking position are shown in FIGURE 2-14-2-991-007-A.

NOTE: The maximum load at each MLG jacking point is 97 170 daN.

**ON A/C A350-900

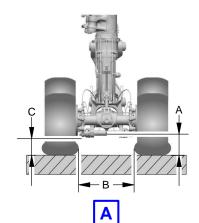
- A : DOME HEIGHT

- B : DISTANCE BETWEEN TIRES


	A350-900 NL	G (1 050 x 39	5 R16)			
CONFIGURATION (ASSUME ALL OTHER TIRES ON	WEIGHT (T)	CG (% MAC)	DII	МА	DII	M В
THE A/C ARE INTACT)		,	mm in		mm	in
2 TIRES (NORMAL)	MRW	26.2	291	11.45	261	10.27
1 FLAT TIRE	MRW	26.2	227	8.93	214	8.42
2 FLAT TIRES & 50% RIM FLANGE DAMAGE	MLW	20	75	2.95	191	7.51
2 FLAT TIRES & NO RIM FLANGE DAMAGE	MLW	20	97	3.81	191	7.51

P_AC_021402_1_0020001_01_01

Nose Landing Gear Jacking Point Heights FIGURE-2-14-2-991-002-A01


**ON A/C A350-900

- B: DISTANCE BETWEEN TIRES

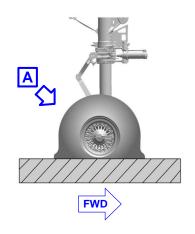
- C: DISTANCE BETWEEN BRAKE RODS AND GROUND

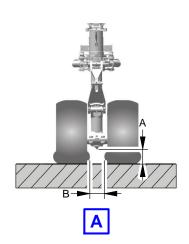
A350-900 MLG (1 400 x 530 R23)														
CONFIGURATION (ASSUME ALL OTHER TIRES ON THE A/C	WEIGHT (T)	CG (% MAC)		M A WARD		M A FT		M B WARD		M B FT		M C WARD		И С FT
ARE INTACT)	()	(** - /	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in
4 TIRES (NORMAL)	MRW	33.2	378	14.88	378	14.88	1 029	40.51	1 036	40.78	267	10.51	267	10.51
FORWARD INNER TIRE UNSERVICEABLE	MRW	33.2	304	11.96	381	15.00	981	38.62	1 041	40.98	194	7.63	271	10.66
FORWARD OUTER TIRE UNSERVICEABLE	MRW	33.2	285	11.22	374	14.72	974	38.34	1 033	40.66	175	6.88	264	10.39
AFT INNER TIRE UNSERVICEABLE	MRW	33.2	381	15.00	304	11.96	1 032	40.62	983	38.70	271	10.66	193	7.59
AFT OUTER TIRE UNSERVICEABLE	MRW	33.2	374	14.72	285	11.22	1 025	40.35	975	38.38	264	10.39	175	6.88
2 FLAT FORWARD TIRES & 50% RIM DAMAGE	MLW	42	129	5.07	404	15.90	967	38.07	1 071	42.16	18	0.70	293	11.53
2 FLAT AFT TIRES & 50% RIM DAMAGE	MLW	42	404	15.90	129	5.07	1 060	41.73	967	38.07	293	11.53	18	0.70
4 FLAT TIRES & 50% RIM DAMAGE	MLW	42	136	5.35	136	5.35	967	38.07	967	38.07	26	1.02	26	1.02
2 FLAT FORWARD TIRES & NO RIM DAMAGE	MLW	42	159	6.25	403	15.86	967	38.07	1 071	42.16	48	1.88	293	11.53
2 FLAT AFT TIRES & NO RIM DAMAGE	MLW	42	403	15.86	159	6.25	1 059	41.69	967	38.07	293	11.53	48	1.88
4 FLAT TIRES & NO RIM DAMAGE	MLW	42	166	6.53	166	6.53	967	38.07	967	38.07	55	2.16	55	2.16

P_AC_021402_1_0030001_01_01

Main Landing Gear Jacking Point Heights (Sheet 1 of 2) FIGURE-2-14-2-991-003-A01

**ON A/C A350-900


CONFIGURATION (ASSUME ALL OTHER TIRES ON THE A/C	WEIGHT (T)	CG (% MAC)		M A WARD		И A FT		M B WARD	DII Al	M B FT		И С WARD		И С FT
ARE INTACT)	(1)	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in
				TIRE	CHAN	IGE								
FORWARD MAX GROWN TIRE 25 mm FROM GROUND	MRW	33.2	541	21.29	378	14.88	1 113	43.81	1 029	40.51	431	16.96	268	10.55
AFT MAX GROWN TIRE 25 mm FROM GROUND	MRW	33.2	378	14.88	541	21.29	1 029	40.51	1 113	43.81	268	10.55	430	16.92
8 FLAT TIRES & 50% RIM DAMAGE	MRW	26.2	118	4.64	118	4.64	967	38.07	967	38.07	7	0.27	7	0.27
8 FLAT TIRES & NO RIM DAMAGE	MRW	26.2	149	5.86	149	5.86	967	38.07	967	38.07	39	1.53	39	1.53


P_AC_021402_1_0030001_02_00

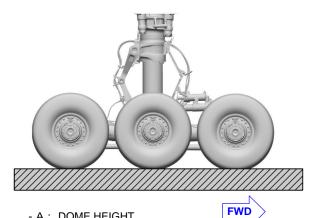
Main Landing Gear Jacking Point Heights 2 of 2) 2-14-2-991-003-A01

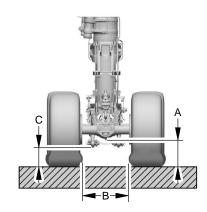
Page 5 Dec 01/24

**ON A/C A350-1000

- A: DOME HEIGHT

- B: DISTANCE BETWEEN TIRES


A350-1000 NLG (1 050x395R16)												
CONFIGURATION (ASSUME ALL OTHER TIRES ON	WEIGHT (T)	IGHT (T) CG (% MAC)		ΜА	DIM B							
THE A/C ARE INTACT)		,	mm	in	mm	in						
2 TIRES (NORMAL)	MRW	25	299.47	11.79	276	10.87						
1 FLAT TIRE	MRW	25	251.29	9.89	236	9.29						
2 FLAT TIRES & 50% RIM FLANGE DAMAGE	MLW	21.5	81.01	3.19	190.8	7.51						
2 FLAT TIRES & NO RIM FLANGE DAMAGE	MLW	21.5	103.23	4.06	190.8	7.51						


P_AC_021402_1_0040001_01_01

Nose Landing Gear Jacking Point Heights FIGURE-2-14-2-991-004-A01

**ON A/C A350-1000

- A: DOME HEIGHT

- B: DISTANCE BETWEEN TIRES

- C: DISTANCE BETWEEN BRAKE RODS AND GROUND

A350-1000 MLG (50x20R22)														
CONFIGURATION (ASSUME ALL OTHER TIRES ON THE A/C	WEIGHT (T)	CG (% MAC)		M A WARD		M A FT		M B WARD		M B FT		M C WARD		M C FT
ARE INTACT)	, ,	,	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in
6 TIRES (NORMAL)	MRW	34	355	13.98	355	13.98	780	30.71	780	30.71	234	9.21	234	9.21
FORWARD INNER TIRE UNSERVICEABLE	MRW	34	306	12.05	367	14.45	754	29.69	790	31.10	184	7.24	246	9.69
FORWARD OUTER TIRE UNSERVICEABLE	MRW	34	299	11.77	365	14.37	752	29.61	788	31.02	178	7.01	244	9.61
MID INNER TIRE UNSERVICEABLE	MRW	34	342	13.46	342	13.46	771	30.35	771	30.35	220	8.66	220	8.66
MID OUTER TIRE UNSERVICEABLE	MRW	34	339	13.35	339	13.35	769	30.28	769	30.28	217	8.54	217	8.54
AFT INNER TIRE UNSERVICEABLE	MRW	34	367	14.45	306	12.05	790	31.10	754	29.69	246	9.69	184	7.24
AFT OUTER TIRE UNSERVICEABLE	MRW	34	365	14.37	299	11.77	788	31.02	752	29.61	244	9.61	178	7.01
2 FLAT FORWARD TIRES & 50% RIM DAMAGE	MLW	41.1	127	5.00	435	17.13	722	28.43	876	34.49	6	0.24	314	12.36
2 FLAT MID TIRES & 50% RIM DAMAGE	MLW	41.1	343	13.50	343	13.50	772	30.39	772	30.39	222	8.74	222	8.74
2 FLAT AFT TIRES & 50% RIM DAMAGE	MLW	41.1	435	17.13	127	5.00	876	34.49	722	28.43	314	12.36	6	0.24

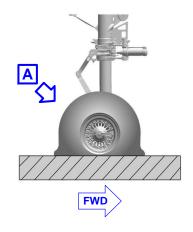
P_AC_021402_1_0050001_01_01

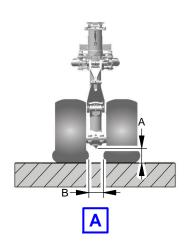
Main Landing Gear Jacking Point Heights (Sheet 1 of 2) FIGURE-2-14-2-991-005-A01

**ON A/C A350-1000

A350-1000 MLG (50x20R22)														
CONFIGURATION (ASSUME ALL OTHER TIRES ON THE A/C	WEIGHT (T)	CG (% MAC)		M A WARD		M A FT		M B WARD		DIM B AFT		DIM C FORWARD		И С FT
ARE INTACT)	, ,	(mm	in	mm	in	mm	in	mm	in	mm	in	mm	in
6 FLAT TIRES & 50% RIM DAMAGE	MLW	41.1	135	5.31	135	5.31	722	28.43	722	28.43	13	0.51	13	0.51
2 FLAT FORWARD TIRES & NO RIM DAMAGE	MLW	41.1	150	5.91	428	16.85	722	28.43	865	34.06	29	1.14	307	12.09
2 FLAT MID TIRES & NO RIM DAMAGE	MLW	41.1	343	13.50	343	13.50	772	30.39	772	30.39	222	8.74	222	8.74
2 FLAT AFT TIRES & NO RIM DAMAGE	MLW	41.1	428	16.85	150	5.91	865	34.06	722	28.43	307	12.09	29	1.14
6 FLAT TIRES & NO RIM DAMAGE	MLW	41.1	157	6.18	157	6.18	722	28.43	722	28.43	36	1.42	36	1.42

A350-1000 MLG (50x20R22)																				
CONFIGURATION (ASSUME ALL OTHER TIRES ON THE A/C	WEIGHT (T)							CG (% MAC)		M A WARD		M A FT		M B WARD		DIM B AFT		DIM C FORWARD		M C FT
ARE INTACT)	. ,	,	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in						
	TIRE CHANGE																			
FORWARD MAX GROWN TIRE 25 mm FROM GROUND	MRW	34	486	19.13	332	13.07	876	34.49	765	30.12	365	14.37	211	8.31						
AFT MAX GROWN TIRE 25 mm FROM GROUND	MRW	34	332	13.07	486	19.13	765	30.12	876	34.49	211	8.31	365	14.37						
12 FLAT TIRES & 50% RIM DAMAGE	MRW	25	120	4.72	120	4.72	722	28.43	722	28.43	0	0	0	0						
12 FLAT TIRES & NO RIM DAMAGE	MRW	34	144	5.67	144	5.67	722	28.43	722	28.43	23	0.91	23	0.91						


P_AC_021402_1_0050001_02_01


Main Landing Gear Jacking Point Heights (Sheet 2 of 2) FIGURE-2-14-2-991-005-A01

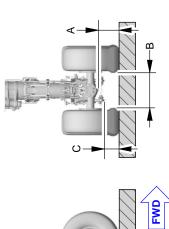
> Page 8 Dec 01/24

| **ON A/C A350-1000F

- A: DOME HEIGHT

- B: DISTANCE BETWEEN TIRES

A350-1000F NLG (1 050x395R16)												
CONFIGURATION (ASSUME ALL OTHER TIRES ON	WEIGHT (T)	CG (% MAC)	DII	МА	DIM B							
THE A/C ARE INTACT)		,	mm	in	mm	in						
2 TIRES (NORMAL)	MRW	25.3	283	11.14	260.5	10.26						
1 FLAT TIRE	MRW	25.3	220.9	8.7	218	8.58						
2 FLAT TIRES & 50% RIM FLANGE DAMAGE	MLW	21.5	81	3.19	190.8	7.51						
2 FLAT TIRES & NO RIM FLANGE DAMAGE	MLW	21.5	103.2	4.06	190.8	7.51						


P_AC_021402_1_0060002_01_00

Nose Landing Gear Jacking Point Heights 2-14-2-991-006-B01

2-14-2

**ON A/C A350-1000F

_			_									
	٥ _۲	.⊑	9.03	9.48	9:36	8.44	8.3	96.9	99.9	11.67	8.25	0
	DIM C AFT	mm	229.4	240.85	237.81	214.32	210.75	9.48 176.74	169.2	296.43 11.67	8.25 209.66	0
	1C /ARD	.⊑	9.03	96.9	99.9	8.44	8.3	l	9:36	0		11.67
	DIM C FORWARD	mm	229.4	336.73 13.26 400.84 15.78 751.24 29.58 785.3 30.92 176.74	169.2	374.31 14.74 374.31 14.74 767.15 30.2 767.15 30.2 214.32	370.74 14.6 370.74 14.6 765.14 30.12 765.14 30.12 210.75	400.84 15.78 336.73 13.26 785.3 30.92 751.24 29.58 240.85	397.8 15.66 329.19 12.96 782.93 30.82 748.31 29.46 237.81	0	369.65 14.55 369.65 14.55 764.54 30.1 764.54 30.1 209.66	456.42 17.97 158.84 6.25 846.66 33.33 722.43 28.44 296.43 11.67
	1B T	.⊑	30.58	30.92	30.82	30.2	30.12	29.58	29.46	33.33	30.1	28.44
	DIM B AFT	mm	776.77	785.3	782.93	767.15	765.14	751.24	748.31	846.66	764.54	722.43
	1B /ARD	.⊑	30.58	29.58	29.46	30.2	30.12	30.92	30.82	28.44	30.1	33.33
22)	DIM B FORWARD	mm	776.77	751.24	748.31	767.15	765.14	785.3	782.93	722.43	764.54	846.66
0x20R	ΑT	.⊑	15.33	15.78	15.66	14.74	14.6	13.26	12.96	17.97	14.55	6.25
ALG (5	DIM A AFT	mm	389.39	400.84	397.8	374.31	370.74	336.73	329.19	456.42	369.65	158.84
000F N	1A /ARD	.⊑	15.33	13.26	12.96	14.74	14.6	15.78	15.66	6.25	14.55	17.97
A350-1000F MLG (50x20R22)	DIM A FORWARD	mm	389.39 15.33 389.39 15.33 776.77 30.58 776.77 30.58 229.4	336.73	329.19 12.96 397.8 15.66 748.31 29.46 782.93 30.82 169.2	374.31	370.74	400.84	397.8	158.84 6.25 456.42 17.97 722.43 28.44 846.66 33.33	369.65	456.42
	CG (% MAC)	()	30.8	30.8	30.8	30.8	30.8	30.8	30.8	41.1	41.1	41.1
	WEIGHT (T)		MRW	MRW	MRW	MRW	MRW	MRW	MRW	MLW	MLW	MLW
	(ASSUME ALL OTHER TIRES ON THE A/C	ARE INTACT)	6 TIRES (NORMAL)	FORWARD INNER TIRE UNSERVICEABLE	FORWARD OUTER TIRE UNSERVICEABLE	MID INNER TIRE UNSERVICEABLE	MID OUTER TIRE UNSERVICEABLE	AFT INNER TIRE UNSERVICEABLE	AFT OUTER TIRE UNSERVICEABLE	2 FLAT FORWARD TIRES & 50% RIM DAMAGE	2 FLAT MID TIRES & 50% RIM DAMAGE	2 FLAT AFT TIRES & 50% RIM DAMAGE

P_AC_021402_1_0070001_01_00

Main Landing Gear Jacking Point Heights 1 of 2) 2-14-2-991-007-A01

| **ON A/C A350-1000F

			A350-10	300F N	A350-1000F MLG (50x20R22)	0x20R	22)							
CONFIGURATION (ASSUME ALL OTHER TIRES ON THE A/C	WEIGHT (T)	CG (% MAC)	DIM A FORWARD	A 'ARD	DIM A AFT	4 ⊢	DIM B FORWARD	B 'ARD	DIM B AFT	T.	DIM C FORWARD	1C /ARD	DIM C AFT	٥Ļ
ARE INTACT)			шш	.⊑	шш	.⊑	mm	.⊑	mm	۳.	mm	Ξ.	шш	.⊑
6 FLAT TIRES & 50% RIM DAMAGE	MLW	41.1	158.84	6.25	158.84	6.25	158.84 6.25 158.84 6.25 722.43 28.44 722.43 28.44	28.44	722.43	28.44	0	0	0	0
2 FLAT FORWARD TIRES & NO RIM DAMAGE	MLW	41.1	182.62	7.19	450.58	17.74	182.62 7.19 450.58 17.74 722.43 28.44 837.89 32.99 22.63	28.44	837.89	32.99	22.63	0.89	290.59 11.44	11.44
2 FLAT MID TIRES & NO RIM DAMAGE	MLW	41.1	369.65	14.55	369.65	14.55	764.54	30.1	764.54	30.1	209.66	8.25	369.65 14.55 369.65 14.55 764.54 30.1 764.54 30.1 209.66 8.25 209.66 8.25	8.25
2 FLAT AFT TIRES & NO RIM DAMAGE	MLW	41.1	450.58	17.74	182.62	7.19	450.58 17.74 182.62 7.19 837.89 32.99 722.43 28.44 290.59 11.44 22.63	32.99	722.43	28.44	290.59	11.44	_	0.89
6 FLAT TIRES & NO RIM DAMAGE	MLW	41.1	182.62	7.19	182.62	7.19	182.62 7.19 182.62 7.19 722.43 28.44 722.43 28.44 22.63 0.89 22.63	28.44	722.43	28.44	22.63	0.89		0.89
				₽	TIRE CHANGE	ANGE								
FORWARD MAX GROWN TIRE 25 mm FROM GROUND	MRW	30.8	528.2	20.8	20.8 368.42 14.5	14.5	876	34.49	763.88	30.07	368.21	14.5	34.49 763.88 30.07 368.21 14.5 208.43 8.21	8.21
AFT MAX GROWN TIRE 25 mm FROM GROUND	MRW	30.8	368.42 14.5	14.5	528.2	20.8	528.2 20.8 763.88 30.07	30.07	876	34.49	876 34.49 208.43 8.21		368.21	14.5
12 FLAT TIRES & 50% RIM DAMAGE	MRW	30.8	158.68	6.25	158.68	6.25	158.68 6.25 158.68 6.25 722.43 28.44 722.43 28.44	28.44	722.43	28.44	0	0	0	0

P_AC_021402_1_0070001_02_00

Main Landing Gear Jacking Point Heights 2 of 2) 2-14-2-991-007-A01

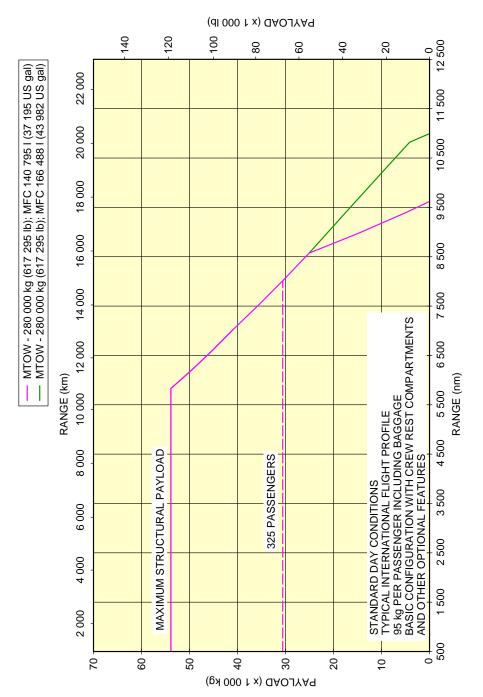
AIRCRAFT PERFORMANCE

3-1-0 General Information

**ON A/C A350-1000 A350-1000F A350-900

General Information

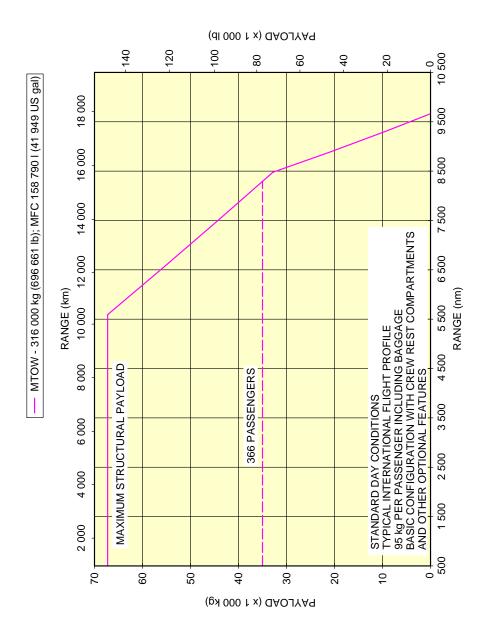
1. Standard day temperatures for the altitudes shown are tabulated below:


STA	NDARD DAY TEMPERAT	TURES FOR THE ALTITU	IDES
ALTI'	TUDE	STANDARD DAY	TEMPERATURE
FEET	METERS	°F	°C
0	0	59.0	15.0
2 000	610	51.9	11.1
4 000	1 220	44.7	7.1
6 000	1 830	37.6	3.1
8 000	2 440	30.5	-0.8

3-2-0 Payload/Range - ISA Conditions

**ON A/C A350-1000 A350-900

Payload/Range - ISA Conditions


1. This section provides the payload/range at ISA conditions.

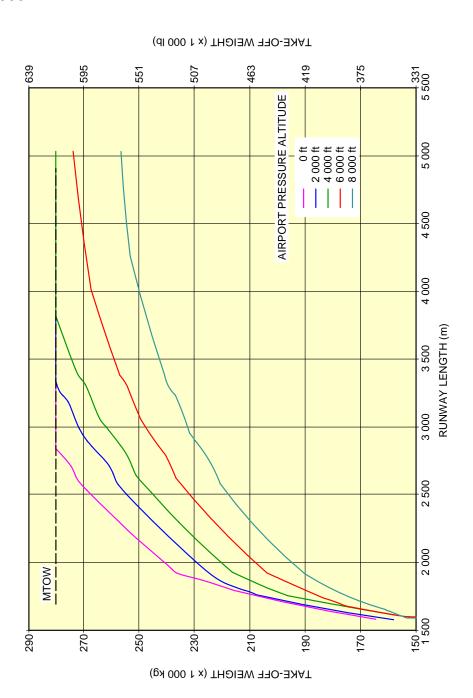
THESE CURVES ARE GIVEN FOR INFORMATION ONLY. THE APPROVED VALUES ARE STATED IN THE "OPERATING MANUALS" SPECIFIC TO THE AIRLINE OPERATING THE AIRCRAFT.

P_AC_030200_1_0010001_01_02

Payload/Range - ISA Conditions FIGURE-3-2-0-991-001-A01

THESE CURVES ARE GIVEN FOR INFORMATION ONLY. THE APPROVED VALUES ARE STATED IN THE "OPERATING MANUALS" SPECIFIC TO THE AIRLINE OPERATING THE AIRCRAFT.

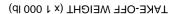
P_AC_030200_1_0020001_01_01

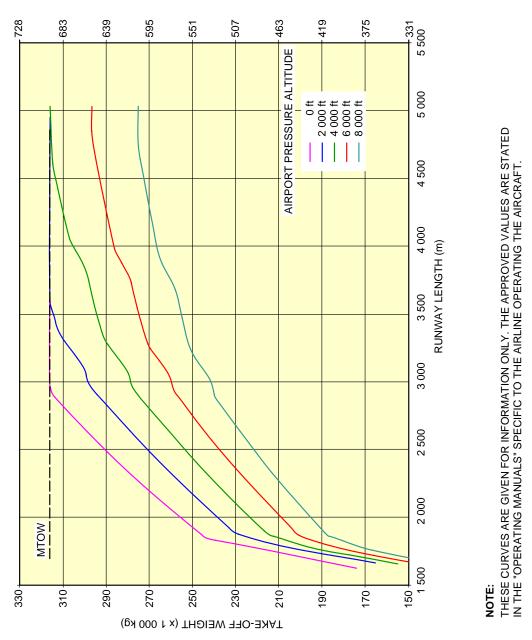

Payload/Range - ISA Conditions FIGURE-3-2-0-991-002-A01

3-3-0 Take-Off Weight Limitation

**ON A/C A350-1000 A350-900

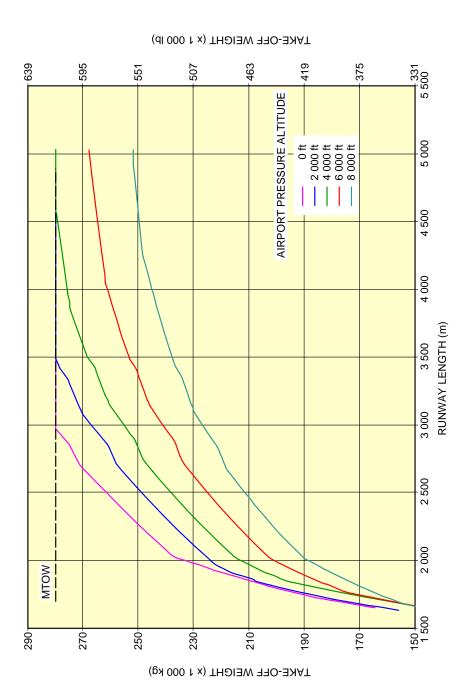
Take-Off Weight Limitation


1. This section provides the take-off weight limitation at ISA conditions and ISA + 15 $^{\circ}$ C (ISA + 27 $^{\circ}$ F) conditions on a dry runway.

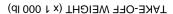


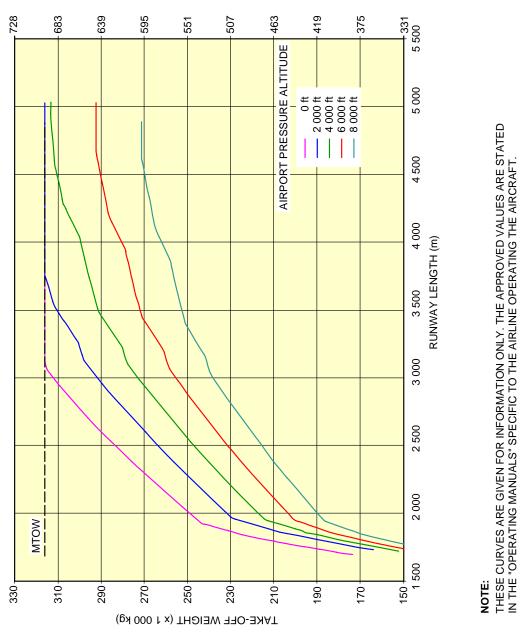
NOTE: THESE CURVES ARE GIVEN FOR INFORMATION ONLY. THE APPROVED VALUES ARE STATED IN THE "OPERATING MANUALS" SPECIFIC TO THE AIRLINE OPERATING THE AIRCRAFT.

P_AC_030300_1_0010001_01_02


ISA Conditions FIGURE-3-3-0-991-001-A01

P_AC_030300_1_0010005_01_00


ISA Conditions FIGURE-3-3-0-991-001-E01



NOTE: THESE CURVES ARE GIVEN FOR INFORMATION ONLY. THE APPROVED VALUES ARE STATED IN THE "OPERATING MANUALS" SPECIFIC TO THE AIRLINE OPERATING THE AIRCRAFT.

P_AC_030300_1_0020001_01_02

ISA + 15 °C (ISA + 27 °F) Conditions FIGURE-3-3-0-991-002-A01

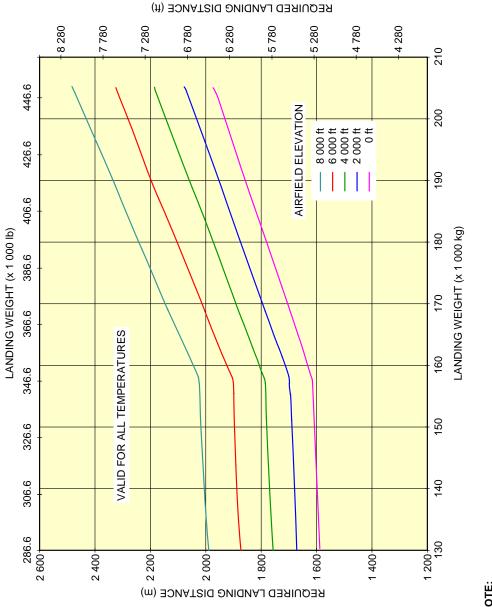
P_AC_030300_1_0020002_01_00

ISA + 15 °C (ISA + 27 °F) Conditions FIGURE-3-3-0-991-002-B01

3-3-3 Aerodrome Reference Code

**ON A/C A350-1000 A350-1000F A350-900

Aerodrome Reference Code

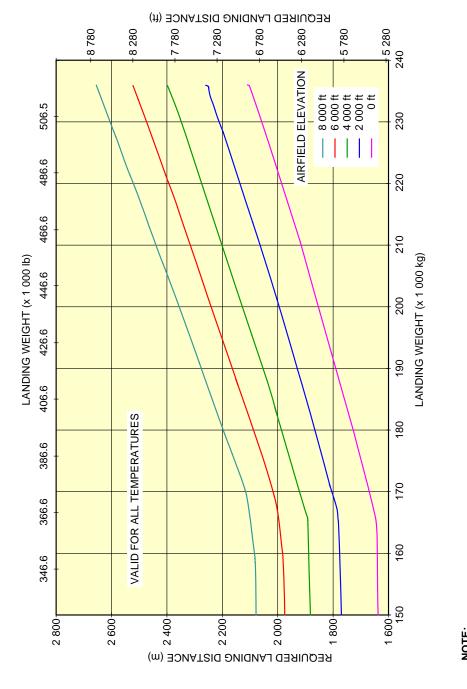

1. A350-900 and A350-1000 can operate on aerodromes classified as code 4E as per ICAO Aerodrome Reference Code.

3-4-0 Landing Field Length

**ON A/C A350-1000 A350-900

Landing Field Length

1. This section gives the landing field length on a dry runway.



NOTE:
THESE CURVES ARE GIVEN FOR INFORMATION ONLY. THE APPROVED VALUES ARE STATED
IN THE "OPERATING MANUALS" SPECIFIC TO THE AIRLINE OPERATING THE AIRCRAFT.

P_AC_030400_1_0010001_01_02

Landing Field Length FIGURE-3-4-0-991-001-A01

**ON A/C A350-1000

THESE CURVES ARE GIVEN FOR INFORMATION ONLY. THE APPROVED VALUES ARE STATED IN THE "OPERATING MANUALS" SPECIFIC TO THE AIRLINE OPERATING THE AIRCRAFT.

P_AC_030400_1_0020002_01_00

Landing Field Length FIGURE-3-4-0-991-002-B01

3-5-0 Final Approach Speed

**ON A/C A350-1000 A350-900

Final Approach Speed

1. This section gives the final approach speed. It is defined as the indicated airspeed at threshold in the landing configuration, at the certificated maximum flap setting and Maximum Landing Weight (MLW), in standard atmospheric conditions. The approach speed is used to classify the aircraft into an aircraft approach category, a grouping of aircraft based on the indicated airspeed at threshold.

**ON A/C A350-900

2. The final approach speed is 140 kt at a MLW of 207000 kg (456357 lb) and classifies the aircraft into the Aircraft Approach Category C.

<u>NOTE</u>: This value is given for information only.

**ON A/C A350-1000

3. The final approach speed is 147 kt at a MLW of 236000 kg (520291 lb) and classifies the aircraft into the Aircraft Approach Category D.

<u>NOTE</u>: This value is given for information only.

GROUND MANEUVERING

4-1-0 General Information

**ON A/C A350-1000 A350-1000F A350-900

General Information

1. This section gives aircraft turning capability and maneuvering characteristics.

For ease of presentation, this data has been determined from the theoretical limits imposed by the geometry of the aircraft, and where noted, gives for a normal allowance for tire slippage. As such, it reflects the turning capability of the aircraft in favorable operating circumstances. This data should only be used as a guideline for the method of determination of such parameters and for the maneuvering characteristics of this aircraft type.


In the ground operating mode, varying airline practices may demand that more conservative turning procedures be adopted to avoid excessive tire wear and reduce possible maintenance problems. Airline operating techniques will vary in the level of performance, over a wide range of operating circumstances throughout the world. Variations from standard aircraft operating patterns may be necessary to satisfy physical constraints within the maneuvering area, such as adverse grades, limited area or high risk of jet blast damage. For these reasons, ground maneuvering requirements should be coordinated with the airlines in question prior to layout planning.

NOTE: The following chapter takes into account ICAO Annex 14 to the Convention on International Civil Aviation, Aerodromes - Volume I, Aerodrome Design and Operations, Ninth Edition, July 2022.

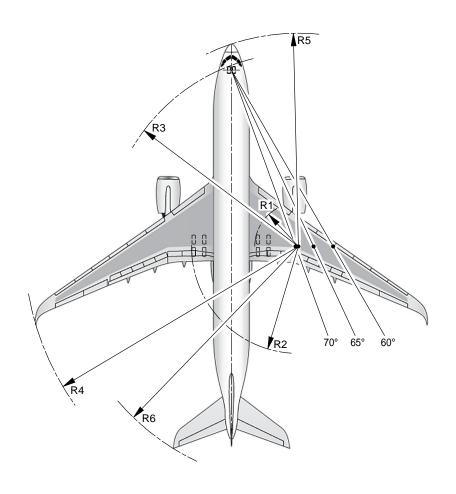
2. The longer wheelbase aircrafts have an additional system which supports the flight crew to manage the margins of the inner main landing gear with related to the taxiway edge. This system is called as ETACS (External Taxi Aid Camera System) that has two cameras and gives the external view to the pilot in control on the Primary Flight Display (PFD). ETACS is a standard equipment on A350-1000 and optional on A350-900.

NOTE: To look outer side through the cockpit window is the primary means to find when to start turns and to make sure that the aircraft position is in relation to the ground track.

**ON A/C A350-1000 A350-1000F A350-900

P_AC_040100_1_0010001_01_00

ETACS FIGURE-4-1-0-991-001-A01


4-2-0 Turning Radii

**ON A/C A350-1000 A350-1000F A350-900

Turning Radii

1. This section provides the turning radii.

**ON A/C A350-900

NOTE:

FOR TURNING RADII VALUES, REFER TO SHEET 2.

P_AC_040200_1_0010001_01_01

Turning Radii (Sheet 1 of 2) FIGURE-4-2-0-991-001-A01

**ON A/C A350-900

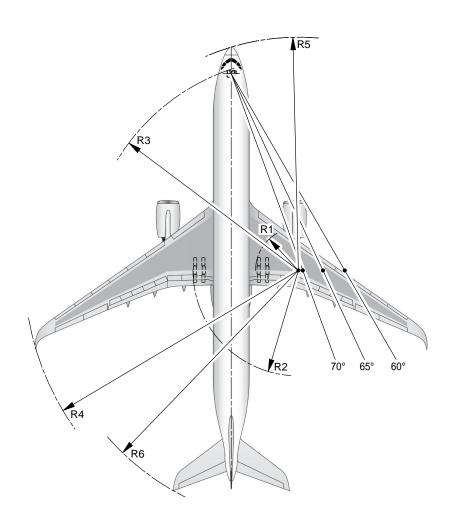
		A350-900 T	URN	NING RA	DII				
TYPE OF TURN	STEERING ANGLE (deg)	EFFECTIVE STEERING ANGLE (deg)		R1 RMLG	R2 LMLG	R3 NLG	R4 WING	R5 NOSE	R6 TAIL
2	20	19.6	m	76.3	86.9	86.0	113.6	87.1	96.0
	20	19.0	ft	250	285	282	373	286	315
2	25	24.5	m	58.7	69.3	69.6	96.2	71.2	79.7
	25	24.5	ft	193	227	228	316	233	262
2	30	29.4	m	46.7	57.3	58.9	84.3	60.8	69.0
	30	29.4	ft	153	188	193	277	199	226
2	35	34.2	m	38.0	48.6	51.5	75.7	53.7	61.5
	33	54.2	ft	125	159	169	248	176	202
2	40	39.1	m	31.1	41.7	45.9	68.9	48.5	55.9
	40	39.1	ft	102	137	151	226	159	183
2	45	43.8	m	25.7	36.3	41.8	63.7	44.7	51.7
	45	43.0	ft	84	119	137	209	147	170
2	50	48.6	m	21.1	31.7	38.6	59.2	41.8	48.3
	50	40.0	ft	69	104	127	194	137	158
2	55	53.1	m	17.4	28.0	36.2	55.5	39.6	45.7
	55	33.1	ft	57	92	119	182	130	150
2	60	57.5	m	14.1	24.7	34.3	52.4	38.0	43.5
	60	57.5	ft	46	81	113	172	125	143
2	65	61.5	m	11.4	22.0	32.9	49.8	36.7	41.9
	65	01.3	ft	37	72	108	163	121	137
2	70	65.0	m	9.2	19.8	31.9	47.7	35.9	40.6
	70	65.0	ft	30	65	105	156	118	133
2	72 (MAX)	66.1	m	8.5	19.1	31.6	47.0	35.6	40.2
	72 (IVIAA)	00.1	ft	28	63	104	154	117	132
				00.5	04.4	00.0	50.0	44.4	47.0
1	50	49.3	m	20.5	31.1	38.2	58.6	41.4	47.8
			ft	67	102	125	192	136	157
1	55	54.1	m	16.6	27.2	35.7	54.8	39.2	45.1
			ft	54	89	117	180	129	148
1	60	58.7	m	13.3	23.9	33.8	51.6	37.6	43.0
			ft	43	78	111	169	123	141
1	65	63.2	m	10.3	20.9	32.4	48.7	36.3	41.2
			ft	34	69	106	160	119	135
1	70	67.5	m	7.7	18.3	31.2	46.2	35.3	39.8
			ft	25	60	103	152	116	130
1	72 (MAX)	69.2	m	6.7	17.3	30.9	45.3	35.0	39.2
	` ′		ft	22	57	101	149	115	129

NOTE:

ABOVE 50°, AIRLINES MAY USE TYPE 1 OR TYPE 2 TURNS DEPENDING ON THE SITUATION. TYPE 1 TURNS USE: ASYMMETRIC THRUST DURING THE WHOLE TURN;

AND DIFFERENTIAL BRAKING TO INITIATE THE TURN ONLY.

TYPE 2 TURNS USE: SYMMETRIC THRUST DURING THE WHOLE TURN; AND NO DIFFERENTIAL BRAKING AT ALL.


IT IS POSSIBLE TO GET LOWER VALUES THAN THOSE FROM TYPE 1 BY APPLYING DIFFERENTIAL

BRAKING DURING THE WHOLE TURN.

P_AC_040200_1_0010001_02_01

Turning Radii (Sheet 2 of 2) FIGURE-4-2-0-991-001-A01

**ON A/C A350-1000

NOTE:

FOR TURNING RADII VALUES, REFER TO SHEET 2.

P_AC_040200_1_0010002_01_00

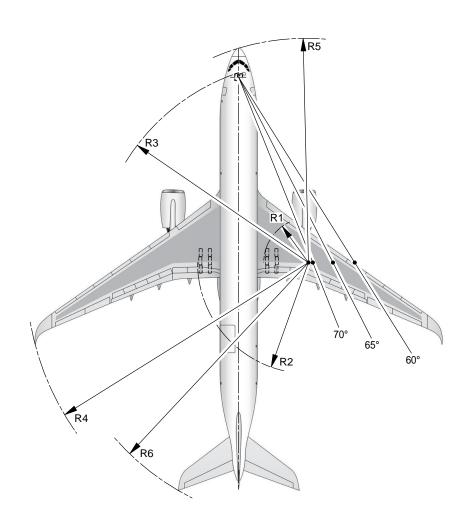
Turning Radii (Sheet 1 of 2) FIGURE-4-2-0-991-001-B01

**ON A/C A350-1000

		A350-1000 TL	JRN	ING RAD	DII				
TYPE OF TURN	STEERING ANGLE (deg)	BRIDGESTONE MTOW FORWARD CG EFFECTIVE STEERING ANGLE (deg)		R1 RMLG	R2 LMLG	R3 NLG	R4 WING	R5 NOSE	R6 TAIL
	00	40.4	m	87.7	98.4	98.2	125.2	99.2	107.9
2	20	19.4	ft	288	323	322	411	325	354
	05	04.0	m	67.7	78.4	79.6	105.3	81.0	89.3
2	25	24.3	ft	222	257	261	345	266	293
0	30	20.4	m	54.0	64.8	67.4	91.8	69.2	77.1
2	30	29.1	ft	177	213	221	301	227	253
0	35	22.0	m	44.0	54.8	58.8	81.9	61.0	68.4
2	35	33.9	ft	144	180	193	269	200	224
0	40	20.6	m	36.3	47.0	52.6	74.3	55.0	62.0
2	40	38.6	ft	119	154	173	244	180	203
2	45	43.3	m	30.1	40.8	47.9	68.2	50.6	57.2
	45	43.3	ft	99	134	157	224	166	188
2	50	47.9	m	25.0	35.7	44.3	63.2	47.3	53.3
	50	47.9	ft	82	117	145	207	155	175
2	55	52.4	m	20.7	31.4	41.6	59.0	44.8	50.3
	55	52.4	ft	68	103	136	194	147	165
2	60	56.7	m	17.0	27.8	39.5	55.4	42.8	47.9
	60	56.7	ft	56	91	130	182	140	157
2	65	60.6	m	13.9	24.7	37.8	52.4	41.4	46.0
	65	60.6	ft	46	81	124	172	136	151
2	70	64.1	m	11.4	22.2	36.7	50.0	40.3	44.5
	70	04.1	ft	37	73	120	164	132	146
2	75 (MAX)	66.6	m	9.7	20.5	36.0	48.3	39.7	43.5
	75 (117-77)	00.0	ft	32	67	118	158	130	143
			<u></u>	20.0	27.0	4F 4	647	40.0	E4.5
1	50	49	m	26.6	37.3	45.4	64.7	48.3	54.5
			ft	87 19.6	122	149	212	158	179 49.5
1	55	53.7	m		30.3	40.9	57.9	44.1	
			ft	15.0	99	134	190	145 42.2	162
1	60	58.3	m #	15.8 52	26.5	38.8	54.2		47.1
			ft m	-	87	127	178	138	155
1	65	62.7	ft	12.4 41	23.2 76	37.1 122	51.0	40.7 134	45.1 148
			m	9.5	20.2	35.9	167 48.1	39.6	43.4
1	70	66.9	ft	31	66	118	158	130	142
			m	6.8	17.6	34.9	45.6	38.8	42.1
1	75 (MAX)	71	ft	22	58	115	150	127	138
			ΙT		ეგ	115	100	12/	138

ABOVE 50°, AIRLINES MAY USE TYPE 1 OR TYPE 2 TURNS DEPENDING ON THE SITUATION.

TYPE 1 TURNS USE: ASYMMETRIC THRUST DURING THE WHOLE TURN;


AND DIFFERENTIAL BRAKING TO INITIATE THE TURN ONLY.

TYPE 2 TURNS USE: SYMMETRIC THRUST DURING THE WHOLE TURN; AND NO DIFFERENTIAL BRAKING AT ALL.

IT IS POSSIBLE TO GET LOWER VALUES THAN THOSE FROM TYPE 1 BY APPLYING DIFFERENTIAL BRAKING DURING THE WHOLE TURN. P_AC_040200_1_0010002_02_01

> Turning Radii (Sheet 2 of 2) FIGURE-4-2-0-991-001-B01

| **ON A/C A350-1000F

NOTE:

FOR TURNING RADII VALUES, REFER TO SHEET 2.

P_AC_040200_1_0010034_01_00

Turning Radii 1 of 2) 4-2-0-991-001-b01

**ON A/C A350-1000F

		A350-1000F T	URN	NING RA	DII				
TYPE OF TURN	STEERING ANGLE (deg)	BRIDGESTONE MTOW FORWARD CG EFFECTIVE STEERING ANGLE (deg)		R1 RMLG	R2 LMLG	R3 NLG	R4 WING	R5 NOSE	R6 TAIL
2	20	19.3	m	79.1	89.9	89.0	116.6	90.1	99.8
	20	19.5	ft	260	295	292	383	296	327
2	25	24.2	m	61.0	71.7	72.2	98.6	73.6	83.3
	25	24.2	ft	200	235	237	323	241	273
2	30	28.9	m	48.7	59.4	61.1	86.4	62.9	72.4
	30	20.9	ft	160	195	200	283	206	238
2	35	33.7	m	39.6	50.4	53.4	77.5	55.5	64.7
	33	33.7	ft	130	165	175	254	182	212
2	40	38.4	m	32.6	43.4	47.8	70.7	50.2	59.1
	40	30.4	ft	107	142	157	232	165	194
2	45	43.0	m	27.1	37.8	43.5	65.2	46.2	54.9
	75	45.0	ft	89	124	143	214	152	180
2	50	47.6	m	22.5	33.2	40.3	60.7	43.2	51.5
	30	47.0	ft	74	109	132	199	142	169
2	55	51.9	m	18.6	29.3	37.8	56.9	41.0	48.9
	33	31.9	ft	61	96	124	187	135	160
2	60	56.1	m	15.4	26.1	35.9	53.8	39.2	46.8
	00	30.1	ft	51	86	118	177	129	154
2	65	59.9	m	12.6	23.4	34.4	51.2	37.9	45.2
	05	39.9	ft	41	77	113	168	124	148
2	70	63.2	m	10.5	21.2	33.4	49.1	37.0	43.9
	70	03.2	ft	34	70	110	161	121	144
2	75 (MAX)	65.3	m	9.1	19.9	32.8	47.8	36.5	43.2
	73 (IVIAX)	00.3	ft	30	65	108	157	120	142
			m	23.6	34.3	41.0	61.8	43.9	52.3
1	50	48.8	ft	23.6 77	113	135	203	144	172
			m	17.4	28.2	37.1	55.8	40.3	48.1
1	55	53.4	ft	57	93	122	183	132	158
			m	14.0	24.8	35.2	52.5	38.6	46.0
1	60	57.9	ft	46	24.8 81	115	172	127	151
			m	11.0	21.8	33.7	49.6	37.3	44.3
1	65	62.3	ft	36	72	111	163	122	145
			m	8.4	19.1	32.5	47.1	36.2	42.8
1	70	66.5	ft	28	63	107	155	119	140
			m	6.0	16.7	31.6	44.7	35.5	41.6
1	75 (MAX)	70.7	ft	20	55	104	147	116	136
			IL	20	၁၁	104	147	110	130

ABOVE 50°, AIRLINES MAY USE TYPE 1 OR TYPE 2 TURNS DEPENDING ON THE SITUATION. TYPE 1 TURNS USE: ASYMMETRIC THRUST DURING THE WHOLE TURN;

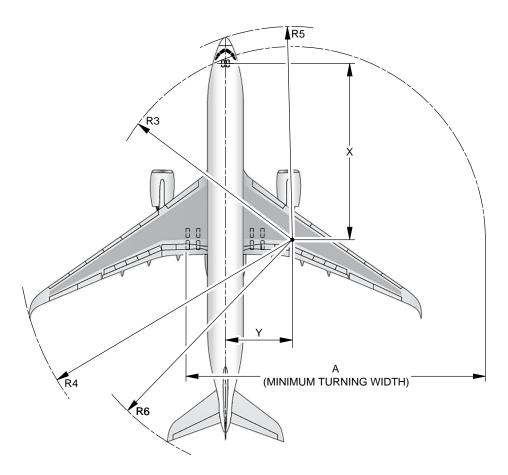
AND DIFFERENTIAL BRAKING TO INITIATE THE TURN ONLY.

TYPE 2 TURNS USE: SYMMETRIC THRUST DURING THE WHOLE TURN; AND NO DIFFERENTIAL BRAKING AT ALL.

IT IS POSSIBLE TO GET LOWER VALUES THAN THOSE FROM TYPE 1 BY APPLYING DIFFERENTIAL BRAKING DURING THE WHOLE TURN. P_AC_040200_1_0010034_02_00

> Turning Radii 2 of 2) 4-2-0-991-001-b01

4-3-0 Minimum Turning Radii


| **ON A/C A350-1000 A350-1000F A350-900

Minimum Turning Radii

1. This section provides the minimum turning radii.

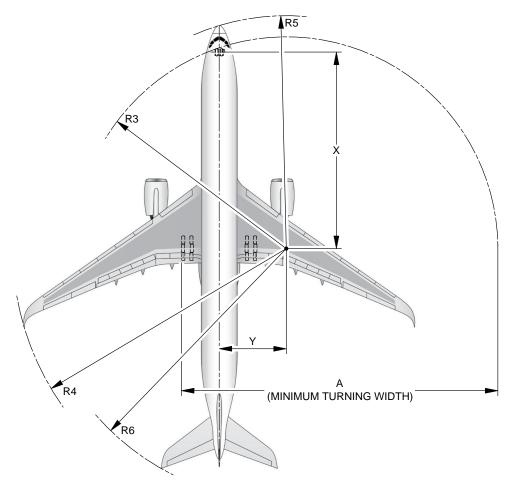
4-3-0

**ON A/C A350-900

		A350-900 MI	NIM	UM TUR	NING R	ADII				
TYPE OF TURN	STEERING ANGLE (deg)	EFFECTIVE STEERING ANGLE (deg)		Х	Y	Α	R3 NLG	R4 WING	R5 NOSE	R6 TAIL
1	72 (MAX)	69.2	m	28.7	10.9	48.5	30.9	45.3	35.0	39.2
l l	72 (IVIAX)	09.2	ft	94	36	159	101	149	115	129
2	72 (MAX)	66.1	m	28.7	12.7	51.1	31.6	47.0	35.6	40.2
2	12 (IVIAA)	00.1	ft	94	42	168	104	154	117	132

NOTE:

TYPE 1 TURNS USE: ASYMMETRIC THRUST DURING THE WHOLE TURN;


AND DIFFERENTIAL BRAKING TO INITIATE THE TURN ONLY.

TYPE 2 TURNS USE: SYMMETRIC THRUST DURING THE WHOLE TURN; AND NO DIFFERENTIAL BRAKING AT ALL.

IT IS POSSIBLE TO GET LOWER VALUES THAN THOSE FROM TYPE 1 BY APPLYING DIFFERENTIAL BRAKING DURING THE WHOLE TURN. P_AC_040300_1_00 P_AC_040300_1_0010001_01_01

> Minimum Turning Radii FIGURE-4-3-0-991-001-A01

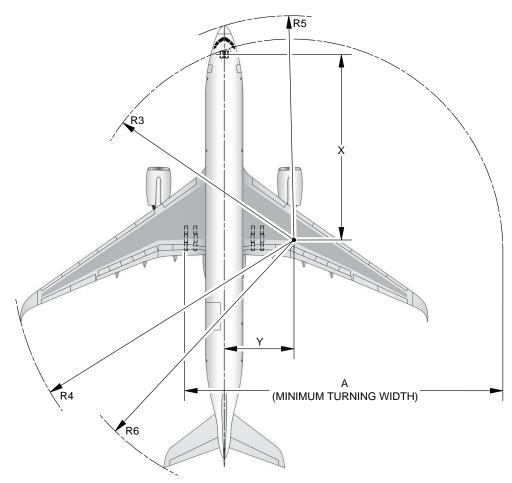
**ON A/C A350-1000

		A350-1000 M	ININ	MUM TUF	RNING R	ADII				
TYPE OF TURN	STEERING ANGLE (deg)	EFFECTIVE STEERING ANGLE (deg)		Х	Y	Α	R3 NLG	R4 WING	R5 NOSE	R6 TAIL
1	75 (MAX)	71.0	m	32.5	11.2	52.5	34.9	45.6	38.8	42.1
'	73 (WAX)	71.0	ft	107	37	172	115	150	127	138
2	75 (MAX)	66.6	m	32.5	14.1	56.4	36.0	48.3	39.7	43.5
	73 (IVIAX)	0.00	ft	107	46	185	118	158	130	143

NOTE:

TYPE 1 TURNS USE: ASYMMETRIC THRUST DURING THE WHOLE TURN;

AND DIFFERENTIAL BRAKING TO INITIATE THE TURN ONLY.


TYPE 2 TURNS USE: SYMMETRIC THRUST DURING THE WHOLE TURN; AND NO DIFFERENTIAL BRAKING AT ALL.

IT IS POSSIBLE TO GET LOWER VALUES THAN THOSE FROM TYPE 1 BY APPLYING DIFFERENTIAL

BRAKING DURING THE WHOLE TURN. P_AC_040300_1_0010002_01_01

Minimum Turning Radii FIGURE-4-3-0-991-001-B01

**ON A/C A350-1000F

		A350-1000F I	MIN	IMUM TU	JRNING	RADII				
TYPE OF TURN	STEERING ANGLE (deg)	EFFECTIVE STEERING ANGLE (deg)		Х	Y	Α	R3 NLG	R4 WING	R5 NOSE	R6 TAIL
1	75 (MAX)	70.7	m	29.3	10.3	48.3	31.6	44.7	35.5	41.6
ı	73 (WAX)	70.7	ft	96	34	158	104	147	116	136
2	75 (MAX)	65.3	m	29.3	13.5	52.7	32.8	47.8	36.5	43.2
	73 (IVIAX)	00.3	ft	96	44	173	108	157	120	142

NOTE:

TYPE 1 TURNS USE: ASYMMETRIC THRUST DURING THE WHOLE TURN;

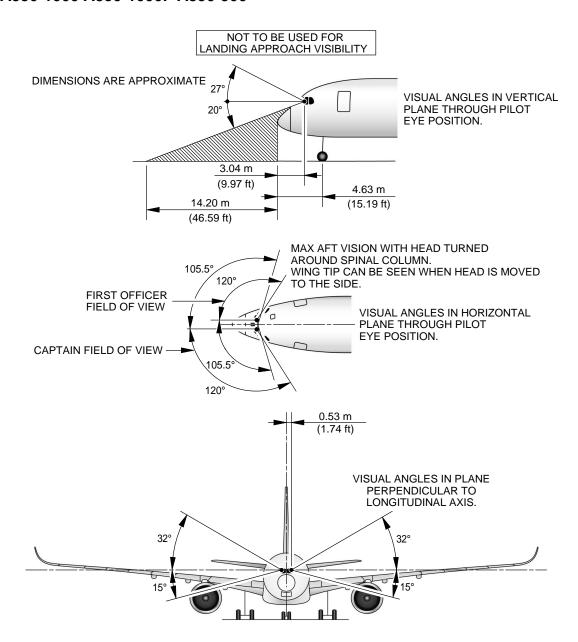
AND DIFFERENTIAL BRAKING TO INITIATE THE TURN ONLY.

TYPE 2 TURNS USE: SYMMETRIC THRUST DURING THE WHOLE TURN; AND NO DIFFERENTIAL BRAKING AT ALL.

IT IS POSSIBLE TO GET LOWER VALUES THAN THOSE FROM TYPE 1 BY APPLYING DIFFERENTIAL

BRAKING DURING THE WHOLE TURN. P_AC_040300_1_0010004_01_00

Minimum Turning Radii 4-3-0-991-001-D01


4-4-0 Visibility from Cockpit in Static Position

**ON A/C A350-1000 A350-1000F A350-900

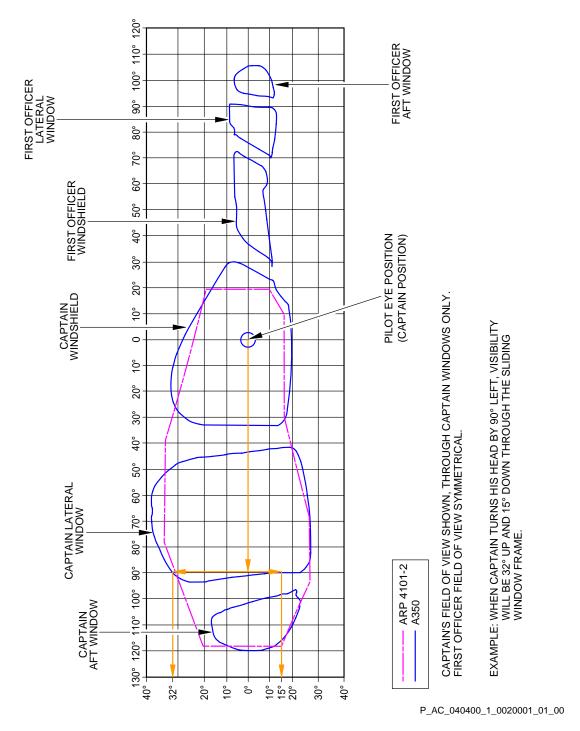
Visibility from Cockpit in Static Position

1. This section gives the visibility from cockpit in static position.

**ON A/C A350-1000 A350-1000F A350-900

NOTE:

• PILOT EYE POSITION WHEN PILOT'S EYES ARE IN LINE WITH THE RED AND WHITE BALLS.



ZONE THAT CANNOT BE SEEN

P_AC_040400_1_0010001_01_01

Visibility from Cockpit in Static Position FIGURE-4-4-0-991-001-A01

**ON A/C A350-1000 A350-1000F A350-900

Binocular Visibility Through Windows from Captain Eye Position FIGURE-4-4-0-991-002-A01

4-5-0 Runway and Taxiway Turn Paths

**ON A/C A350-1000 A350-1000F A350-900

Introduction

- 1. This section provides the runway and taxiway turn paths for the following configurations:
 - 90° Turn Runway to Taxiway
 - 135° Turn Runway to Taxiway
 - 180° Turn on a Runway
 - 90° Turn Taxiway to Taxiway
 - 135° Turn Taxiway to Taxiway.

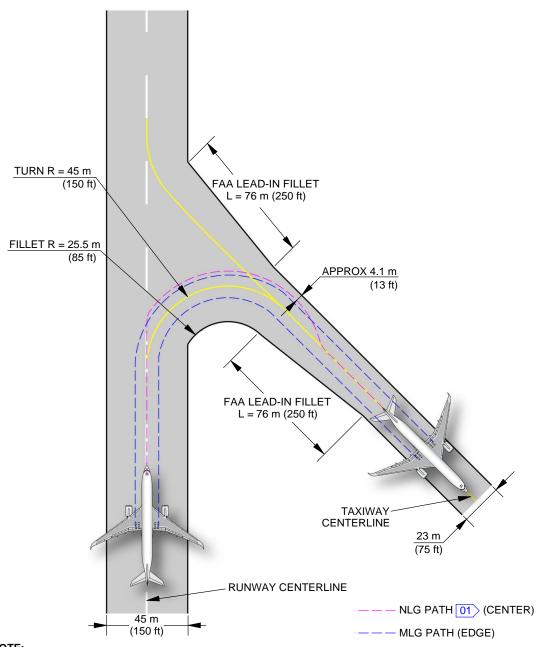
The turn paths Runway to Taxiway and Taxiway to Taxiway are defined using 3 methods:

- Oversteering method,
- ETACS assisted steering method,
- Cockpit over centerline method.

The 180° Turn on runway is defined using the following method:

- 180° Turn using edge of runway method.

NOTE: The fillet design and the turn radii are as per FAA AC 150/5300-13 Change 18.


4-5-1 135° Turn - Runway to Taxiway

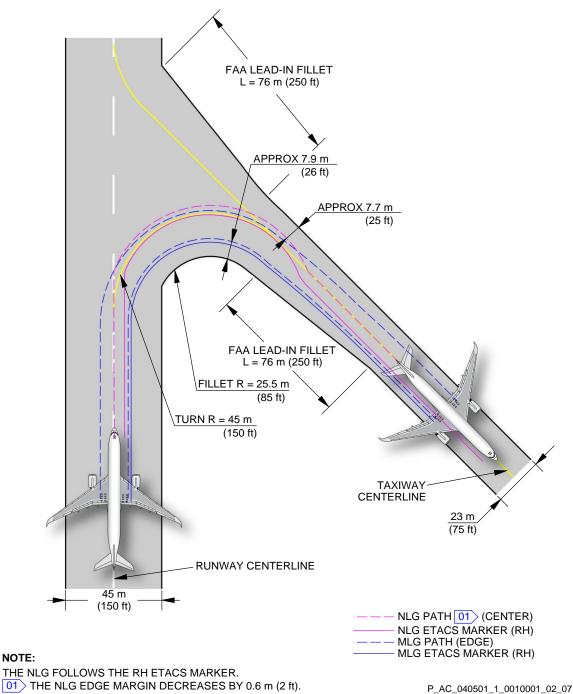
| **ON A/C A350-1000 A350-1000F A350-900

135° Turn - Runway to Taxiway

1. This section gives the 135° turn - runway to taxiway.

**ON A/C A350-900

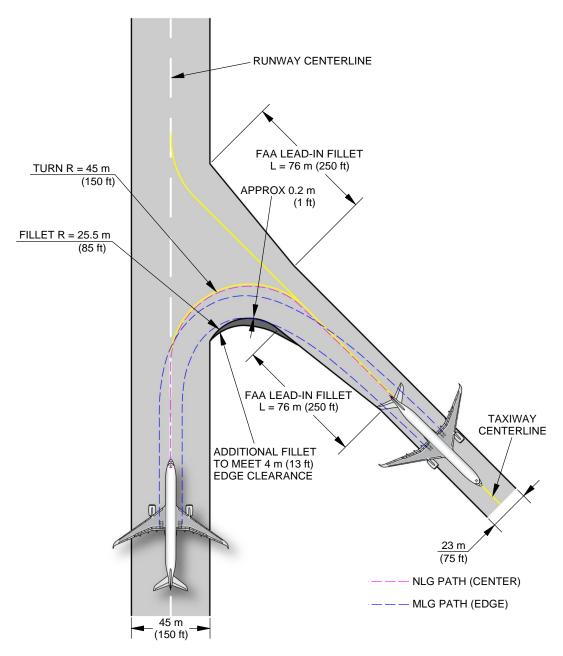
NOTE:


THE MLG FOLLOWS THE CENTERLINE.

01 THE NLG EDGE MARGIN DECREASES BY 0.6 m (2 ft).

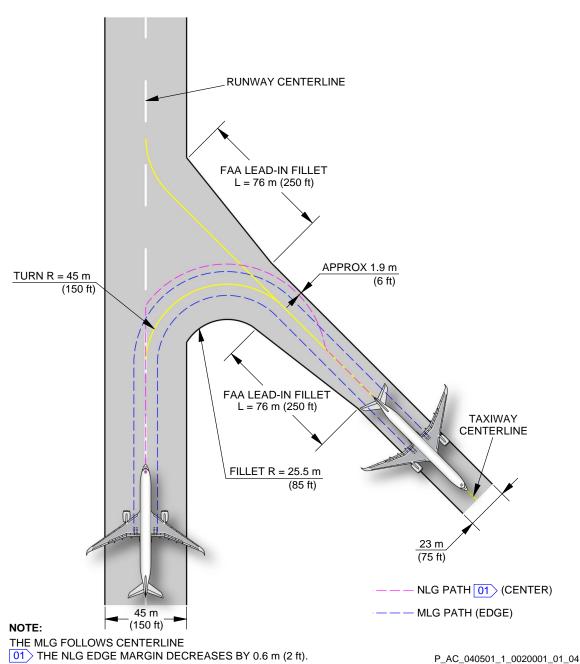
P_AC_040501_1_0010001_01_06

135° Turn - Runway to Taxiway Oversteering Method (Sheet 1 of 3) FIGURE-4-5-1-991-001-A01


**ON A/C A350-900

NOTE:

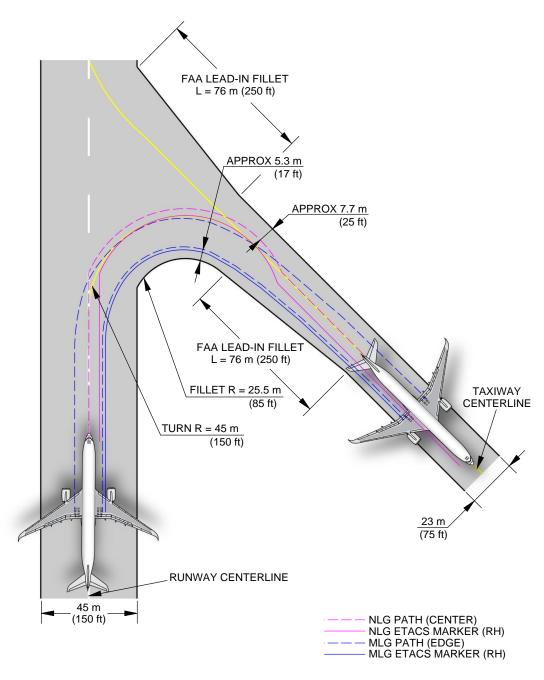
135° Turn - Runway to Taxiway ETACS Assisted Steering Method (Sheet 2 of 3) FIGURE-4-5-1-991-001-A01


**ON A/C A350-900

P_AC_040501_1_0010001_03_01

135° Turn - Runway to Taxiway Cockpit over Centerline Method (Sheet 3 of 3) FIGURE-4-5-1-991-001-A01

**ON A/C A350-1000

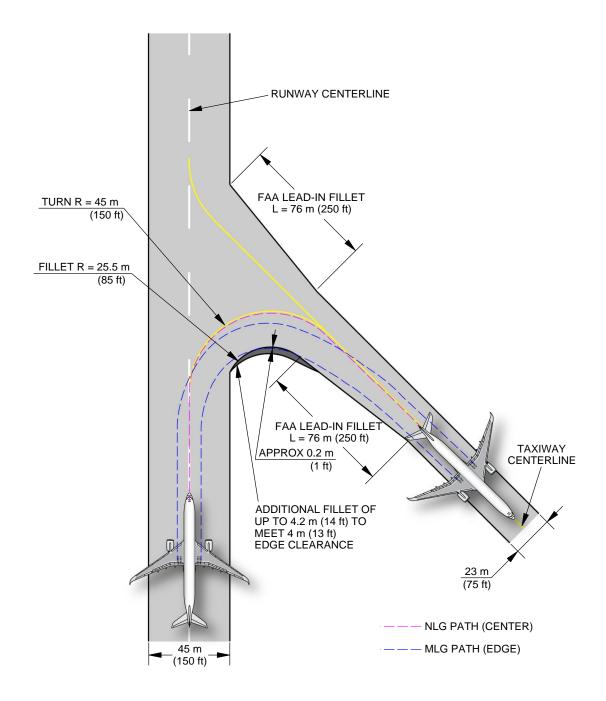


135° Turn - Runway to Taxiway

Oversteering Method (Sheet 1 of 3)

FIGURE-4-5-1-991-002-A01

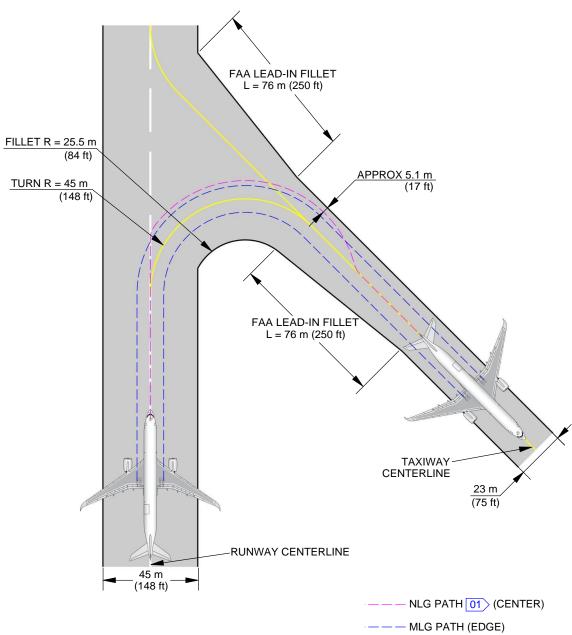
**ON A/C A350-1000


NOTE:

THE NLG FOLLOWS THE RH ETACS MARKER.

P_AC_040501_1_0020001_02_05

135° Turn - Runway to Taxiway ETACS Assisted Steering Method (Sheet 2 of 3) FIGURE-4-5-1-991-002-A01

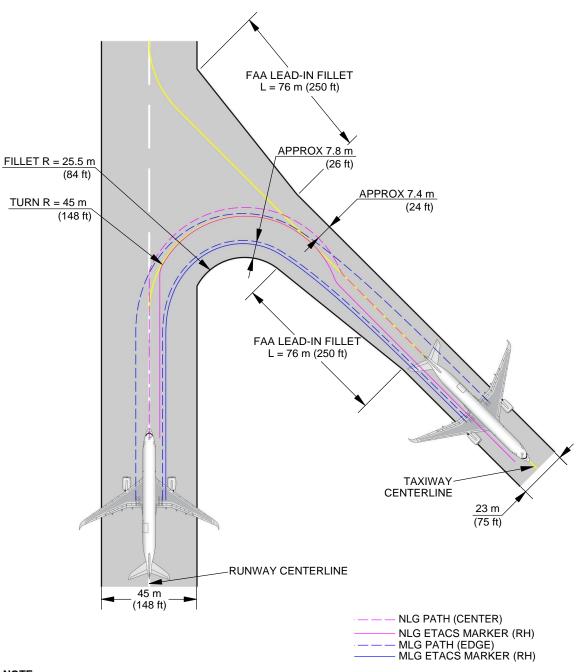

**ON A/C A350-1000

P_AC_040501_1_0020001_03_01

135° Turn - Runway to Taxiway Cockpit over Centerline Method (Sheet 3 of 3) FIGURE-4-5-1-991-002-A01

**ON A/C A350-1000F

NOTE:

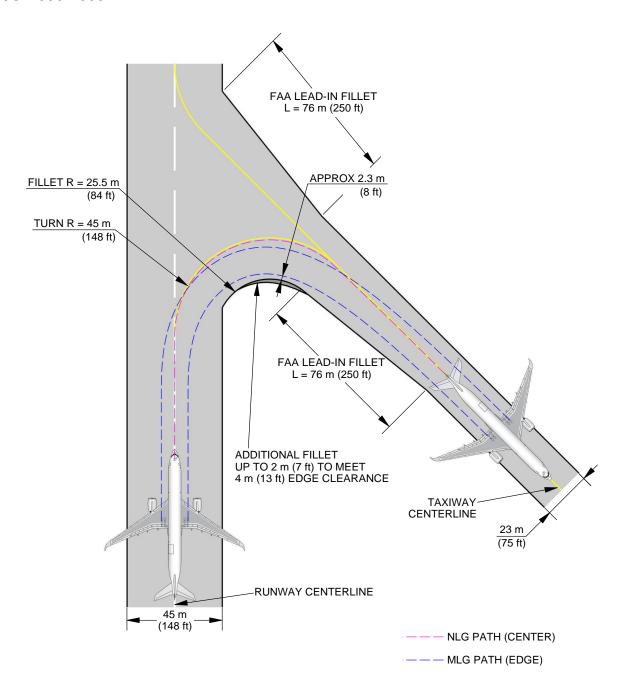

THE MLG FOLLOWS THE CENTERLINE.

101 THE NLG EDGE MARGIN DECREASES BY 0.6 m (2 ft).

P_AC_040501_1_0030003_01_01

135° Turn - Runway to Taxiway 1 of 3) 4-5-1-991-003-C01

**ON A/C A350-1000F


NOTE:

THE NLG FOLLOWS THE RH ETACS MARKER.

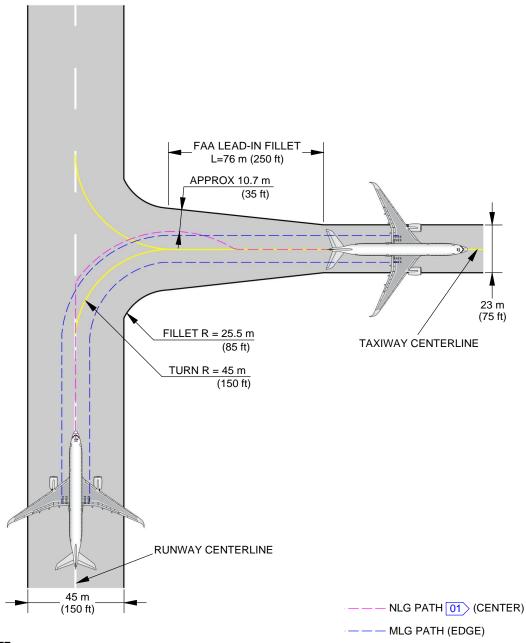
P_AC_040501_1_0030003_02_01

135° Turn - Runway to Taxiway 2 of 3) 4-5-1-991-003-C01

**ON A/C A350-1000F

P_AC_040501_1_0030003_03_00

135° Turn - Runway to Taxiway 3 of 3) 4-5-1-991-003-C01


4-5-2 90° Turn - Runway to Taxiway

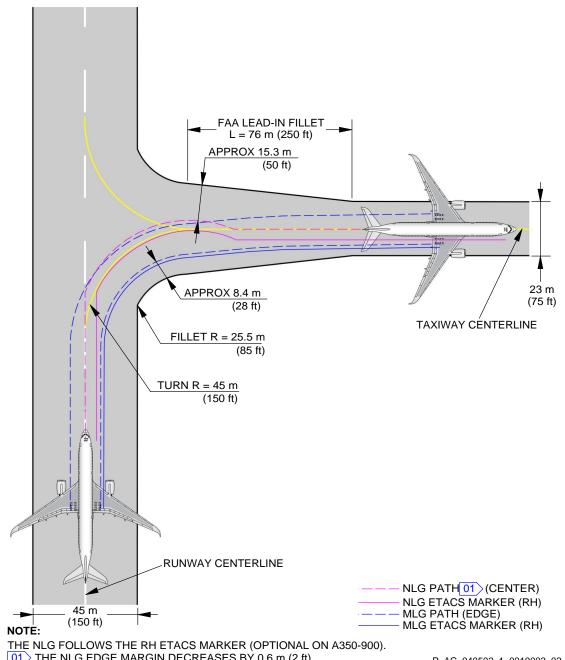
| **ON A/C A350-1000 A350-1000F A350-900

90° Turn - Runway to Taxiway

1. This section gives the 90° turn - runway to taxiway.

**ON A/C A350-900

NOTE:

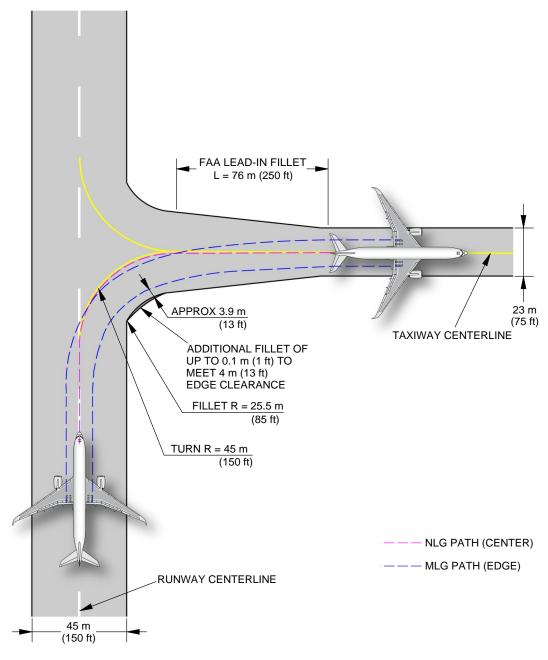

THE MLG FOLLOWS THE CENTERLINE.

11 THE NLG EDGE MARGIN DECREASES BY 0.6 m (2 ft).

P_AC_040502_1_0010002_01_06

90° Turn - Runway to Taxiway Oversteering Method (Sheet 1 of 3) FIGURE-4-5-2-991-001-B01

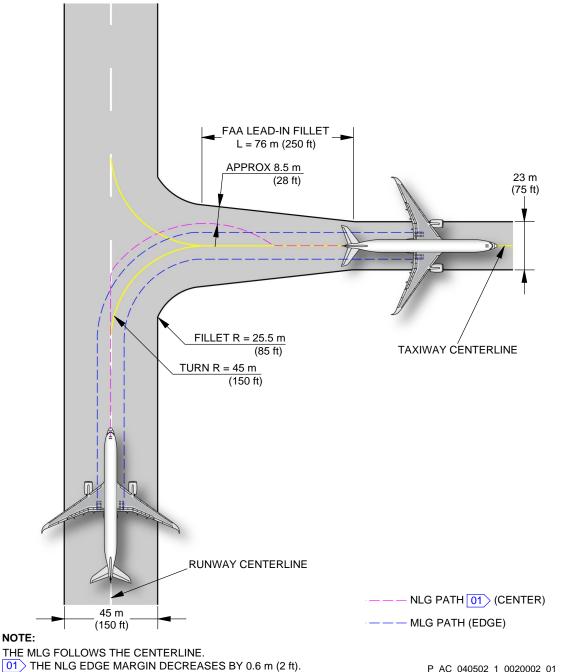
**ON A/C A350-900



01 THE NLG EDGE MARGIN DECREASES BY 0.6 m (2 ft).

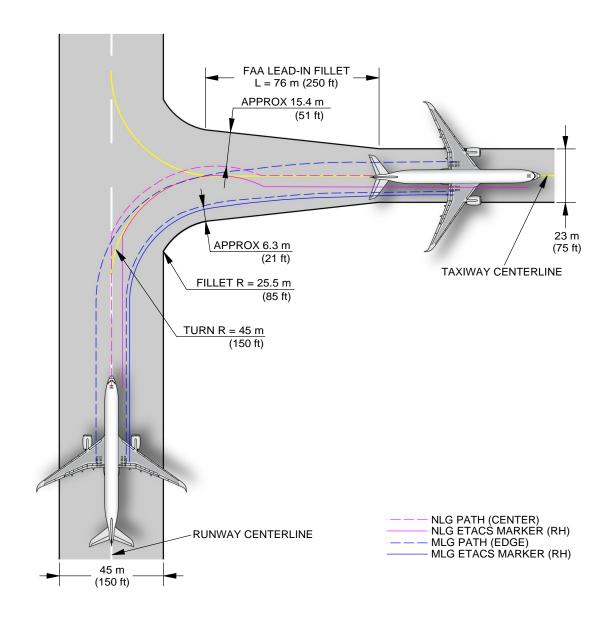
P_AC_040502_1_0010002_02_07

90° Turn - Runway to Taxiway ETACS Assisted Steering Method (Sheet 2 of 3) FIGURE-4-5-2-991-001-B01


**ON A/C A350-900

P_AC_040502_1_0010002_03_01

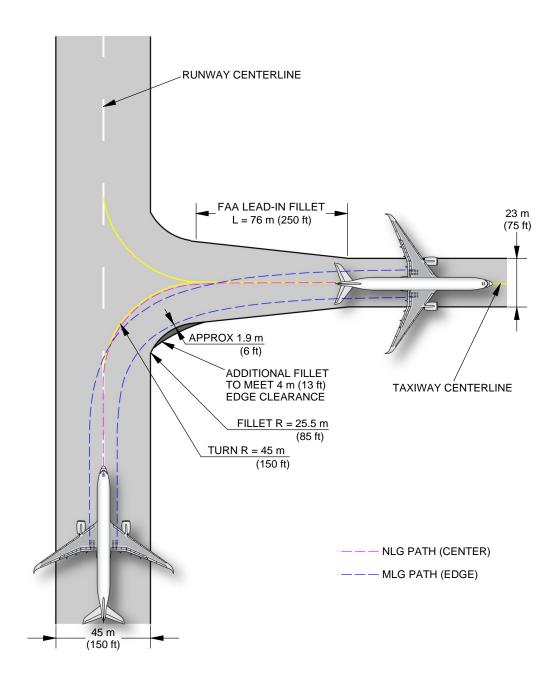
90° Turn - Runway to Taxiway Cockpit over Centerline Method (Sheet 3 of 3) FIGURE-4-5-2-991-001-B01


**ON A/C A350-1000

P_AC_040502_1_0020002_01_04

90° Turn - Runway to Taxiway Oversteering Method (Sheet 1 of 3) FIGURE-4-5-2-991-002-B01

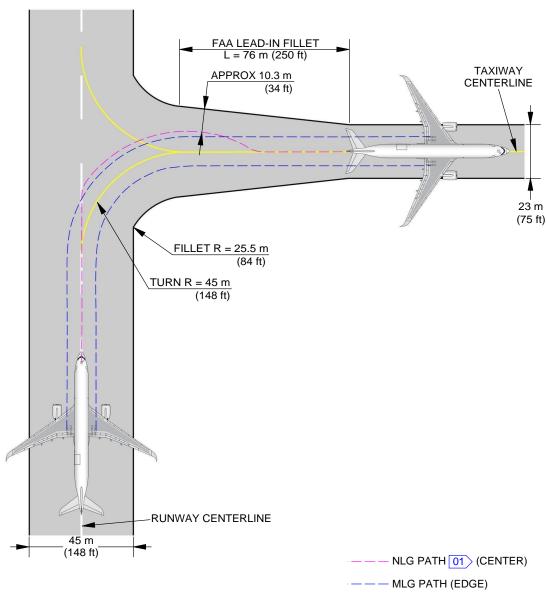
**ON A/C A350-1000


NOTE:

THE NLG FOLLOWS THE RH ETACS MARKER.

P_AC_040502_1_0020002_02_05

90° Turn - Runway to Taxiway ETACS Assisted Steering Method (Sheet 2 of 3) FIGURE-4-5-2-991-002-B01

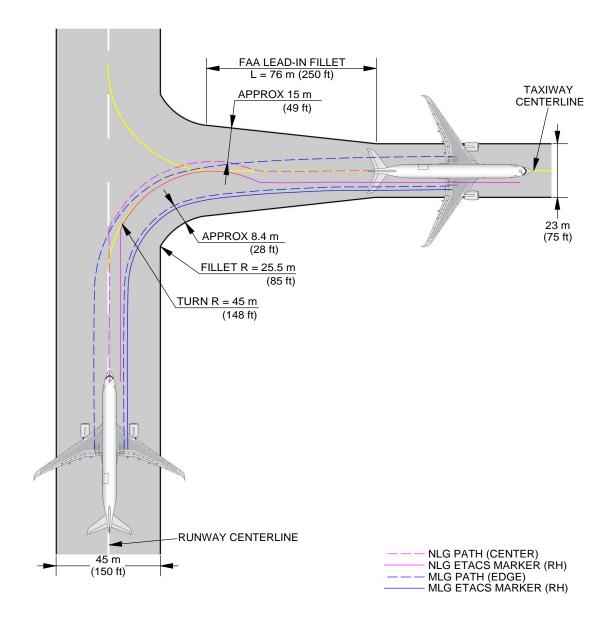

**ON A/C A350-1000

P_AC_040502_1_0020002_03_01

90° Turn - Runway to Taxiway Cockpit over Centerline Method (Sheet 3 of 3) FIGURE-4-5-2-991-002-B01

**ON A/C A350-1000F

NOTE:

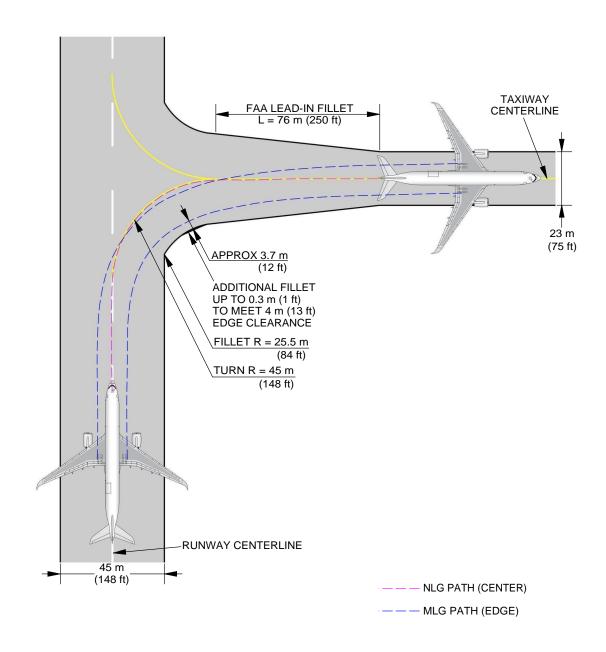

THE MLG FOLLOWS THE CENTERLINE.

11 THE NLG EDGE MARGIN DECREASES BY 0.6 m (2 ft).

P_AC_040502_1_0030001_01_01

90° Turn - Runway to Taxiway 1 of 3) 4-5-2-991-003-A01

**ON A/C A350-1000F


NOTE:

THE NLG FOLLOWS THE RH ETACS MARKER.

P_AC_040502_1_0030001_02_02

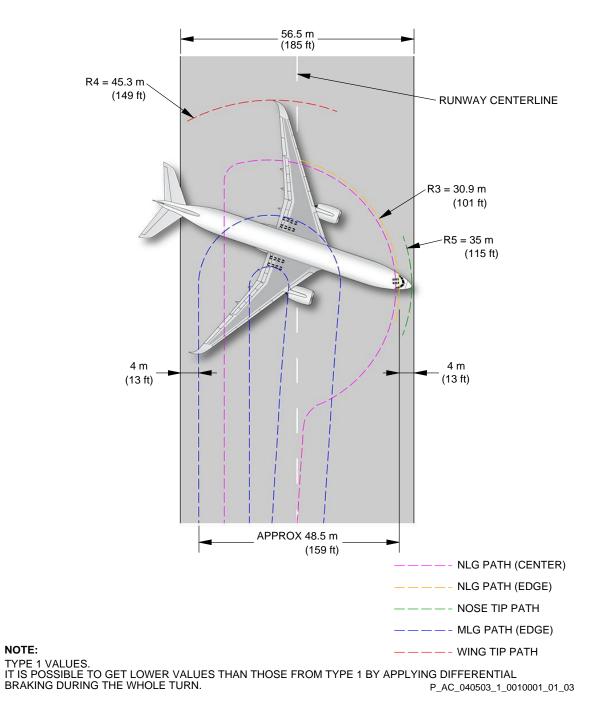
90° Turn - Runway to Taxiway 2 of 3) 4-5-2-991-003-A01

**ON A/C A350-1000F

P_AC_040502_1_0030001_03_01

90° Turn - Runway to Taxiway 3 of 3) 4-5-2-991-003-A01

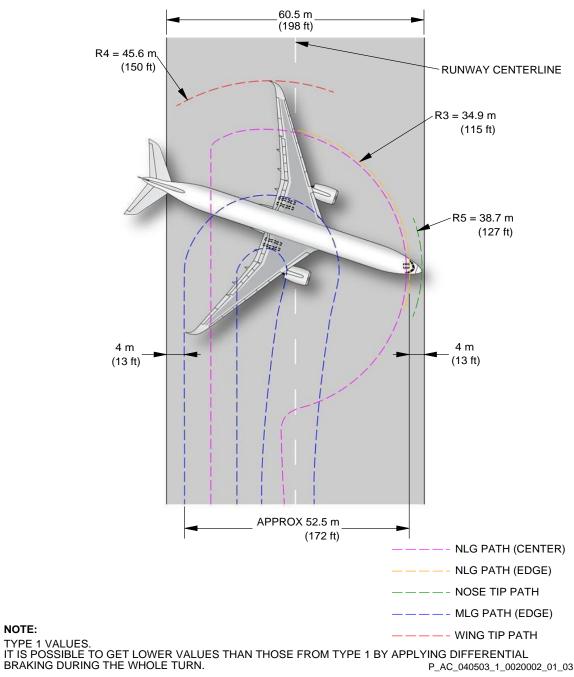
4-5-3 180° Turn on a Runway


**ON A/C A350-1000 A350-1000F A350-900

180° Turn on a Runway

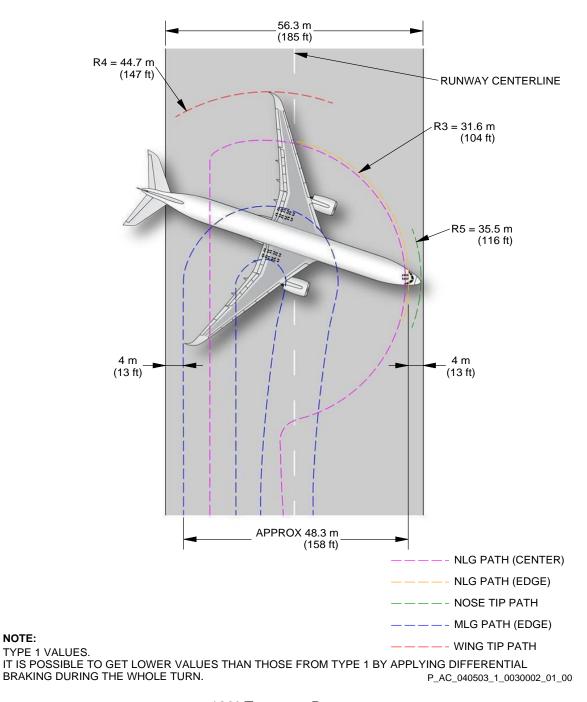
1. This section provides the 180° turn on a runway.

**ON A/C A350-900


NOTE:

180° Turn on a Runway FIGURE-4-5-3-991-001-A01

**ON A/C A350-1000

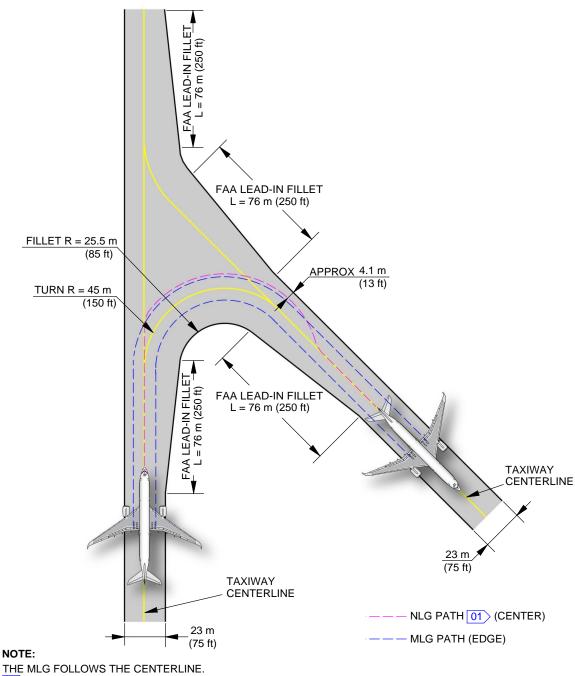

NOTE:

180° Turn on a Runway FIGURE-4-5-3-991-002-B01

**ON A/C A350-1000F

NOTE:

180° Turn on a Runway 4-5-3-991-003-B01

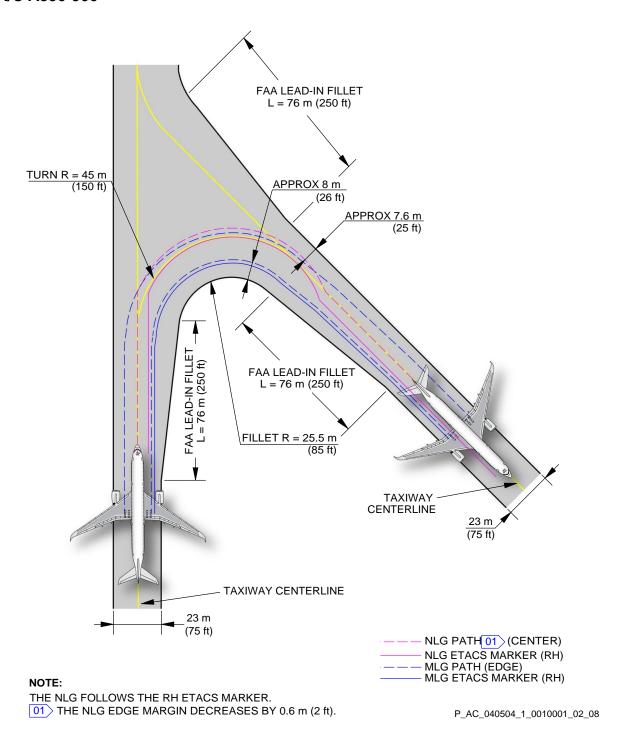

4-5-4 135° Turn - Taxiway to Taxiway

| **ON A/C A350-1000 A350-1000F A350-900

135° Turn - Taxiway to Taxiway

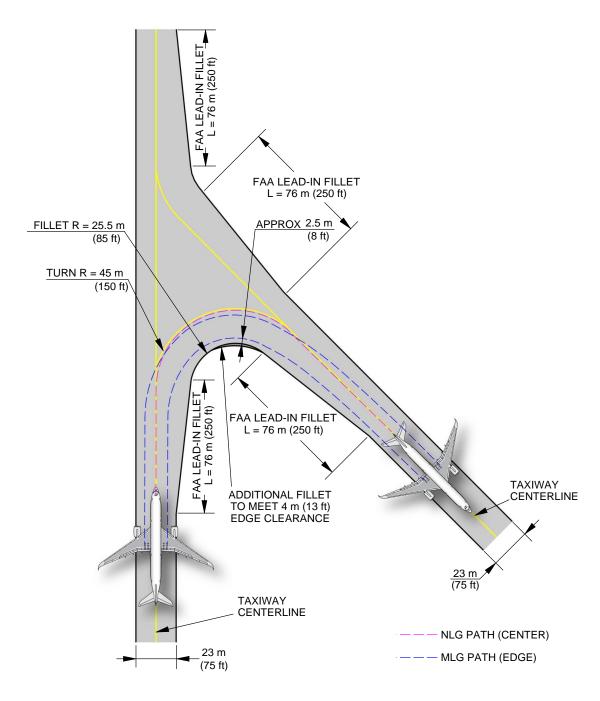
1. This section gives the 135° turn - taxiway to taxiway.

**ON A/C A350-900



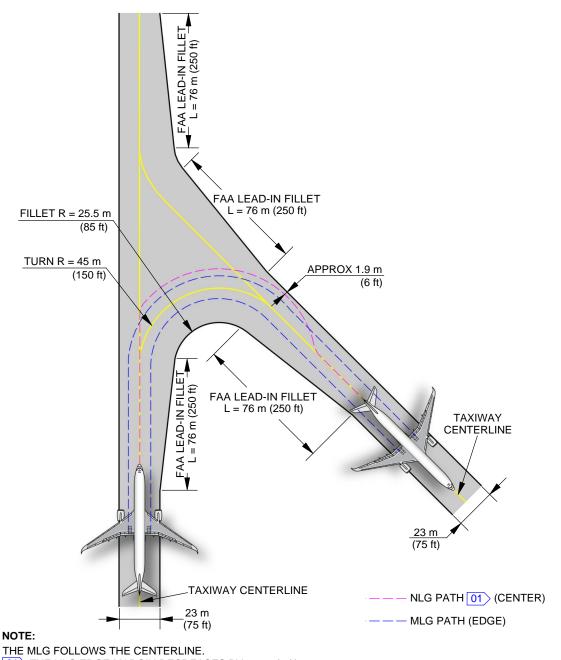
THE MLG FOLLOWS THE CENTERLINE. 01 THE NLG EDGE MARGIN DECREASES BY 0.6 m (2 ft).

P_AC_040504_1_0010001_01_06


135° Turn - Taxiway to Taxiway Oversteering Method (Sheet 1 of 3) FIGURE-4-5-4-991-001-A01

**ON A/C A350-900

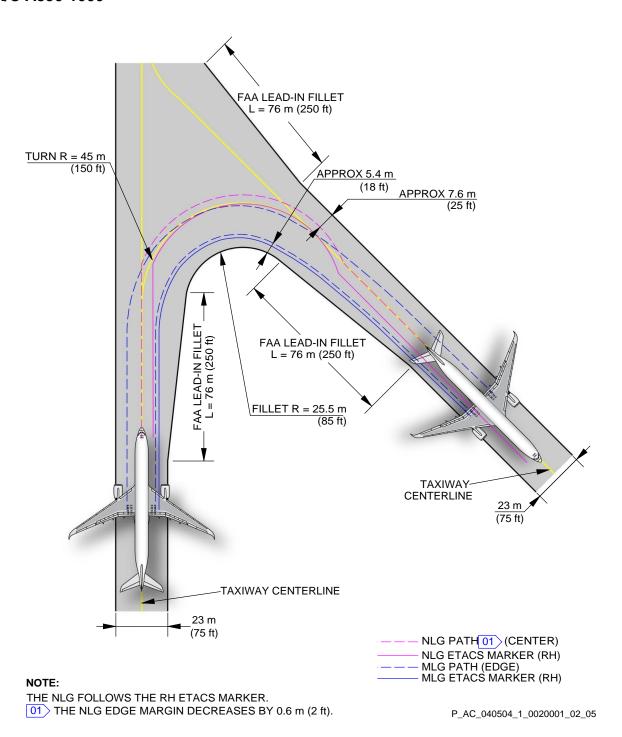
135° Turn - Taxiway to Taxiway ETACS Assisted Steering Method (Sheet 2 of 3) FIGURE-4-5-4-991-001-A01


**ON A/C A350-900

P_AC_040504_1_0010001_03_01

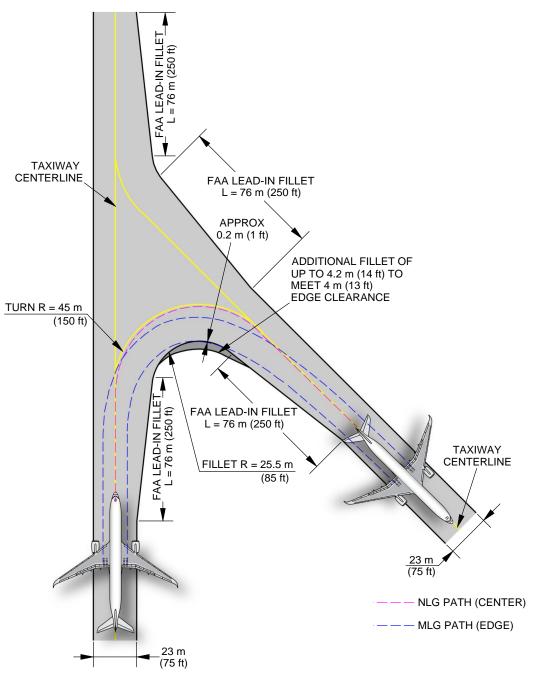
135° Turn - Taxiway to Taxiway Cockpit over Centerline Method (Sheet 3 of 3) FIGURE-4-5-4-991-001-A01

**ON A/C A350-1000



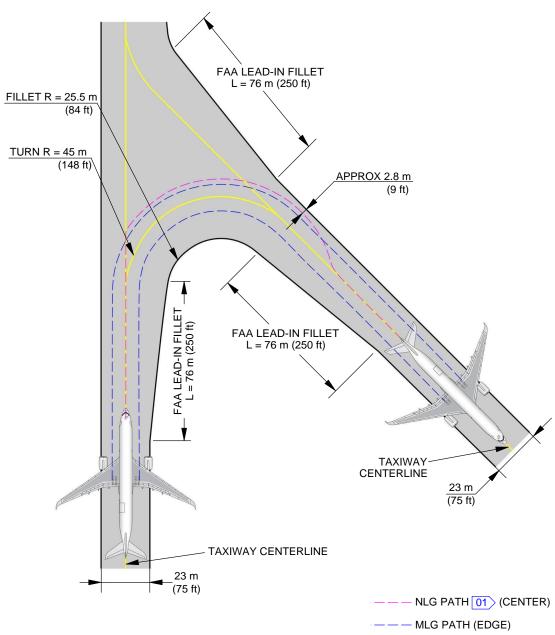
THE MLG FOLLOWS THE CENTERLINE. $\fbox{01}$ THE NLG EDGE MARGIN DECREASES BY 0.6 m (2 ft).

P_AC_040504_1_0020001_01_04


135° Turn - Taxiway to Taxiway Oversteering Method (Sheet 1 of 3) FIGURE-4-5-4-991-002-A01

**ON A/C A350-1000

135° Turn - Taxiway to Taxiway ETACS Assisted Steering Method (Sheet 2 of 3) FIGURE-4-5-4-991-002-A01

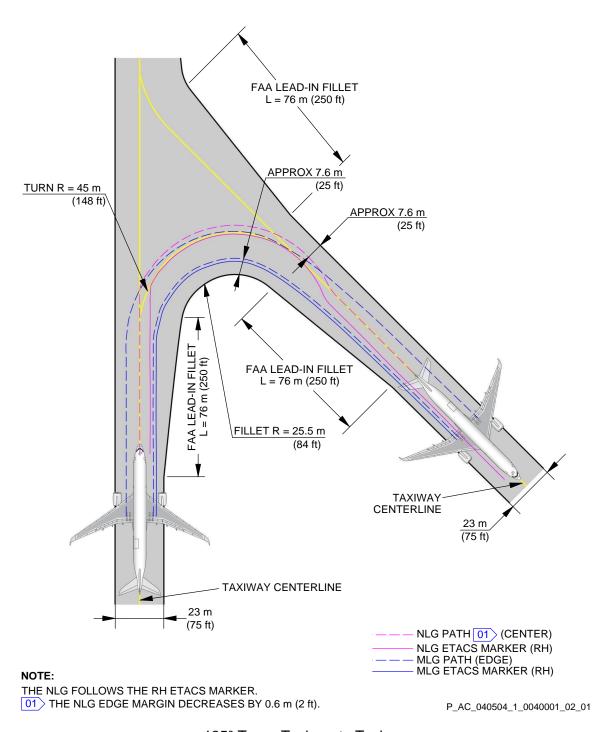

**ON A/C A350-1000

P_AC_040504_1_0020001_03_01

135° Turn - Taxiway to Taxiway Cockpit over Centerline Method (Sheet 3 of 3) FIGURE-4-5-4-991-002-A01

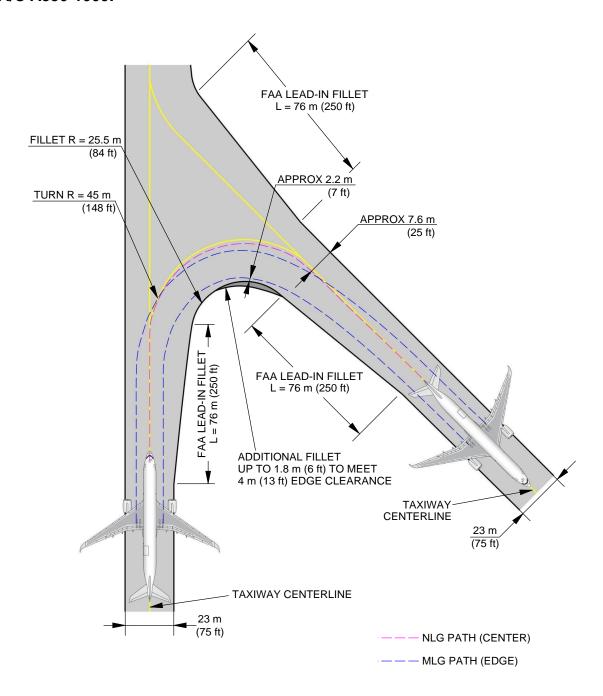
**ON A/C A350-1000F

NOTE:


THE MLG FOLLOWS THE CENTERLINE.

01 THE NLG EDGE MARGIN DECREASES BY 0.6 m (2 ft).

P_AC_040504_1_0040001_01_01


135° Turn - Taxiway to Taxiway 1 of 3) 4-5-4-991-004-A01

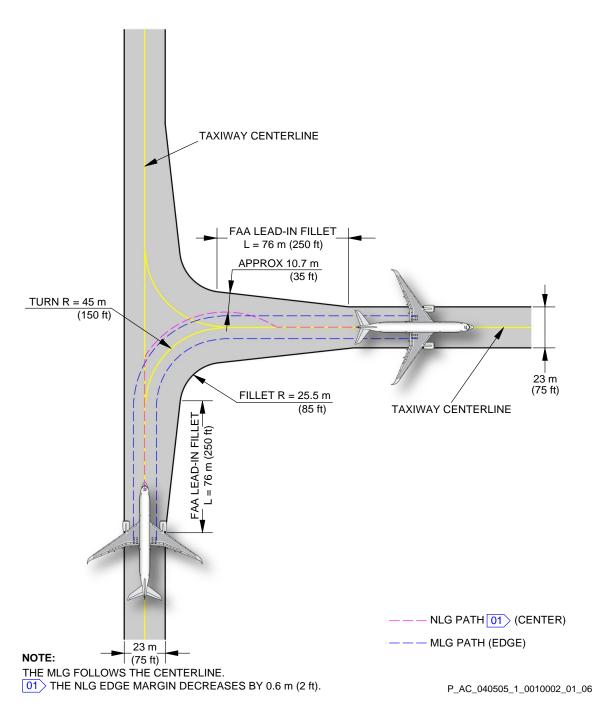
**ON A/C A350-1000F

135° Turn - Taxiway to Taxiway 2 of 3) 4-5-4-991-004-A01

**ON A/C A350-1000F

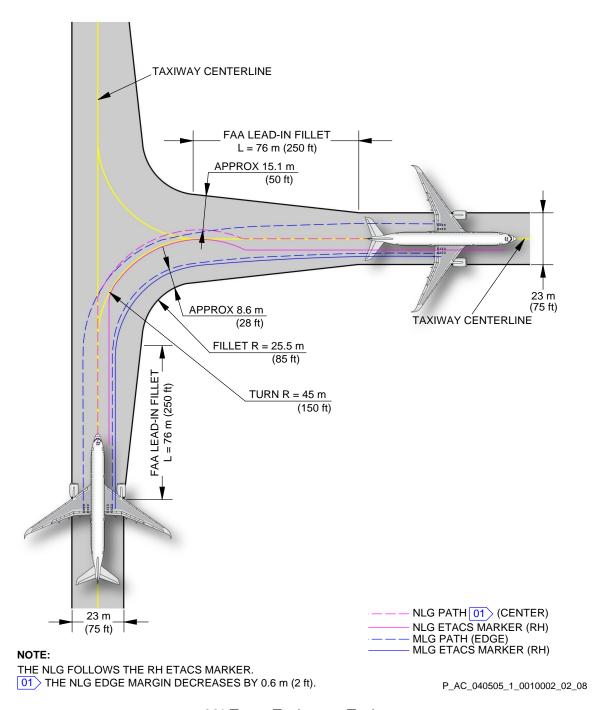
P_AC_040504_1_0040001_03_01

135° Turn - Taxiway to Taxiway 3 of 3) 4-5-4-991-004-A01

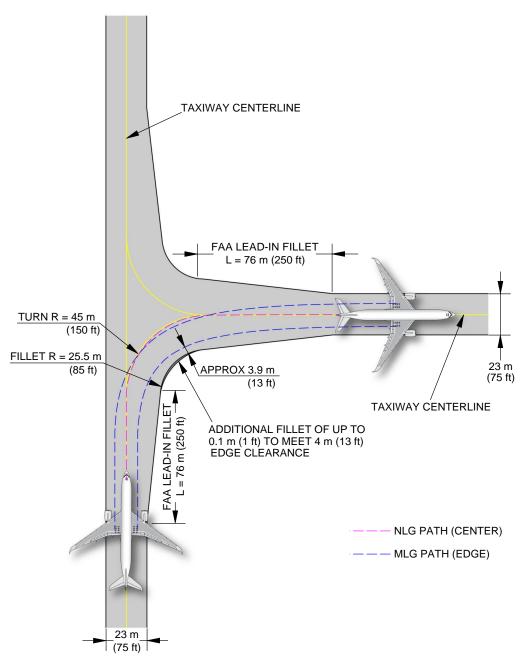

4-5-5 90° Turn - Taxiway to Taxiway

| **ON A/C A350-1000 A350-1000F A350-900

90° Turn - Taxiway to Taxiway

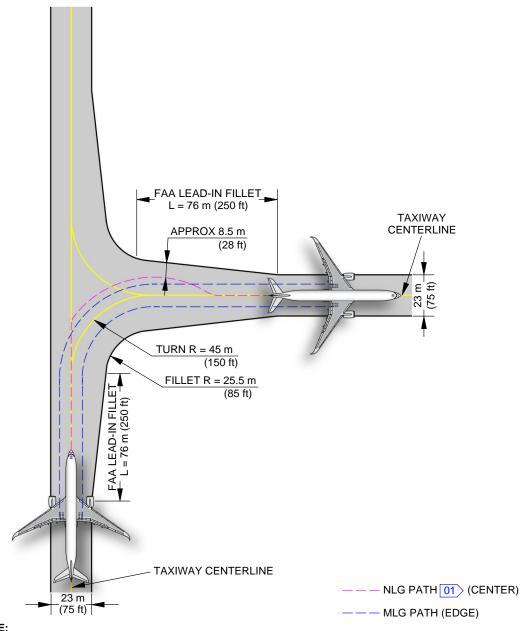

1. This section gives the 90° turn - taxiway to taxiway.

**ON A/C A350-900


90° Turn - Taxiway to Taxiway Oversteering Method (Sheet 1 of 3) FIGURE-4-5-5-991-001-B01

**ON A/C A350-900

90° Turn - Taxiway to Taxiway ETACS Assisted Steering Method (Sheet 2 of 3) FIGURE-4-5-5-991-001-B01

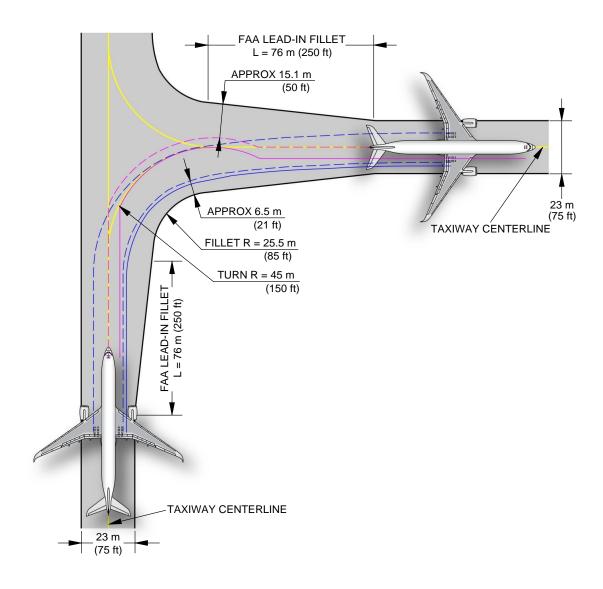

**ON A/C A350-900

P_AC_040505_1_0010002_03_01

90° Turn - Taxiway to Taxiway Cockpit over Centerline Method (Sheet 3 of 3) FIGURE-4-5-5-991-001-B01

**ON A/C A350-1000

NOTE:

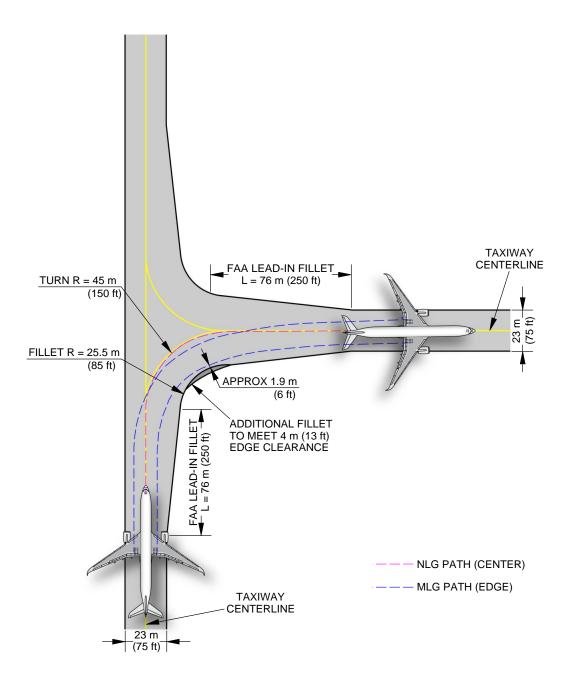

THE MLG FOLLOWS THE CENTERLINE.

11 THE NLG EDGE MARGIN DECREASES BY 0.6 m (2 ft).

P_AC_040505_1_0020001_01_04

90° Turn - Taxiway to Taxiway Oversteering Method (Sheet 1 of 3) FIGURE-4-5-5-991-002-A01

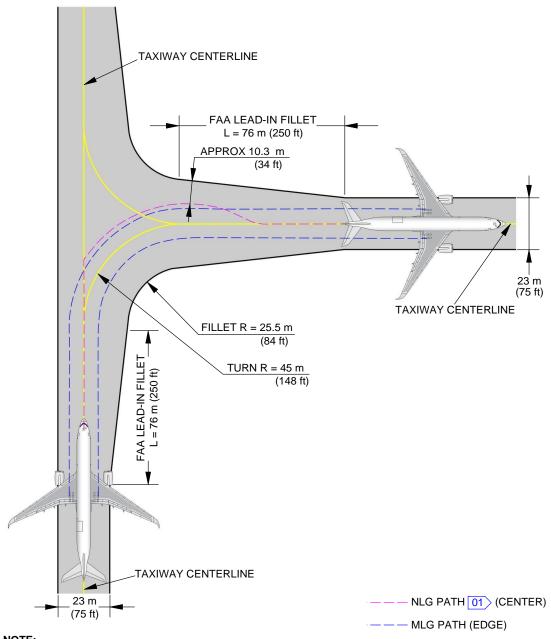
**ON A/C A350-1000


 NLG ETACS MARKER (RH)
MLG PATH (EDGE)
MLG ETACS MARKER (RH)

NLG PATH 01 (CENTER)

P_AC_040505_1_0020001_02_05

90° Turn - Taxiway to Taxiway ETACS Assisted Steering Method (Sheet 2 of 3) FIGURE-4-5-5-991-002-A01


**ON A/C A350-1000

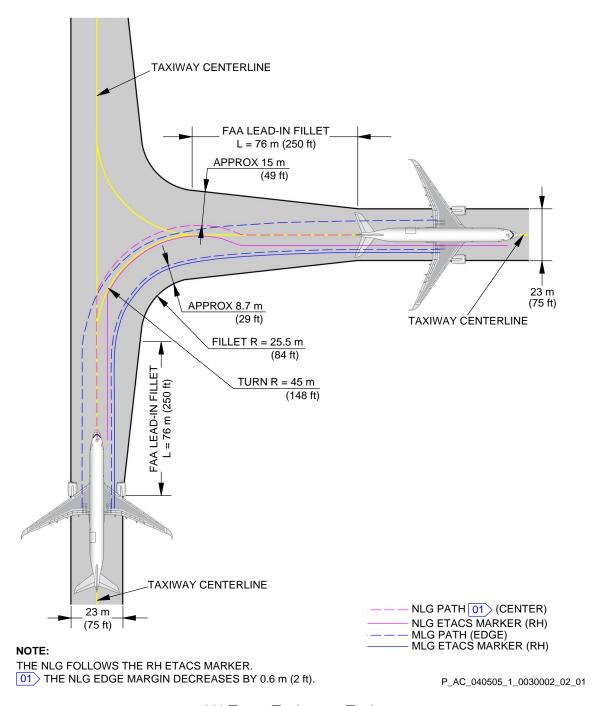
P_AC_040505_1_0020001_03_01

90° Turn - Taxiway to Taxiway Cockpit over Centerline Method (Sheet 3 of 3) FIGURE-4-5-5-991-002-A01

**ON A/C A350-1000F

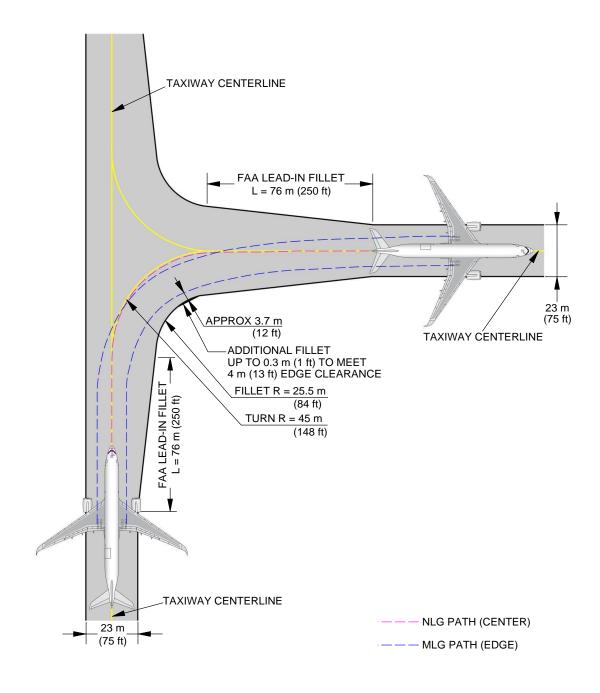
NOTE:

THE MLG FOLLOWS THE CENTERLINE.


01 THE NLG EDGE MARGIN DECREASES BY 0.6 m (2 ft).

P_AC_040505_1_0030002_01_01

90° Turn - Taxiway to Taxiway 1 of 3) 4-5-5-991-003-B01


4-5-5

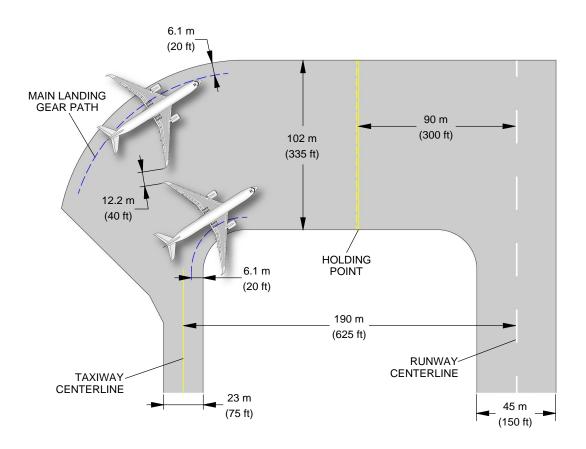
| **ON A/C A350-1000F

90° Turn - Taxiway to Taxiway 2 of 3) 4-5-5-991-003-B01

**ON A/C A350-1000F

P_AC_040505_1_0030002_03_01

90° Turn - Taxiway to Taxiway 3 of 3) 4-5-5-991-003-B01


4-6-0 Runway Holding Bay

**ON A/C A350-1000 A350-1000F A350-900

Runway Holding Bay

1. This section provides the runway holding bay.

**ON A/C A350-1000 A350-1000F A350-900

NOTE:

COORDINATE WITH USING AIRCRAFT FOR SPECIFIC PLANNED OPERATING PROCEDURES.

P_AC_040600_1_0010001_01_00

Runway Holding Bay FIGURE-4-6-0-991-001-A01

4-7-0 Minimum Line-Up Distance Corrections

**ON A/C A350-1000 A350-1000F A350-900

Minimum Line-Up Distance Corrections

1. The ground maneuvers were performed using asymmetric thrust and differential braking only to initiate the turn.

Manoeuvres of this section are calculated with turn characteristics as given in chapter 4-2-0.

TODA: Take-Off Distance Available

ASDA: Acceleration-Stop Distance Available

2. 90° Turn on Runway Entry

This section provides the minimum line-up distance correction for a 90° turn on runway entry. This maneuver consists in a 90° turn at minimum turn radius. It starts with the edge of the MLG at a distance of 4 m (13 ft.) from the taxiway edge, and finishes with the aircraft aligned on the centerline of the runway, FIGURE 4-7-0-991-001-A.

During the turn, all the clearances must meet the minimum value of 4 m (13 ft.) for this category of aircraft as recommended in ICAO Annex 14 (Ninth Edition).

3. 180° Turn on Runway Turn Pad

This section provides the minimum line-up distance correction for a 180° turn on the runway turn pad.

This maneuver consists in a 180° turn at minimum turn radius on a runway turn pad with standard ICAO geometry.

It starts with the edge of the MLG at a distance of 4 m (13 ft.) from the pavement edge, and it finishes with the aircraft aligned on the centerline of the runway, FIGURE 4-7-0-991-002-A. During the turn, all the clearances must meet the minimum value of 4 m (13 ft.) for this category of aircraft as recommended in ICAO Annex 14 (Ninth Edition).

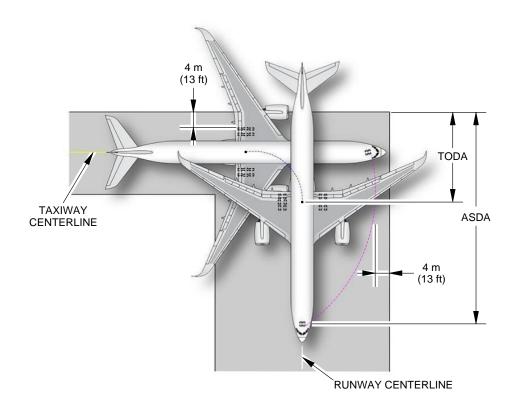
4. 180° Turn on Runway Width

This section provides the minimum line-up distance correction for a 180° turn on the runway width.

For this maneuver, the pavement width is considered to be the runway width, which is a frozen parameter (45 m (150 ft) and 60 m (200 ft)).

As per the standard operating procedures for the "180° turn on runway" (described in the Flight Crew Operating Manual), the aircraft is initially angled with respect to the runway centerline when starting the 180° turn, FIGURE 4-7-0-991-003-A.

The value of this angle depends on the aircraft type and is mentioned in the FCOM.


SA350

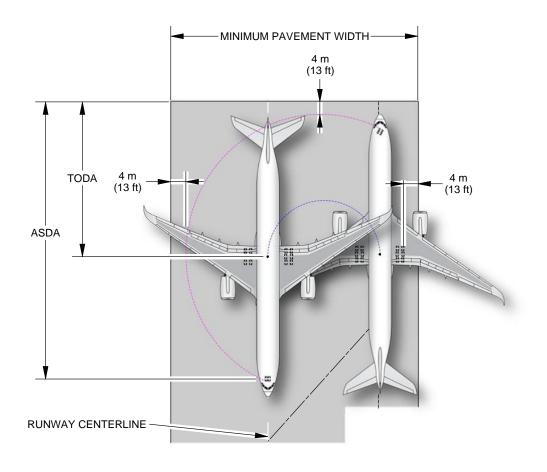
AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

During the turn, all the clearances must meet the minimum value of 4 m (13 ft.) for this category of aircraft as recommended in ICAO Annex 14 (Ninth Edition).

<u>NOTE</u>: The minimum line-up distances may need a steering angle lower than the maximum one.

**ON A/C A350-1000 A350-1000F A350-900

- --- ASDA: ACCELERATION-STOP DISTANCE AVAILABLE
- --- TODA: TAKE-OFF DISTANCE AVAILABLE

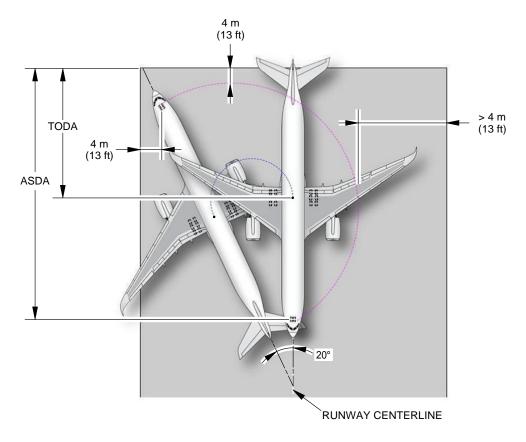

90° TURN ON RUNWAY ENTRY											
AIRCRAFT TYPE	MAX STEERING ANGLE	45 m (148 ft) WIDE RUNWAY				60 m (197 ft) WIDE RUNWAY					
		MINIMUM LINE-UP DISTANCE CORRECTION					_	LINE-UP ORRECTION			
		ON TODA ON ASDA ON TODA ON A					SDA				
A350-900	72°	24.3 m	80 ft	52.9 m	174 ft	21.3 m	70 ft	50 m	164 ft		
A350-1000	75°	30.6 m	100 ft	63.1 m	207 ft	21.5 m	71 ft	54 m	177 ft		
A350-1000F	75°	25.2 m	83 ft	54.5 m	179 ft	20.6 m	68 ft	49.9 m	164 ft		

P_AC_040700_1_0010001_01_04

4-7-0

90° Turn on Runway Entry FIGURE-4-7-0-991-001-A01

**ON A/C A350-1000 A350-1000F A350-900


- --- ASDA: ACCELERATION-STOP DISTANCE AVAILABLE
- --- TODA: TAKE-OFF DISTANCE AVAILABLE

180° TURN ON RUNWAY TURN PAD											
AIRCRAFT MAX STEERING ANGLE		45 m (148 ft) WIDE RUNWAY				60 m (197 ft) WIDE RUNWAY				REQUIRED MINIMUM	
	MINIMUM LINE-UP DISTANCE CORRECTION				MINIMUM LINE-UP DISTANCE CORRECTION				PAVEMENT WIDTH		
		ON TODA ON ASDA			ON T	ODA	ON A	SDA			
A350-900	72°	36.4 m	119 ft	65 m	213 ft	35.2 m	115 ft	63.9 m	210 ft	62.2 m	204 ft
A350-1000	75°	42.8 m	140 ft	75.3 m	247 ft	38.9 m	128 ft	71.4 m	234 ft	62.7 m	206 ft
A350-1000F	75°	37.4 m	123 ft	66.7 m	219 ft	35.6 m	117 ft	64.9 m	213 ft	60.9 m	200 ft

P_AC_040700_1_0020001_01_04

180° Turn on Runway Turn Pad FIGURE-4-7-0-991-002-A01

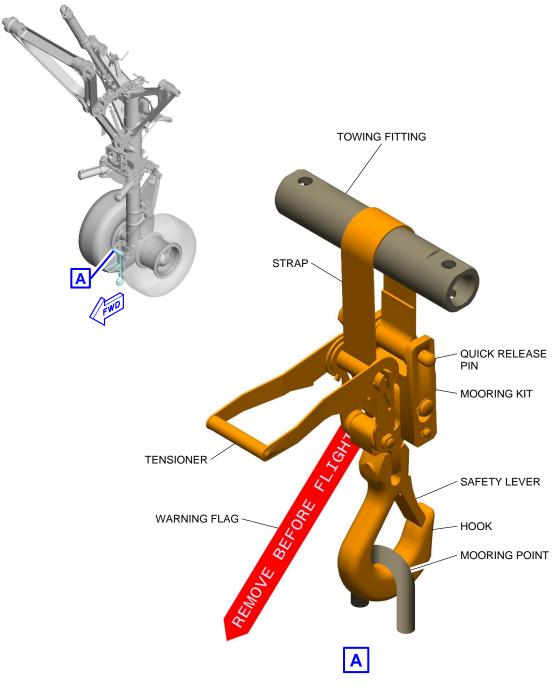
**ON A/C A350-1000 A350-1000F A350-900

- --- ASDA: ACCELERATION-STOP DISTANCE AVAILABLE
- --- TODA: TAKE-OFF DISTANCE AVAILABLE

180° TURN ON RUNWAY WIDTH								
AIRCRAFT TYPE	MAX STEERING ANGLE	45 m (WIDE R	60 m (197 ft) WIDE RUNWAY					
		MINIMUM DISTANCE C	1	_		LINE-UP DRRECTION		
		ON TODA	ON TODA ON ASDA			ON TODA ON ASDA		
A350-900	72°	NOT PC	49.2 m	161 ft	77.9 m	256 ft		
A350-1000	75°	NOT PC	NOT POSSIBLE					
A350-1000F	75°	NOT PC	48 m	157 ft	77.3 m	254 ft		

P_AC_040700_1_0030001_01_05

180° Turn on Runway Width FIGURE-4-7-0-991-003-A01


4-8-0 Aircraft Mooring

**ON A/C A350-1000 A350-1000F A350-900

Aircraft Mooring

1. This section provides information on aircraft mooring.

**ON A/C A350-1000 A350-1000F A350-900

P_AC_040800_1_0010001_01_01

Aircraft Mooring FIGURE-4-8-0-991-001-A01

TERMINAL SERVICING

5-1-0 Aircraft Servicing Arrangements

**ON A/C A350-1000 A350-1000F A350-900

<u>Aircraft Servicing Arrangements</u>

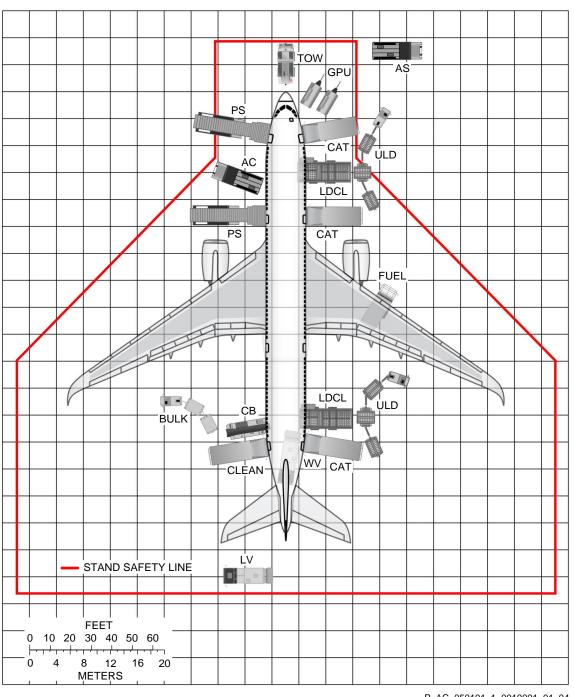
1. This section provides typical ramp layouts, showing the various GSE items in position during typical turn-round scenarios.

These ramp layouts show typical arrangements only. Each operator will have its own specific requirements/regulations for positioning and operation on the ramp.

This table provides the symbols used on servicing diagrams.

	GROUND SUPPORT EQUIPMENT
AC	AIR CONDITIONING UNIT
AS	AIR START UNIT
BULK	BULK TRAIN
CAT	CATERING TRUCK
СВ	CONVEYOR BELT
CLEAN	CLEANING TRUCK
FUEL	FUEL HYDRANT DISPENSER or TANKER
GPU	GROUND POWER UNIT
LDCL	LOWER DECK CARGO LOADER
LV	LAVATORY VEHICLE
MDCL	MAIN DECK CARGO LOADER
PBB	PASSENGER BOARDING BRIDGE
PS	PASSENGER STAIRS
TOW	TOW TRACTOR
ULD	ULD TRAIN
WV	POTABLE WATER VEHICLE

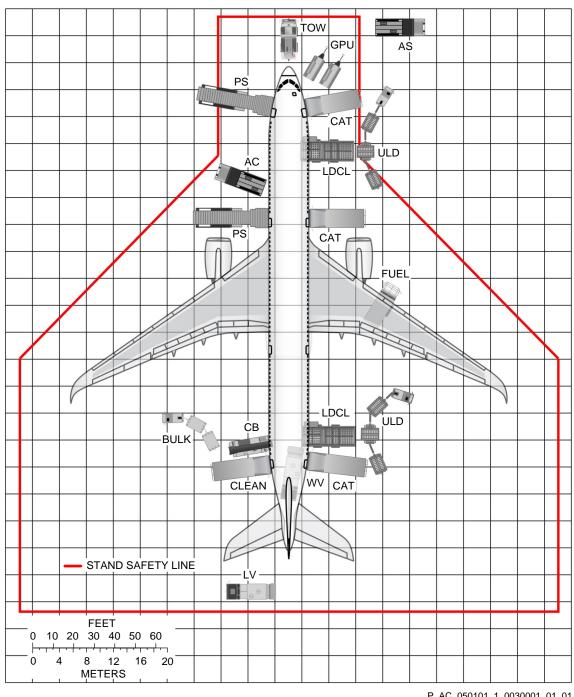
5-1-1 Typical Ramp Layout (Open Apron)


**ON A/C A350-1000 A350-1000F A350-900

Typical Ramp Layout (Open Apron)

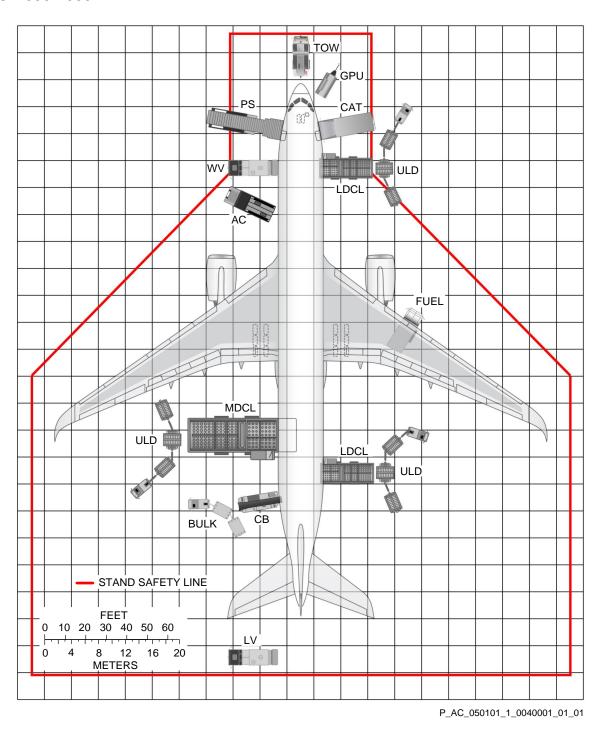
1. This section provides the typical ramp layout (Open Apron).

The Stand Safety Line delimits the Aircraft Safety Area (minimum distance of 7.5 m (24.61 ft.) from the aircraft). No vehicle must be parked in this area before complete stop of the aircraft (wheel chocks in position on landing gears).


**ON A/C A350-900

P_AC_050101_1_0010001_01_04

Typical Ramp Layout (Open Apron) FIGURE-5-1-1-991-001-A01


**ON A/C A350-1000

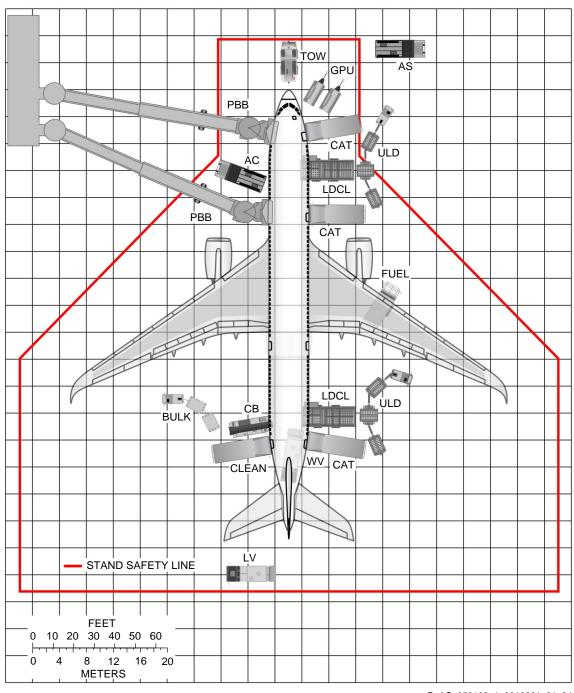
P_AC_050101_1_0030001_01_01

Typical Ramp Layout (Open Apron) FIGURE-5-1-1-991-003-A01

**ON A/C A350-1000F

Typical Ramp Layout (Open Apron) FIGURE-5-1-1-991-004-A01

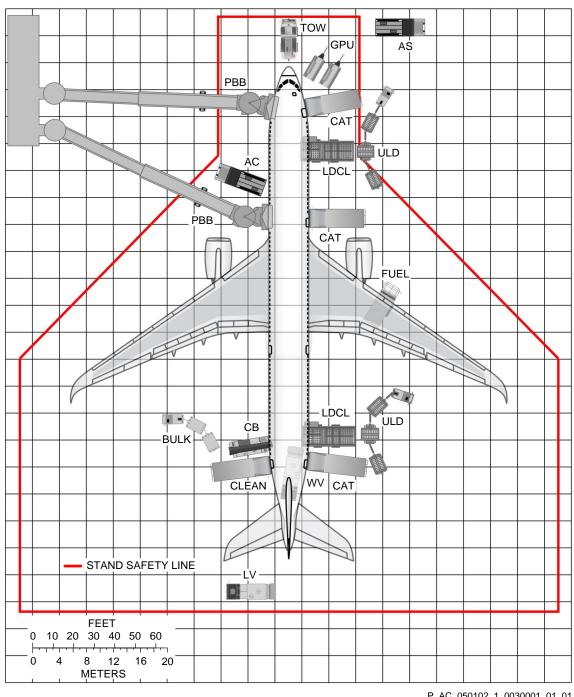
5-1-2 Typical Ramp Layout (Gate)


**ON A/C A350-1000 A350-900

Typical Ramp Layout (Gate)

1. This section provides the baseline ramp layout (gate).

The Stand Safety Line delimits the Aircraft Safety Area (minimum distance of 7.50 m (24.61 ft.) from the aircraft). No vehicle must be parked in this area before complete stop of the aircraft (wheel chocks in position on landing gears).


**ON A/C A350-900

P_AC_050102_1_0010001_01_04

Typical Ramp Layout (Gate) FIGURE-5-1-2-991-001-A01

**ON A/C A350-1000

P_AC_050102_1_0030001_01_01

Typical Ramp Layout (Gate) FIGURE-5-1-2-991-003-A01

5-2-0 Terminal Operations - Full Servicing Turn Round Time

**ON A/C A350-1000 A350-1000F A350-900

<u>Terminal Operations - Full Servicing Turn Round Time</u>

1. This section provides a typical turn round time chart showing the typical time for ramp activities during aircraft turn round.

Actual times may vary due to each operator's specific practices, resources, equipment and operating conditions.

**ON A/C A350-900

2. Assumptions used for full servicing turn round time chart

A. PASSENGER HANDLING

315 pax: 48 B/C + 267 Y/C.

All passengers deplane and board the aircraft.

2 Passenger Boarding Bridges (PBB) used at doors 1L and 2L.

Equipment positioning + opening door = +3 min.

Closing door + equipment removal = +3 min.

No Passenger with Reduced Mobility (PRM) on board.

Deplaning:

- 158 pax at door 1L
- 157 pax at door 2L
- Deplaning rate = 25 pax/min per door
- Priority deplaning for premium passengers.

Boarding:

- 158 pax at door 1L
- 157 pax at door 2L
- Boarding rate = 15 pax/min per door
- Last Pax Seating (LPS) allowance + headcounting = +4 min.

B. CARGO

2 cargo loaders + 1 belt loader.

Opening door + equipment positioning = +2.5 min.

Equipment removal + closing door = +2.5 min.

100% cargo exchange:

- FWD cargo compartment: 8 containers (LD3) + 4 (96 in) pallets
- AFT cargo compartment: 4 containers (LD3) + 4 (96 in) pallets
- Bulk compartment: 1 000 kg (2 205 lb).

Container unloading/loading times:

- Unloading = 1.2 min/container
- Loading = 1.4 min/container.

Bulk unloading/loading times:

- Unloading = 110 kg/min (243 lb/min)
- Loading = 95 kg/min (209 lb/min).

Pallet unloading/loading times:

- Unloading = 2.4 min/pallet
- Loading = 2.8 min/pallet.

<u>CAUTION</u>: MAKE SURE THAT YOU REFUEL FROM ONE SIDE OF THE AIRCRAFT AT A TIME. THIS WILL PREVENT DAMAGE TO THE AIRCRAFT FUEL SYSTEM.

C. REFUELLING

Final fuel on board: 100 000 L (26 418 USgal), 40 psi (2.76 bar), 2 hoses.

Hydrant positioning + connection = +8 min.

Disconnection + Hydrant removal = +8 min.

Refuel with pax on board allowed.

D. CLEANING

Cleaning is performed in available time.

E. CATERING

3 catering trucks for servicing galleys simultaneously at doors 1R, 2R and 4R.

Equipment positioning + opening door = +5 min.

Closing door + equipment removal = +3 min.

Full Size Trolley Equivalent (FSTE) to unload and load: 40 FSTE

- 10 FSTE at door 1R
- 7 FSTE at door 2R
- 23 FSTE at door 4R.

Time for trolley exchange = 1.5 min per FSTE.

F. GROUND HANDLING/GENERAL SERVICING

Start of operations:

- Bridges/Stairs: t0=0
- Other equipment: t = t0.

Ground Power Unit (GPU): up to 2 × 90 kVA.

Air Conditioning: up to 2 hoses.

Potable water servicing: 100% uplift, 1 060 L (280 US gal).

Waste water servicing: draining and rinsing.

Assumptions used for full servicing turn round time chart for ULR

A. PASSENGER HANDLING

173 pax: 80 B/C + 93 Y/C.

All passengers deplane and board the aircraft.

2 PBB used at doors 1L and 2L.

Equipment positioning + opening door = +3 min.

Closing door + equipment removal = +3 min.

No PRM on board.

Deplaning:

- 87 pax at door 1L
- 86 pax at door 2L
- Deplaning rate = 25 pax/min per door
- Priority deplaning for premium passengers.

Boarding:

- 87 pax at door 1L
- 86 pax at door 2L
- Boarding rate = 15 pax/min per door
- LPS allowance + headcounting = +4 min.

B. CARGO

1 cargo loader + 1 belt loader.

Opening door + equipment positioning = +2.5 min.

Equipment removal + closing door = +2.5 min.

100% cargo exchange:

- FWD cargo compartment: Forward cargo hold inoperative
- AFT cargo compartment: 16 containers (LD3) or 5 pallets
- Bulk compartment: 1 000 kg (2 205 lb).

Container unloading/loading times:

- Unloading = 1.2 min/container
- Loading = 1.4 min/container.

Bulk unloading/loading times:

- Unloading = 110 kg/min (243 lb/min).
- Loading = 95 kg/min (209 lb/min).

Pallet unloading/loading times:

- Unloading = 2.4 min/pallet
- Loading = 2.8 min/pallet.

<u>CAUTION</u>: MAKE SURE THAT YOU REFUEL FROM ONE SIDE OF THE AIRCRAFT AT A TIME. THIS WILL PREVENT DAMAGE TO THE AIRCRAFT FUEL SYSTEM.

5-2-0

C. REFUELLING

Final fuel on board: 165 000 L (43 589 USgal), 40 psi (2.76 bar), 2 hoses.

Hydrant positioning + connection = +8 min.

Disconnection + Hydrant removal = +8 min.

D. CLEANING

Cleaning is performed in available time.

E. CATERING

3 catering trucks for servicing galleys simultaneously at doors 1R, 2R and 4R.

Equipment positioning + opening door = +5 min.

Closing door + equipment removal = +3 min.

FSTE to unload and load: 59.5 FSTE

- 16.5 FSTE at door 1R
- 19 FSTE at door 2R
- 4 FSTE at door 3R
- 20 FSTE at door 4R.

Time for trolley exchange = 1.5 min per FSTE.

F. GROUND HANDLING/GENERAL SERVICING

Start of operations:

- Bridges/Stairs: t0=0
- Other equipment: t = t0.

(GPU: up to 2×90 kVA.

Air Conditioning: up to 2 hoses.

Waste tank, 550 L (145 USgal).

Potable water servicing: 100% uplift, 750 L (198 USgal).

**ON A/C A350-1000

4. Assumptions used for full servicing turn round time chart

A. PASSENGER HANDLING

369 pax: 54 B/C + 315 Y/C.

All passengers deplane and board the aircraft.

2 Passenger Boarding Bridges (PBB) used at doors 1L and 2L.

Equipment positioning + opening door = +3 min.

Closing door + equipment removal = +3 min.

No Passenger with Reduced Mobility (PRM) on board.

Deplaning:

- 184 pax at door 1L

5-2-0

- 185 pax at door 2L
- Deplaning rate = 25 pax/min per door
- Priority deplaning for premium passengers.

Boarding:

- 54 pax at door 1L
- 315 pax at door 2L
- Boarding rate = 15 pax/min per door
- Last Pax Seating (LPS) allowance + headcounting = +4 min.

B. CARGO

2 cargo loaders + 1 belt loader.

Opening door + equipment positioning = +2.5 min.

Equipment removal + closing door = +2.5 min.

100% cargo exchange:

- FWD cargo compartment: 6 containers (LD3) + 6 (96 in) pallets
- AFT cargo compartment: 14 containers (LD3) + 2 (96 in) pallets
- Bulk compartment: 1 000 kg (2 205 lb).

Container unloading/loading times:

- Unloading = 1.2 min/container
- Loading = 1.4 min/container.

Bulk unloading/loading times:

- Unloading = 110 kg/min (243 lb/min).
- Loading = 95 kg/min (209 lb/min).

Pallet unloading/loading times:

- Unloading = 2.4 min/pallet
- Loading = 2.8 min/pallet.

<u>CAUTION</u>: MAKE SURE THAT YOU REFUEL FROM ONE SIDE OF THE AIRCRAFT AT A TIME. THIS WILL PREVENT DAMAGE TO THE AIRCRAFT FUEL SYSTEM.

C. REFUELLING

Final fuel on board: 100 000 L (26 418 USgal), 40 psi (2.76 bar), 2 hoses.

Hydrant positioning + connection = +8 min.

Disconnection + Hydrant removal = +8 min.

Refuel with pax on board allowed.

D. CLEANING

Cleaning is performed in available time.

E. CATERING

3 catering trucks for servicing galleys simultaneously at doors 1R, 2R and 4R. Equipment positioning + opening door = +5 min.

Closing door + equipment removal = +3 min.

Full Size Trolley Equivalent (FSTE) to unload and load: 45 FSTE

- 12 FSTE at door 1R
- 8 FSTE at door 2R
- 4 FSTE at door 3R (Stowage area)
- 21 FSTE at door 4R.

Time for trolley exchange = 1.5 min per FSTE.

F. GROUND HANDLING/GENERAL SERVICING

Start of operations:

- Bridges/Stairs: t0=0
- Other equipment: t = t0.

Ground Power Unit (GPU): up to 2 × 90 kVA.

Air Conditioning: up to 2 hoses.

Potable water servicing: 100% uplift, 1 060 L (280 USgal).

Waste water servicing: draining and rinsing.

**ON A/C A350-1000F

5. Assumptions used for full servicing turn round time chart

A. CARGO

4 Couriers (STD layout).

Stairs positioned at door 1L for deplaning and boarding.

2 lower deck cargo loaders + 1 main deck cargo loader + 1 belt loader.

Opening door + equipment positioning = +2.5 min.

Equipment removal + closing door= +2.5 min.

100% cargo exchange.

Main deck cargo compartment:

- 30 containers (88" X 125").

Lower deck cargo compartments:

- FWD cargo compartment: 6 pallets
- AFT cargo compartment: 6 pallets
- Bulk compartment: 500 kg (1 102 lb).

Container unloading/loading times:

- Unloading = 1.2 min/container
- Loading = 1.4 min/container.

Bulk unloading/loading times:

- Unloading = 110 kg/min (243 lb/min)
- Loading = 95 kg/min (209 lb/min).

Pallet unloading/loading times:

- Unloading = 2.4 min/pallet
- Loading = 2.8 min/pallet.

<u>CAUTION</u>: MAKE SURE THAT YOU REFUEL FROM ONE SIDE OF THE AIRCRAFT AT A TIME. THIS WILL PREVENT DAMAGE TO THE AIRCRAFT FUEL SYSTEM.

B. REFUELING

Final fuel on board: 100000 L (26417.68 USgal), 50 psi (3.45 bar), 2 hoses.

Hydrant positioning + connection = +8 min.

Disconnection + Hydrant removal = +8 min.

C. CLEANING

Cleaning of the courier area is performed in available time.

D. CATERING

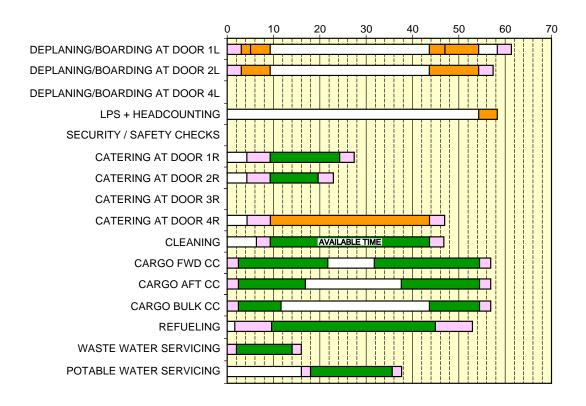
Catering of galley (if installed) is performed through door 1L (standard units only) and in available time.

E. GROUND HANDLING/GENERAL SERVICING

Start of operations:

- Stairs: t0 = 0

- Other equipment: t = t0.


Ground Power Unit (GPU): up to 2 x 90 kVA.

Air Conditioning: up to 2 hoses.

Waste water servicing: draining and rinsing.

Potable water servicing: 100% uplift, 100 L (26 USgal).

TRT: 61 min

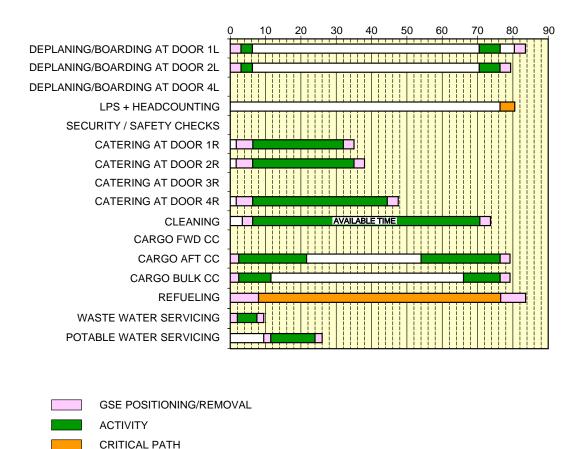


GSE POSITIONING/REMOVAL
ACTIVITY
CRITICAL PATH

P_AC_050200_1_0010001_01_04

Full Servicing Turn Round Time Chart FIGURE-5-2-0-991-001-A01

TRT: 70 min

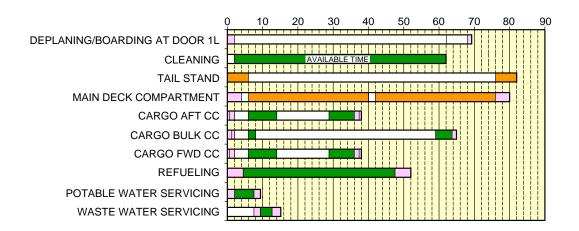


GSE POSITIONING/REMOVAL
ACTIVITY
CRITICAL PATH

P_AC_050200_1_0040001_01_01

Full Servicing Turn Round Time Chart FIGURE-5-2-0-991-004-A01

TRT: 83 min



P_AC_050200_1_0050001_01_00

Full Servicing Turn Round Time Chart (ULR) FIGURE-5-2-0-991-005-A01

**ON A/C A350-1000F

TRT: 82 min

GSE POSITIONING/REMOVAL
ACTIVITY
CRITICAL PATH

P_AC_050200_1_0060001_01_00

Full Servicing Turn Round Time Chart FIGURE-5-2-0-991-006-A01

5-3-0 Terminal Operations - Transit Turn Round Time

**ON A/C A350-1000 A350-900

Terminal Operations - Transit Turn Round Time

1. This section gives a typical turn round time chart showing the typical time for ramp activities during aircraft turn round.

Actual times may change because of each operator's specific practices, resources, equipment and operating conditions.

**ON A/C A350-900

2. Assumptions used for transit turn round time chart

A. PASSENGER HANDLING

315 pax: 48 B/C + 267 Y/C.

50% passengers deplane and board the aircraft.

1 Passenger Boarding Bridge (PBB) used at door 1L.

Equipment positioning + opening door = +3 min.

Closing door + equipment removal = +3 min.

No Passenger with Reduced Mobility (PRM) on board.

Deplaning:

- 158 pax at door 1L
- Deplaning rate = 25 pax/min per door.

Boarding:

- 158 pax at door 1L
- Boarding rate = 15 pax/min per door
- Last Pax Seating (LPS) allowance + headcounting = + 4 min.

B. CARGO

2 cargo loaders + 1 belt loader.

Opening door + equipment positioning = +2.5 min.

Equipment removal + closing door = +2.5 min.

50% cargo exchange:

- FWD cargo compartment: 4 containers (LD3) + 2 (96 in) pallets
- AFT cargo compartment: 2 containers (LD3) + 2 (96 in) pallets
- Bulk compartment: 500 kg (1 102 lb).

Container unloading/loading times:

- Unloading = 1.2 min/container
- Loading = 1.4 min/container.

Bulk unloading/loading times:

- Unloading = 110 kg/min (243 lb/min)
- Loading = 95 kg/min (209 lb/min).

Pallet unloading/loading times:

- Unloading = 2.4 min/pallet
- Loading = 2.6 min/pallet.

C. REFUELING

No refueling.

D. CLEANING

Cleaning is performed in available time.

E. CATERING

One catering truck for servicing the galleys as required.

F. GROUND HANDLING/GENERAL SERVICING

Start of operations:

- Bridges: t0 = 0
- Other equipment: t = t0.

Ground Power Unit (GPU): up to 2 × 90 kVA.

Air conditioning: up to 2 hoses. No potable water servicing.

No waste water servicing.

**ON A/C A350-1000

3. Assumptions used for transit turn round time chart

A. PASSENGER HANDLING

369 pax: 54 B/C + 315 Y/C.

50% passengers deplane and board the aircraft.

1 Passenger Boarding Bridge (PBB) used at door 1L.

Equipment positioning + opening door = +3 min.

Closing door + equipment removal = +3 min.

No Passenger with Reduced Mobility (PRM) on board.

Deplaning:

- 184 pax at door 1L
- Deplaning rate = 25 pax/min per door.

Boarding:

- 184 pax at door 1L
- Boarding rate = 15 pax/min per door
- Last Pax Seating (LPS) allowance + headcounting = + 4 min.

B. CARGO

2 cargo loaders + 1 belt loader.

Opening door + equipment positioning = +2.5 min.

Equipment removal + closing door = +2.5 min.

50% cargo exchange:

- FWD cargo compartment: 3 containers (LD3) + 3 (96 in) pallets
- AFT cargo compartment: 7 containers (LD3) + 1 (96 in) pallets
- Bulk compartment: 500 kg (1 102 lb).

Container unloading/loading times:

- Unloading = 1.2 min/container
- Loading = 1.4 min/container.

Bulk unloading/loading times:

- Unloading = 110 kg/min (243 lb/min).
- Loading = 95 kg/min (209 lb/min).

Pallet unloading/loading times:

- Unloading = 2.4 min/pallet
- Loading = 2.6 min/pallet.

C. REFUELING

No refueling.

D. CLEANING

Cleaning is performed in available time.

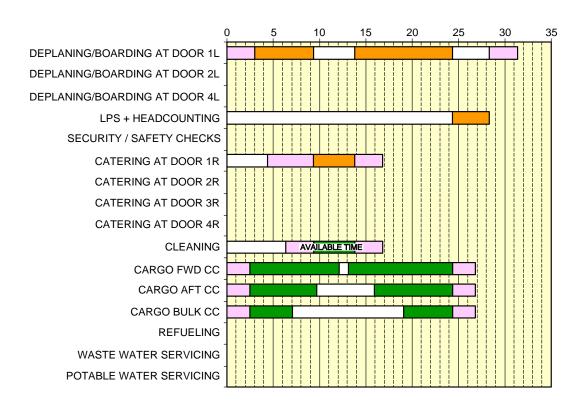
E. CATERING

One catering truck for servicing the galleys as required.

F. GROUND HANDLING/GENERAL SERVICING

Start of operations:

- Bridges: t0 = 0
- Other equipment: t = t0.

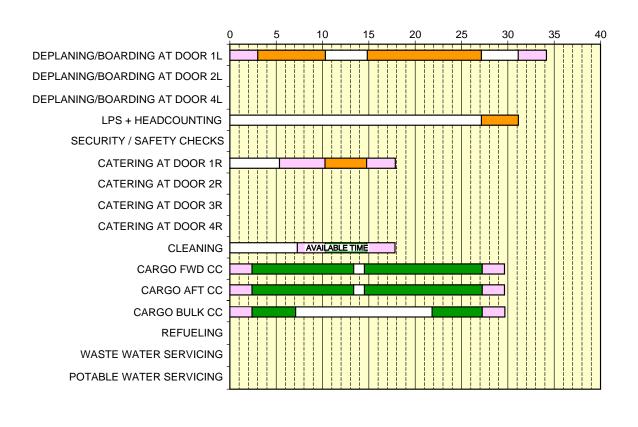

Ground Power Unit (GPU): up to 2 x 90 kVA.

Air conditioning: up to 2 hoses.

Potable water servicing: 25% uplift, 265 L (70 USgal).

Waste water servicing: draining and rinsing.

TRT: 31 min


GSE POSITIONING/REMOVAL
ACTIVITY
CRITICAL PATH

P_AC_050300_1_0010002_01_04

Transit Turn Round Time Chart FIGURE-5-3-0-991-001-B01

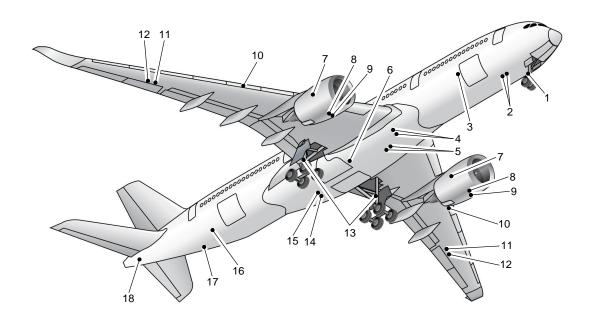
**ON A/C A350-1000

TRT: 34 min

GSE POSITIONING/REMOVAL
ACTIVITY
CRITICAL PATH

P_AC_050300_1_0020001_01_01

Transit Turn Round Time Chart FIGURE-5-3-0-991-002-A01

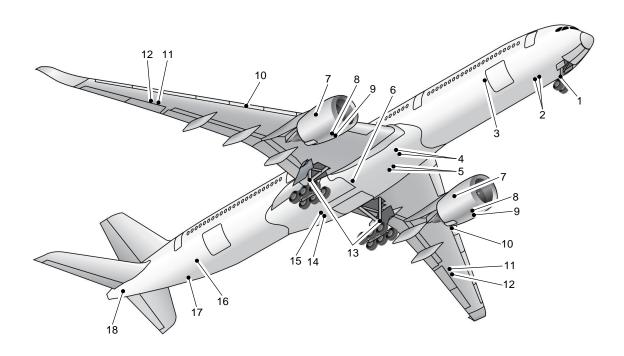

5-4-0 Ground Service Connections Layout

**ON A/C A350-1000 A350-1000F A350-900

Ground Service Connections Layout

1. This section provides the ground service connections layout.

**ON A/C A350-900

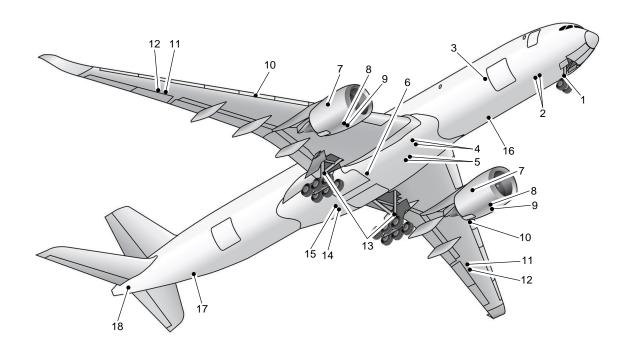

- 1 NLG GROUNDING (EARTHING) POINT
- 2 GROUND ELECTRICAL POWER CONNECTORS
- 3 OXYGEN SERVICING
- 4 LOW PRESSURE AIR PRE-CONDITIONING
- 5 HIGH PRESSURE AIR PRE-CONDITIONING 6 YELLOW HYDRAULIC-SYSTEM SERVICE PANEL
- 7 ENGINE OIL SERVICING
- 8 STARTER OIL SERVICING
- 9 VFG OIL SERVICING

- 10 REFUEL/DEFUEL COUPLINGS (OPTIONAL-LH WING)
- 11 OVERPRESSURE PRÓTECTOR
- 12 NACA FLAME ARRESTOR
- 13 MLG GROUNDING (EARTHING) POINT
- 14 GREEN HYDRAULIC-SYSTEM SERVICE PANEL
- 15 REFUEL/DEFUEL CONTROL PANEL
- 16 POTABLE WATER SERVICE PANEL
- 17 WASTE WATER SERVICE PANEL
- 18 APU OIL SERVICING

P_AC_050400_1_0010001_01_03

Ground Service Connections Layout FIGURE-5-4-0-991-001-A01

**ON A/C A350-1000


- 1 NLG GROUNDING (EARTHING) POINT
- 2 GROUND ELECTRICAL POWER CONNECTORS
- 3 OXYGEN SERVICING
- 4 LOW PRESSURE AIR PRE-CONDITIONING
- 5 HIGH PRESSURE AIR PRE-CONDITIONING 6 YELLOW HYDRAULIC-SYSTEM SERVICE PANEL
- 7 ENGINE OIL SERVICING
- 8 STARTER OIL SERVICING
- 9 VFG OIL SERVICING

- 10 REFUEL/DEFUEL COUPLINGS (OPTIONAL-LH WING)
- 11 OVERPRESSURE PRÓTECTOR
- 12 NACA FLAME ARRESTOR
- 13 MLG GROUNDING (EARTHING) POINT
- 14 GREEN HYDRAULIC-SYSTEM SERVICE PANEL
- 15 REFUEL/DEFUEL CONTROL PANEL
- 16 POTABLE WATER SERVICE PANEL
- 17 WASTE WATER SERVICE PANEL
- 18 APU OIL SERVICING

P_AC_050400_1_0020001_01_00

Ground Service Connections Layout FIGURE-5-4-0-991-002-A01

**ON A/C A350-1000F

- 1 NLG GROUNDING (EARTHING) POINT
- 2 GROUND ELECTRICAL POWER CONNECTORS
- 3 OXYGEN SERVICING
- 4 LOW PRESSURE AIR PRE-CONDITIONING
- 5 HIGH PRESSURE AIR PRE-CONDITIONING 6 YELLOW HYDRAULIC-SYSTEM SERVICE PANEL
- 7 ENGINE OIL SERVICING
- 8 STARTER OIL SERVICING
- 9 VFG OIL SERVICING

- 10 REFUEL/DEFUEL COUPLINGS (OPTIONAL-LH WING)
- 11 OVERPRESSURE PROTECTOR
- 12 NACA FLAME ARRESTOR
- 13 MLG GROUNDING (EARTHING) POINT 14 GREEN HYDRAULIC-SYSTEM SERVICE PANEL
- 15 REFUEL/DEFUEL CONTROL PANEL
- 16 POTABLE WATER SERVICE PANEL
- 17 WASTE WATER SERVICE PANEL
- 18 APU OIL SERVICING

P_AC_050400_1_0030001_01_00

Ground Service Connections Layout FIGURE-5-4-0-991-003-A01

5-4-1 Grounding (Earthing) Points

**ON A/C A350-1000 A350-1000F A350-900

Grounding (Earthing) Points

**ON A/C A350-900

1. Grounding (Earthing) Point Locations

NOTE: The mean height from ground in the below table may change according to the CG position and aircraft weight.

		DISTANCE			
	AFT OF NOSE	FROM AIRCRAF	T CENTERLINE	MEAN HEIGHT	
	AFIOFNOSE	LH SIDE	RH SIDE	FROM GROUND	
On Nose Landing	4.42 m		0.07 m	1.80 m	
Gear leg	(14.50 ft.)		(0.23 ft.)	(5.91 ft.)	
On left Main	32.95 m	5.59 m		1.55 m	
Landing Gear leg	(108.10 ft.)	(18.34 ft.)		(5.09 ft.)	
On right Main	32.95 m		5.59 m	1.55 m	
Landing Gear leg	(108.10 ft.)		(18.34 ft.)	(5.09 ft.)	

- A. The grounding (earthing) stud on each landing gear leg is designed for use with a clip-on connector (such as an Appleton TGR).
- B. The grounding (earthing) studs are used to connect the aircraft to an approved ground (earth) connection on the ramp or in the hangar for:
 - Refuel/defuel operations
 - Maintenance operations
 - Bad weather conditions.

<u>NOTE</u>: In all other conditions, the electrostatic discharge through the tire is sufficient.

**ON A/C A350-1000

2. Grounding (Earthing) Point Locations

NOTE: The mean height from ground in the below table may change according to the CG position and aircraft weight.

	DISTANCE				
	AFT OF NOSE	FROM AIRCRAF	T CENTERLINE	MEAN HEIGHT	
	AFIOFNOSE	LH SIDE	RH SIDE	FROM GROUND	
On Nose Landing	4.42 m		0.07 m	1.80 m	
Gear leg	(14.50 ft.)		(0.23 ft.)	(5.91 ft.)	
On left Main	36.75 m	5.59 m		1.55 m	
Landing Gear leg	(120.57 ft.)	(18.34 ft.)		(5.09 ft.)	
On right Main	36.75 m		5.59 m	1.55 m	
Landing Gear leg	(120.57 ft.)		(18.34 ft.)	(5.09 ft.)	

- A. The grounding (earthing) stud on each landing gear leg is designed for use with a clip-on connector (such as an Appleton TGR).
- B. The grounding (earthing) studs are used to connect the aircraft to an approved ground (earth) connection on the ramp or in the hangar for:
 - Refuel/defuel operations
 - Maintenance operations
 - Bad weather conditions.

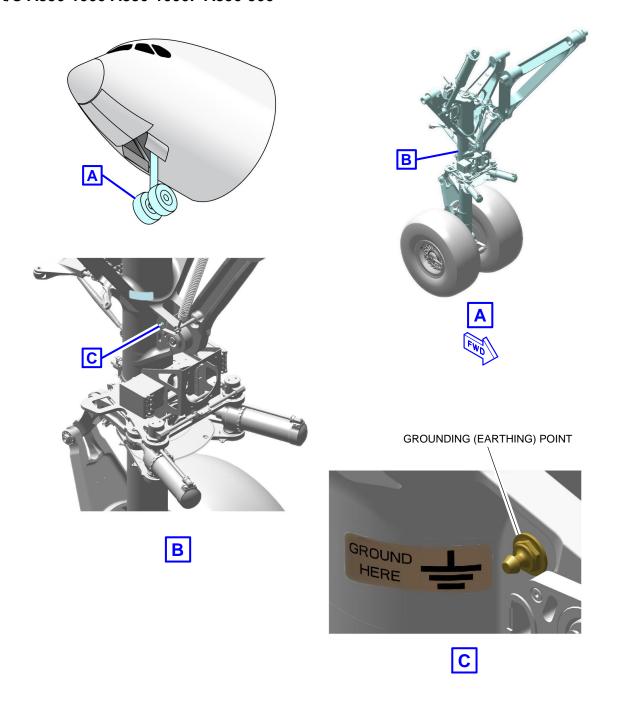
<u>NOTE</u>: In all other conditions, the electrostatic discharge through the tire is sufficient.

**ON A/C A350-1000F

Grounding (Earthing) Point Locations

		DISTANCE			
	AFT OF NOSE	FROM AIRCRAF	FROM AIRCRAFT CENTERLINE		
	AFTOFNOSE	LH SIDE	RH SIDE	FROM GROUND	
On Nose Landing	4.42 m		0.07 m	1.80 m	
Gear leg	(14.50 ft.)		(0.23 ft.)	(5.91 ft.)	
On left Main	33.58 m	5.59 m		1.55 m	
Landing Gear leg	(110.17 ft.)	(18.34 ft.)		(5.09 ft.)	

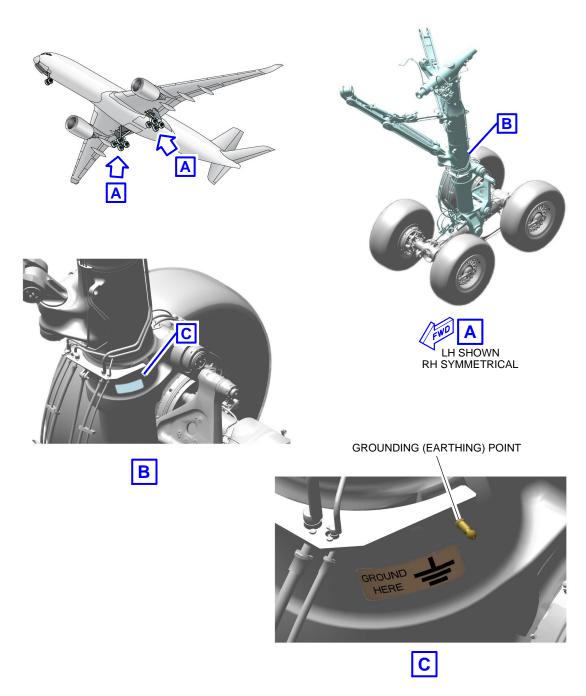
	DISTANCE			
	AFT OF NOSE	FROM AIRCRAFT CENTERLINE		MEAN HEIGHT
	ALL OLINOSE	LH SIDE	RH SIDE	FROM GROUND
On right Main	33.58 m		5.59 m	1.55 m
Landing Gear leg	(110.17 ft.)		(18.34 ft.)	(5.09 ft.)


- A. The grounding (earthing) stud on each landing gear leg is designed for use with a clip-on connector (such as an Appleton TGR).
- B. The grounding (earthing) studs are used to connect the aircraft to an approved ground (earth) connection on the ramp or in the hangar for:
 - Refuel/defuel operations
 - Maintenance operations
 - Bad weather conditions.

<u>NOTE</u>: In all other conditions, the electrostatic discharge through the tire is sufficient.

5-4-1

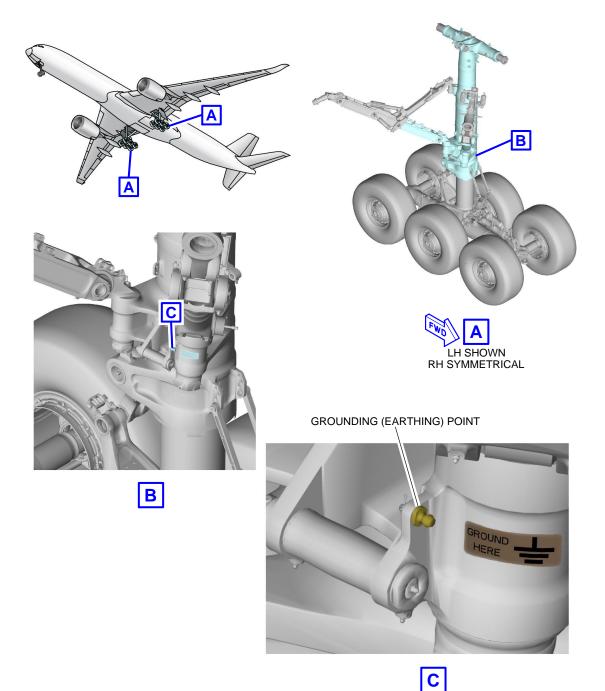
**ON A/C A350-1000 A350-1000F A350-900



P_AC_050401_1_0010001_01_01

Grounding (Earthing) Point - NLG FIGURE-5-4-1-991-001-A01

**ON A/C A350-900


P_AC_050401_1_0020001_01_00

Grounding (Earthing) Point - MLG FIGURE-5-4-1-991-002-A01

5-4-1

**ON A/C A350-1000 A350-1000F

P_AC_050401_1_0030001_01_00

Grounding (Earthing) Point - MLG FIGURE-5-4-1-991-003-A01

5-4-2 Hydraulic Servicing

**ON A/C A350-1000 A350-1000F A350-900

Hydraulic Servicing

**ON A/C A350-900

Hydraulic Servicing

The nominal operating pressure is 344.75 bar (5000 psi).

A. Access

NOTE: The mean height from ground in the below table may change according to the CG position and aircraft weight.

	DISTANCE				
ACCESS	AFT OF NOSE	FROM AIRCRAF	T CENTERLINE	MEAN HEIGHT	
	ALL OF NOOL	LH SIDE	RH SIDE	FROM GROUND	
Green Ground	36.37 m	0.61 m		2.39 m	
Service Panel:	(119.32 ft.)	(2.00 ft.)		(7.84 ft.)	
Access Door 197LB	,	,		,	
Yellow Ground					
Service Panel:	30.35 m		1.51 m	2.24 m	
Access Door	(99.57 ft.)		(4.95 ft.)	(7.35 ft.)	
194KB					

B. Reservoir Filling

Centralized filling capability is on the Green ground service panel.

Filling: Ground pressurized supply or hand pump.

C. Ground Test

On each ground service panel:

- One self-sealing connector (suction)
- One self-sealing connector (delivery).

**ON A/C A350-1000

2. Hydraulic Servicing

The nominal operating pressure is 344.74 bar (5000 psi).

A. Access

NOTE: The mean height from ground in the below table may change according to the CG position and aircraft weight.

	DISTANCE				
ACCESS	AFT OF NOSE	FROM AIRCRAF	T CENTERLINE	MEAN HEIGHT	
	AFTOFNOSE	LH SIDE	RH SIDE	FROM GROUND	
Green Ground	40.18 m	0.61 m		2.24 m	
		(2.00 ft.)		(7.35 ft.)	
Access Door 197LB	(131.02 11.)	(2.00 11.)		(7.33 11.)	
Yellow Ground					
Service Panel:	34.15 m		1.51 m	2.12 m	
Access Door	(112.04 ft.)		(4.95 ft.)	(6.96 ft.)	
194KB					

B. Reservoir Filling

Centralized filling capability is on the Green ground service panel.

Filling: Ground pressurized supply or hand pump.

C. Ground Test

On each ground service panel:

- One self-sealing connector (suction)
- One self-sealing connector (delivery).

**ON A/C A350-1000F

3. Hydraulic Servicing

The nominal operating pressure is 344.74 bar (5000 psi).

A. Access

	DISTANCE				
ACCESS	AFT OF NOSE	FROM AIRCRAFT CENTERLINE		MEAN HEIGHT	
	ALL OF NOSE	LH SIDE	RH SIDE	FROM GROUND	
Sarvica Panal.	(121 30 ft)	0.61 m (2.00 ft.)		2.24 m (7.35 ft.)	
	31 m (101.71 ft.)		1	2.12 m (6.96 ft.)	

	DISTANCE			
ACCESS	AFT OF NOSE	FROM AIRCRAFT CENTERLINE		MEAN HEIGHT
		LH SIDE	RH SIDE	FROM GROUND
Access Door				
194KB				

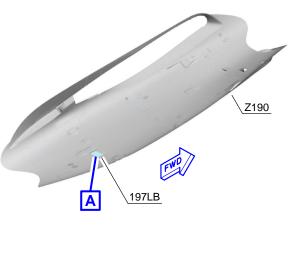
B. Reservoir Filling

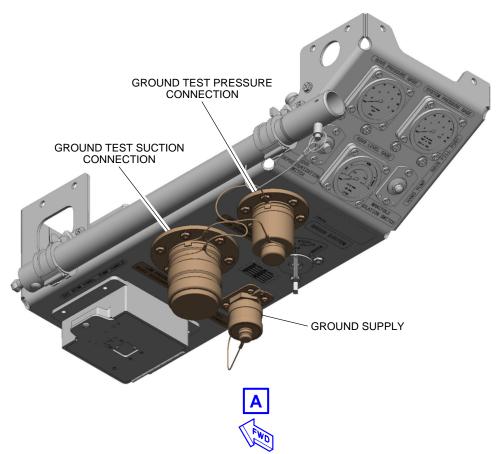
Centralized filling capability is on the Green ground service panel.

Filling: Ground pressurized supply or hand pump.

C. Ground Test

On each ground service panel:

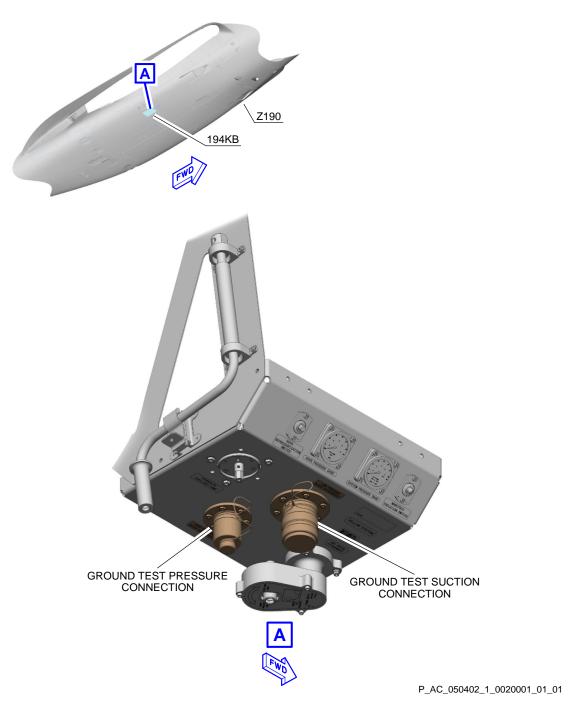

- One self-sealing connector (suction)
- One self-sealing connector (delivery).


**ON A/C A350-1000 A350-1000F A350-900

- 4. Technical Specifications
 - A. The hydraulic ground equipment must be able to start with the aircraft hydraulic circuit not pressurized.
 - B. The hydraulic ground equipment must be able to permanently operate with the aircraft reservoir pressures varying between 2.0 bar (29 psi) and 5 bar (73 psi).
 - C. After ground equipment shutdown, no further fluid exchange must occur between the aircraft reservoir and the ground equipment.

5-4-2

**ON A/C A350-1000 A350-1000F A350-900



P_AC_050402_1_0010001_01_01

Green Ground Service Panel FIGURE-5-4-2-991-001-A01

**ON A/C A350-1000 A350-1000F A350-900

Yellow Ground Service Panel FIGURE-5-4-2-991-002-A01

5-4-3 Electrical Servicing

**ON A/C A350-1000 A350-1000F A350-900

Electrical Servicing

1. A/C External Power

NOTE: The mean height from ground in the below table may change according to the CG position and aircraft weight.

		DISTANCE		
ACCESS	AET OF NOSE	FROM AIRCRAFT CENTERLINE		MEAN HEIGHT
	AFT OF NOSE		RH SIDE	FROM GROUND
A/C External				
Power:	6.63 m		0.91 m	2.58 m
Access Door	(21.75 ft.)		(2.99 ft.)	(8.46 ft.)
122AR				

2. Technical Specifications

- A. External Power Receptacle:
 - Two standard ISO 461 Style3 90 kVA each.
- B. Power Supply:
 - Three-phase, 115 V, 400 Hz.
- C. Electrical Connectors for Servicing:
 - AC outlets: HUBBELL 5258
 - DC outlets: HUBBELL 7472.

3. Tow Truck Power

	DISTANCE				
ACCESS	AFT OF NOSE	FROM AIRCRAFT CENTERLINE		MEAN HEIGHT	
	ALL OF NOSE	LH SIDE	RH SIDE	FROM GROUND	
NLG Service Panel:	4.35 m		0.15 m	1.8 m	
2GN	(14.27 ft.)		(0.49 ft.)	(5.91 ft.)	

4. Technical Specifications

- A. Power Supply:
 - Two-Phase, 115 V, 400 Hz
 - 28V DC.
- B. Electrical Connector for Servicing:
 - Bernier, 22–11–10–13 Connector.
- C. Pin Allocation:

Pin Identification	
A	28V DC
В	0V DC
D	115V AC
E	0V AC
G	PWR SPLY
Н	INT LOCK

NOTE: The power cable should be extendable in order to guarantee fit and non-interference with nose gear nor tow vehicle during the pick-up and the towing process. The connector shall be secured against pull-out by means of straps against the nose gear.

**ON A/C A350-900

5. A/C Emergency Generation

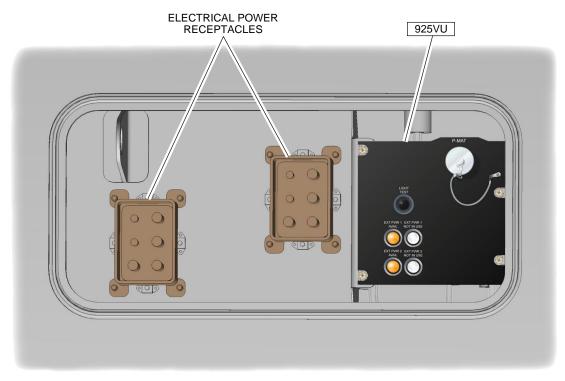
	DISTANCE				
ACCESS	AFT OF NOSE	FROM AIRCRAFT CENTERLINE		MEAN HEIGHT	
	ALL OF NOSE	LH SIDE	RH SIDE	FROM GROUND	
RAT Safety-Pin Installation: Access Panel 198VR	39.48 m (129.53 ft.)			2.91 m (9.55 ft.)	

**ON A/C A350-1000

6. A/C Emergency Generation

NOTE: The mean height from ground in the below table may change according to the CG position and aircraft weight.

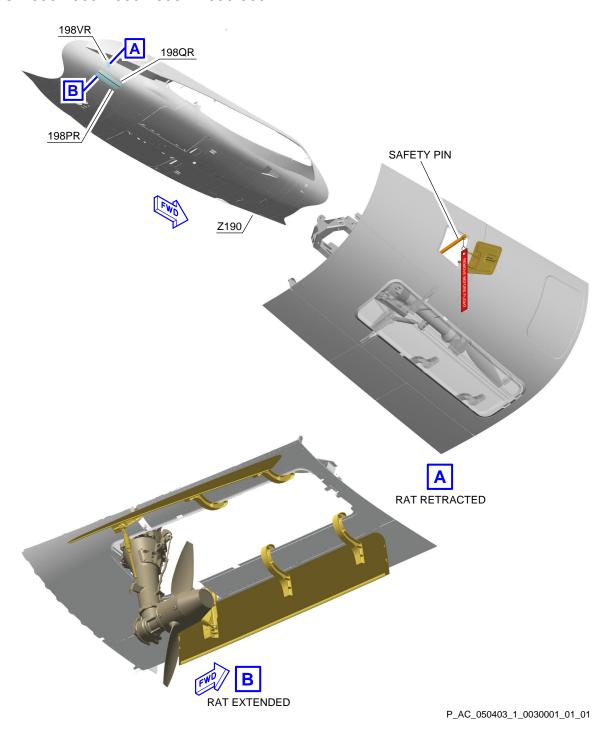
		DISTANCE				
ACCESS	AFT OF NOSE	FROM AIRCRAFT CENTERLIN		MEAN HEIGHT		
	ALL OF NOOL	LH SIDE	RH SIDE	FROM GROUND		
	44.00 m		2.50 m	2.91 m		
Access Panel 198VR	(144.36 ft.)		(8.2 ft.)	(9.55 ft.)		


**ON A/C A350-1000F

7. A/C Emergency Generation

	DISTANCE			
ACCESS	AFT OF NOSE	FROM AIRCRAFT CENTERLINE		MEAN HEIGHT
	AFTOFINOSE	LH SIDE	LH SIDE RH SIDE	
RAT Safety-Pin				
Installation:	40.8 m		2.50 m	2.91 m
Access Panel	(133.86 ft.)		(8.2 ft.)	(9.55 ft.)
198VR				

**ON A/C A350-1000 A350-1000F A350-900



P_AC_050403_1_0010001_01_01

Electrical Service Panel FIGURE-5-4-3-991-001-A01

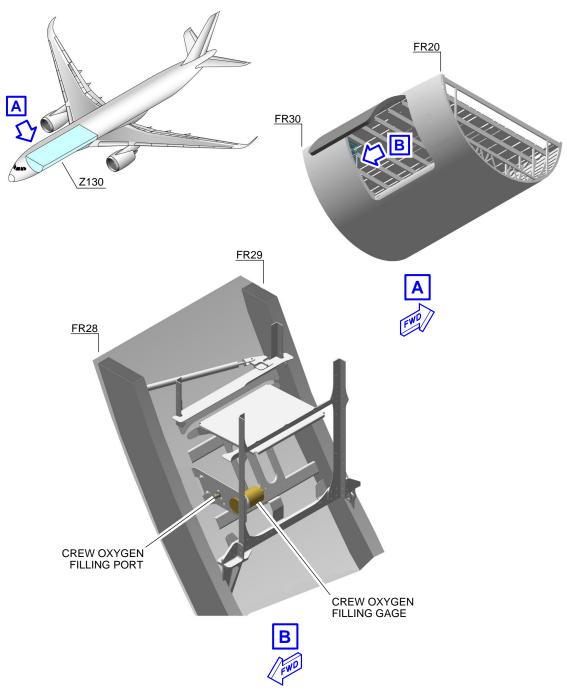
**ON A/C A350-1000 A350-1000F A350-900

RAT FIGURE-5-4-3-991-003-A01

5-4-4 Oxygen Servicing

**ON A/C A350-1000 A350-1000F A350-900

Oxygen Servicing

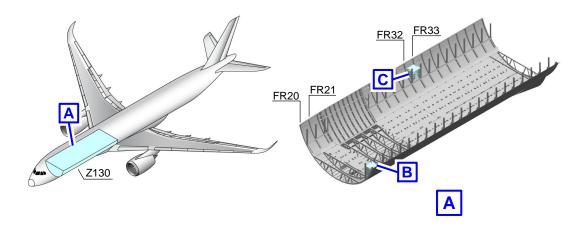

1. General

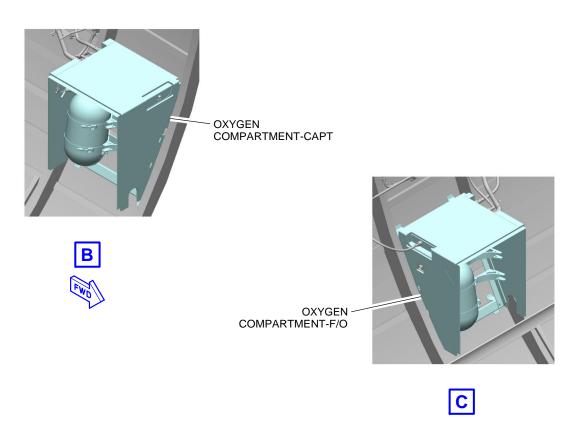
The A350 XWB oxygen servicing is designed to supply oxygen to the cockpit and the cabin or the courier area.

2. Technical Specifications

- Refilling of the oxygen sources is accomplished by the replacement of the units.
- An optional filling port and associated devices can be installed at the rear triangular area of the FWD cargo door to allow in-situ flight crew oxygen replenishment.

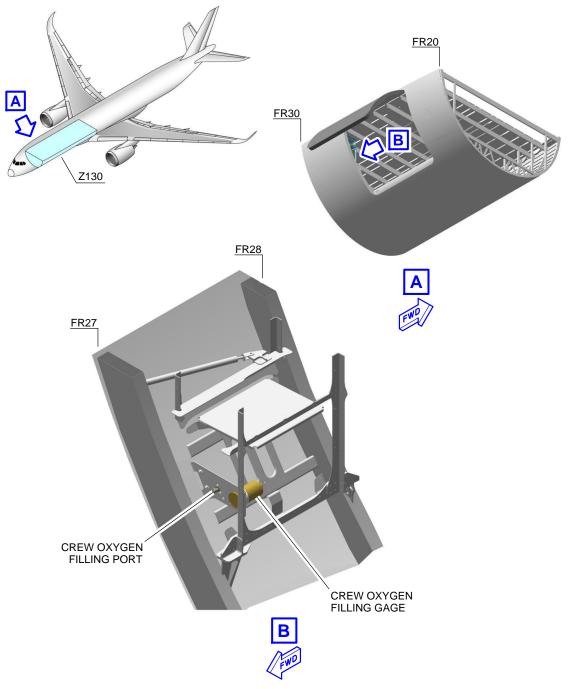
**ON A/C A350-1000 A350-900




P_AC_050404_1_0010001_01_00

Oxygen System FIGURE-5-4-4-991-001-A01

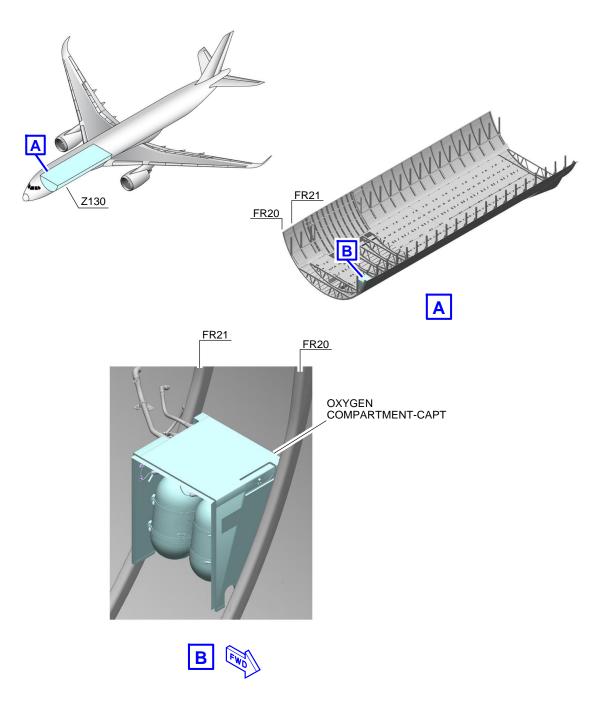
**ON A/C A350-1000 A350-900



P_AC_050404_1_0020001_01_00

Crew Oxygen Storage - Location FIGURE-5-4-4-991-002-A01

5-4-4


**ON A/C A350-1000F

P_AC_050404_1_0030002_01_00

Oxygen System FIGURE-5-4-4-991-003-B01

**ON A/C A350-1000F

P_AC_050404_1_0040001_01_00

Crew Oxygen Storage - Location FIGURE-5-4-4-991-004-A01

5-4-5 Fuel Servicing

**ON A/C A350-1000 A350-1000F A350-900

Fuel Servicing

**ON A/C A350-900

1. Refuel/Defuel Control Panel

NOTE: The mean height from ground in the below table may change according to the CG position and aircraft weight.

	DISTANCE			
ACCESS	AFT OF NOSE	FROM AIRCRAFT CENTERLINE		MEAN HEIGHT
	AFTOFNOSE	LH SIDE	RH SIDE	FROM GROUND
	36.20 m (118.77 ft.)	On centerline		2.18 m (7.15 ft.)

2. Refuel/Defuel Connectors

NOTE: The mean height from ground in the below table may change according to the CG position and aircraft weight.

	DISTANCE			
ACCESS	AFT OF NOSE	FROM AIRCRAF	T CENTERLINE	MEAN HEIGHT
	ALL OLINOSE	LH SIDE	RH SIDE	FROM GROUND
Refuel/Defuel Coupling, Left (Optional): Access Door 523EB	32.57 m (106.86 ft.)	15.83 m (51.94 ft.)		5.50 m (18.04 ft.)
Refuel/Defuel Coupling, Right: Access Door 623EB	32.57 m (106.86 ft.)		15.83 m (51.94 ft.)	5.50 m (18.04 ft.)

A. Refuel/Defuel couplings:

- Two standard 2.5 in. ISO 45 connections on the right wing,
- Two standard 2.5 in. ISO 45 connections on the left wing (optional).
- B. Refuel pressure:
 - Maximum pressure: 3.45 bar (50 psi).
- Overpressure Protector and NACA Flame Arrestor

NOTE: The mean height from ground in the below table may change according to the CG position and aircraft weight.

ACCESS	AFT OF NOSE	FROM AIRCRAF	ROM AIRCRAFT CENTERLINE MEAN HEI	
ACCESS	ALL OF NOSE	LH SIDE	RH SIDE	FROM GROUND
Overpressure	38.24 m	22.33 m	22.33 m	6.13 m
Protector	(125.46 ft.)	(73.26 ft.)	(73.26 ft.)	(20.11 ft.)
NACA Flame	38.69 m	23.07 m	23.07 m	6.19 m
Arrestor	(126.94 ft.)	(75.69 ft.)	(75.69 ft.)	(20.31 ft.)

**ON A/C A350-1000

4. Refuel/Defuel Control Panel

NOTE: The mean height from ground in the below table may change according to the CG position and aircraft weight.

		DISTANCE			
ACCESS	AFT OF NOSE	FROM AIRCRAFT CENTERLINE		MEAN HEIGHT	
	ALL OF NOSE	LH SIDE	RH SIDE	FROM GROUND	
Refuel/Defuel Control Panel: Access Door 197KB	40.00 m (131.23 ft.)	On centerline		2.18 m (7.15 ft.)	

5. Refuel/Defuel Connectors

	DISTANCE				
ACCESS	AFT OF NOSE	FROM AIRCRAF	T CENTERLINE	MEAN HEIGHT	
	ALLOLINOSE	LH SIDE	RH SIDE	FROM GROUND	
I(()ntional):	36.38 m (119.36 ft.)	15.83 m (51.94 ft.)		5.50 m (18.04 ft.)	
1 0, 0	36.38 m (119.36 ft.)		15.83 m (51.94 ft.)	5.50 m (18.04 ft.)	

- A. Refuel/Defuel couplings:
 - Two standard 2.5 in. ISO 45 connections on the right wing,
 - Two standard 2.5 in. ISO 45 connections on the left wing (optional).
- B. Refuel pressure:
 - Maximum pressure: 3.45 bar (50 psi).
- 6. Overpressure Protector and NACA Flame Arrestor

NOTE: The mean height from ground in the below table may change according to the CG position and aircraft weight.

ACCESS	AFT OF NOSE	FROM AIRCRAFT CENTERLINE M		MEAN HEIGHT
ACCESS	AFTOFNOSE	LH SIDE	RH SIDE	FROM GROUND
Overpressure	42.05 m	22.33 m	22.33 m	6.13 m
Protector	(137.96 ft.)	(73.26 ft.)	(73.26 ft.)	(20.11 ft.)
NACA Flame	42.50 m	23.07 m	23.07 m	6.19 m
Arrestor	(139.44 ft.)	(75.69 ft.)	(75.69 ft.)	(20.31 ft.)

**ON A/C A350-1000F

7. Refuel/Defuel Control Panel

	DISTANCE			
ACCESS	AFT OF NOSE	FROM AIRCRAFT CENTERLINE		MEAN HEIGHT
	ALL OF NOOL	LH SIDE	RH SIDE	FROM GROUND
Refuel/Defuel Control Panel: Access Door 197KB	36.84 m (120.87 ft.)	On centerline		2.18 m (7.15 ft.)

8. Refuel/Defuel Connectors

NOTE: The mean height from ground in the below table may change according to the CG position and aircraft weight.

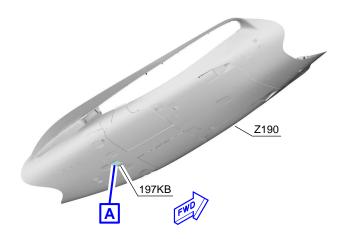
	DISTANCE				
ACCESS	AFT OF NOSE	FROM AIRCRAF	T CENTERLINE	MEAN HEIGHT	
	ALL OF NOSE	LH SIDE	RH SIDE	FROM GROUND	
Refuel/Defuel Coupling, Left (Optional): Access Door 523EB	33.21 m (108.96 ft.)	15.83 m (51.94 ft.)		5.50 m (18.04 ft.)	
Refuel/Defuel Coupling, Right: Access Door 623EB	33.21 m (108.96 ft.)		15.83 m (51.94 ft.)	5.50 m (18.04 ft.)	

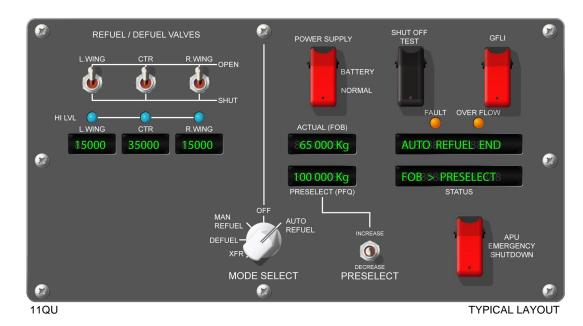
A. Refuel/Defuel couplings:

- Two standard 2.5 in. ISO 45 connections on the right wing,
- Two standard 2.5 in. ISO 45 connections on the left wing (optional).

B. Refuel pressure:

- Maximum pressure: 3.45 bar (50 psi).

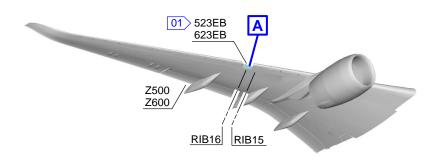

9. Overpressure Protector and NACA Flame Arrestor

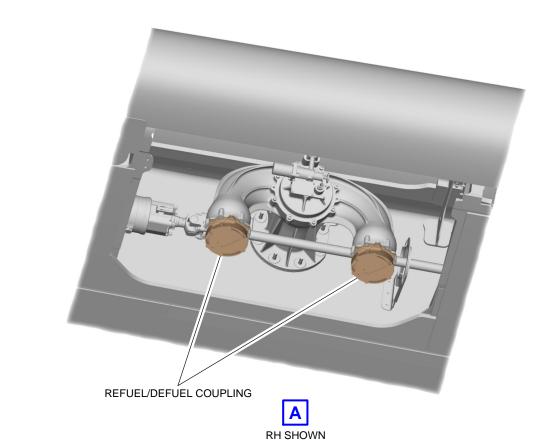

©A350

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

ACCESS	AFT OF NOSE	FROM AIRCRAFT CENTERLINE		MEAN HEIGHT
ACCLOS	ALLOLINOSE	LH SIDE	RH SIDE	FROM GROUND
Overpressure	38.88 m	22.33 m	22.33 m	6.13 m
Protector	(127.56 ft.)	(73.26 ft.)	(73.26 ft.)	(20.11 ft.)
NACA Flame	39.33 m	23.07 m	23.07 m	6.19 m
Arrestor	(129.04 ft.)	(75.69 ft.)	(75.69 ft.)	(20.31 ft.)

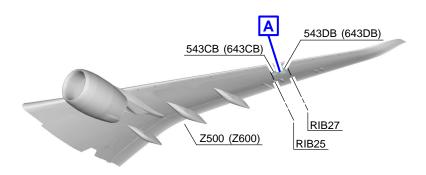
**ON A/C A350-1000 A350-1000F A350-900

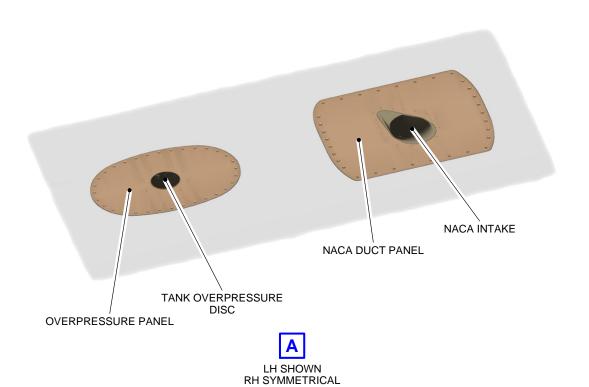

Α


P_AC_050405_1_0010001_01_01

Refuel/Defuel Control Panel FIGURE-5-4-5-991-001-A01

**ON A/C A350-1000 A350-1000F A350-900


NOTE:
01 LH OPTIONAL


P_AC_050405_1_0020002_01_01

Refuel/Defuel Couplings FIGURE-5-4-5-991-002-B01

LH SYMMETRICAL

**ON A/C A350-1000 A350-1000F A350-900

P_AC_050405_1_0030001_01_01

Overpressure Protectors and NACA Flame Arrestor FIGURE-5-4-5-991-003-A01

5-4-6 Pneumatic Servicing

**ON A/C A350-1000 A350-1000F A350-900

Pneumatic Servicing

**ON A/C A350-900

1. Low Pressure Connectors

NOTE: The mean height from ground in the below table may change according to the CG position and aircraft weight.

	DISTANCE			
ACCESS	AFT OF NOSE	FROM AIRCRAFT CENTERLINE		MEAN HEIGHT
	AFIOFINOSE	LH SIDE	RH SIDE	FROM GROUND
Access Door	23.58 m		1.05 m	2.59 m
193CB	(77.36 ft.)		(3.44 ft.)	(8.50 ft.)
Access Door	23.58 m		1.87 m	2.87 m
194CR	(77.36 ft.)		(6.14 ft.)	(9.42 ft.)

A. Connectors:

- Two standard 8 in. SAE AS4262 type B connections.

2. High Pressure Connectors

NOTE: The mean height from ground in the below table may change according to the CG position and aircraft weight.

ACCESS	DISTANCE				
	AFT OF NOSE	FROM AIRCRAFT CENTERLINE		MEAN HEIGHT	
		LH SIDE	RH SIDE	FROM GROUND	
Access Door	26.81 m	On Centerline		2.06 m	
193KB	(87.96 ft.)	On Centerline		(6.76 ft.)	

A. Connectors:

- Two standard 3 in. ISO 2026 connections.

**ON A/C A350-1000

3. Low Pressure Connectors

NOTE: The mean height from ground in the below table may change according to the CG position and aircraft weight.

ACCESS	DISTANCE				
	AFT OF NOSE	FROM AIRCRAFT CENTERLINE		MEAN HEIGHT	
		LH SIDE	RH SIDE	FROM GROUND	
Access Door	27.39 m		1.05 m	2.44 m	
193CB	(89.86 ft.)		(3.44 ft.)	(8.01 ft.)	
Access Door	27.39 m		1.86 m	2.57 m	
194CR	(89.86 ft.)		(6.10 ft.)	(8.43 ft.)	

A. Connectors:

- Two standard 8 in. SAE AS4262 type B connections.

4. High Pressure Connectors

NOTE: The mean height from ground in the below table may change according to the CG position and aircraft weight.

ACCESS	DISTANCE				
	AFT OF NOSE	FROM AIRCRAFT CENTERLINE		MEAN HEIGHT	
		LH SIDE	RH SIDE	FROM GROUND	
Access Door	30.77 m	On Centerline		2.06 m	
193KB	(100.95 ft.)	On Centerline		(6.76 ft.)	

A. Connectors:

- Two standard 3 in. ISO 2026 connections.

**ON A/C A350-1000F

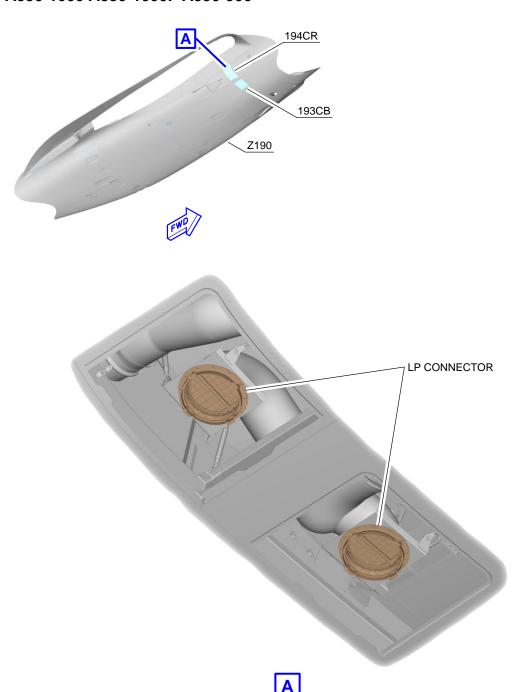
Low Pressure Connectors

	DISTANCE				
ACCESS	AFT OF NOSE	FROM AIRCRAFT CENTERLINE		MEAN HEIGHT	
	AFTOFNOSE	LH SIDE	RH SIDE	FROM GROUND	
Access Door	24.21 m		1.05 m	2.44 m	
193CB	(79.43 ft.)		(3.44 ft.)	(8.01 ft.)	
Access Door	24.21 m		1.86 m	2.57 m	
194CR	(79.43 ft.)		(6.10 ft.)	(8.43 ft.)	

A. Connectors:

- Two standard 8 in. SAE AS4262 type B connections.

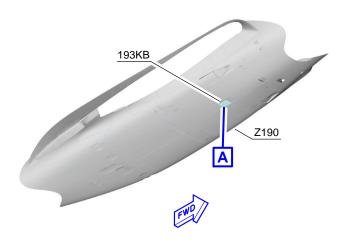
6. High Pressure Connectors

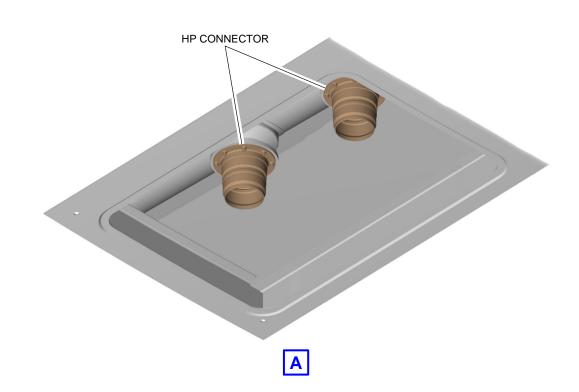

NOTE: The mean height from ground in the below table may change according to the CG position and aircraft weight.

		DISTANCE			
ACCESS	AFT OF NOSE	FROM AIRCRAFT CENTERLINE		MEAN HEIGHT	
	AFIOFNOSE	LH SIDE	RH SIDE	FROM GROUND	
Access Door	27.59 m	On Centerline		2.06 m	
193KB	(90.52 ft.)	On Centenine		(6.76 ft.)	

A. Connectors:

- Two standard 3 in. ISO 2026 connections.


**ON A/C A350-1000 A350-1000F A350-900



P_AC_050406_1_0010001_01_01

Low Pressure Ground Connectors FIGURE-5-4-6-991-001-A01

**ON A/C A350-1000 A350-1000F A350-900

P_AC_050406_1_0020001_01_01

High Pressure Ground Connectors FIGURE-5-4-6-991-002-A01

5-4-7 Oil Servicing

**ON A/C A350-1000 A350-1000F A350-900

Engine Oil Servicing

**ON A/C A350-900

1. Engine Oil Servicing

NOTE: The mean height from ground in the below table may change according to the CG position and aircraft weight.

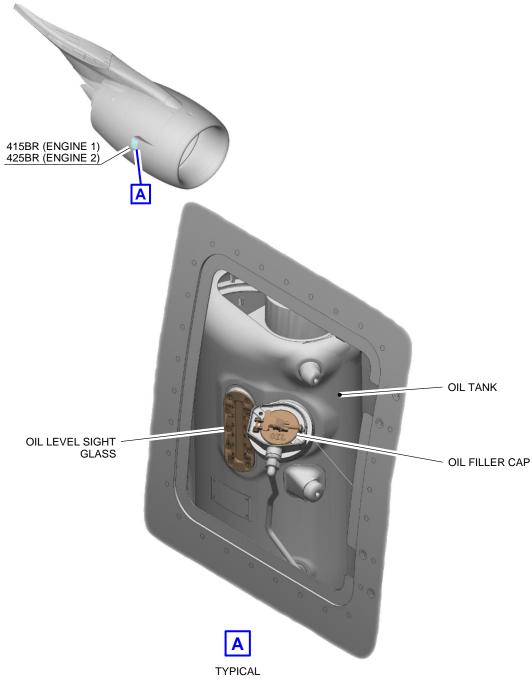
	DISTANCE				
ACCESS	AFT OF NOSE	FROM AIRCRAF	T CENTERLINE	MEAN HEIGHT	
	ALLOLINOOL	LH SIDE	RH SIDE	FROM GROUND	
IACCASS I IOOT		8.60 m (28.22 ft.)		3.23 m (10.60 ft.)	
IACCASS LIGOR	24.68 m (80.97 ft.)			3.23 m (10.60 ft.)	

**ON A/C A350-1000

2. Engine Oil Servicing

NOTE: The mean height from ground in the below table may change according to the CG position and aircraft weight.

	DISTANCE				
ACCESS	AFT OF NOSE	FROM AIRCRAF	T CENTERLINE	MEAN HEIGHT	
	ALL OF NOSE	LH SIDE	RH SIDE	FROM GROUND	
IACCASS I IOOT		8.60 m (28.22 ft.)		3.23 m (10.60 ft.)	
IACCASS I IOOT	28.49 m (93.47 ft.)			3.23 m (10.60 ft.)	


**ON A/C A350-1000F

3. Engine Oil Servicing

NOTE: The mean height from ground in the below table may change according to the CG position and aircraft weight.

	DISTANCE				
ACCESS	AFT OF NOSE		T CENTERLINE	MEAN HEIGHT	
	711 1 01 11002	LH SIDE	RH SIDE	FROM GROUND	
IACCASS I IOOT		8.60 m (28.22 ft.)		3.23 m (10.60 ft.)	
IACCASS I IOOT	25.32 m (83.07 ft.)			3.23 m (10.60 ft.)	

**ON A/C A350-1000 A350-1000F A350-900

P_AC_050407_1_0040001_01_00

Engine Oil Servicing FIGURE-5-4-7-991-004-A01

**ON A/C A350-1000 A350-1000F A350-900

VFG Oil Servicing

**ON A/C A350-900

1. VFG Oil Servicing

NOTE: The mean height from ground in the below table may change according to the CG position and aircraft weight.

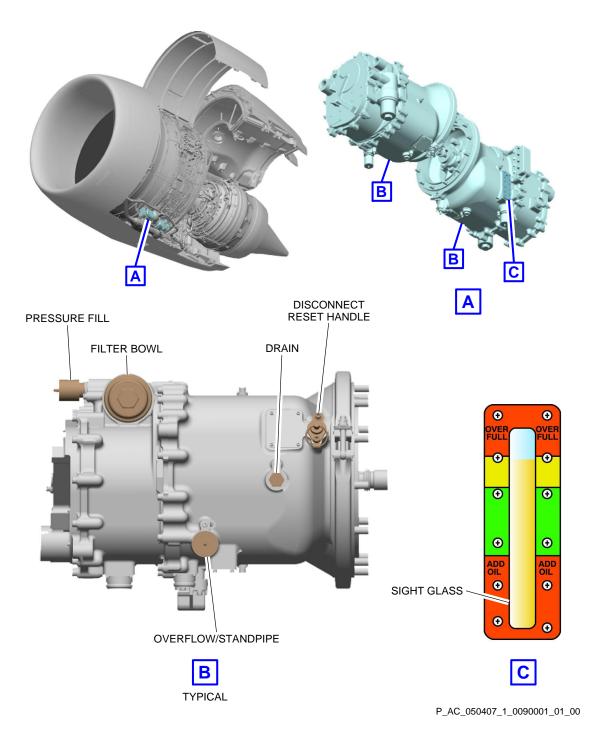
	DISTANCE				
ACCESS	AFT OF NOSE	FROM AIRCRAFT CENTERLINE		MEAN HEIGHT	
	AFIOFNOSE	LH SIDE	RH SIDE	FROM GROUND	
Engine 1:	24.32 m	11.02 m		1.22 m	
Fan Cowl 415AL	(79.79 ft.)	(36.15 ft.)		(4.00 ft.)	
Engine 2:	24.34 m		9.86 m	1.22 m	
Fan Cowl 425AL	(79.86 ft.)		(32.35 ft.)	(4.00 ft.)	

**ON A/C A350-1000

2. VFG Oil Servicing

NOTE: The mean height from ground in the below table may change according to the CG position and aircraft weight.

	DISTANCE			
ACCESS	AFT OF NOSE	FROM AIRCRAFT CENTERLINE		MEAN HEIGHT
	AFTOFNOSE	LH SIDE	RH SIDE	FROM GROUND
Engine 1:	28.13 m	11.02 m		1.22 m
Fan Cowl 415AL	(92.29 ft.)	(36.15 ft.)		(4.00 ft.)
Engine 2:	28.15 m		9.86 m	1.22 m
Fan Cowl 425AL	(92.36 ft.)		(32.35 ft.)	(4.00 ft.)


**ON A/C A350-1000F

3. VFG Oil Servicing

NOTE: The mean height from ground in the below table may change according to the CG position and aircraft weight.

	DISTANCE			
ACCESS	AFT OF NOSE	FROM AIRCRAFT CENTERLINE		MEAN HEIGHT
	AFIOFNOSE	LH SIDE	RH SIDE	FROM GROUND
Engine 1:	24.95 m	11.02 m		1.22 m
Fan Cowl 415AL	(81.86 ft.)	(36.15 ft.)		(4.00 ft.)
Engine 2:	24.97 m		9.86 m	1.22 m
Fan Cowl 425AL	(81.92 ft.)		(32.35 ft.)	(4.00 ft.)

**ON A/C A350-1000 A350-1000F A350-900

VFG Oil Servicing FIGURE-5-4-7-991-009-A01

**ON A/C A350-1000 A350-1000F A350-900

Starter Oil Servicing

**ON A/C A350-900

1. Starter Oil Servicing

NOTE: The mean height from ground in the below table may change according to the CG position and aircraft weight.

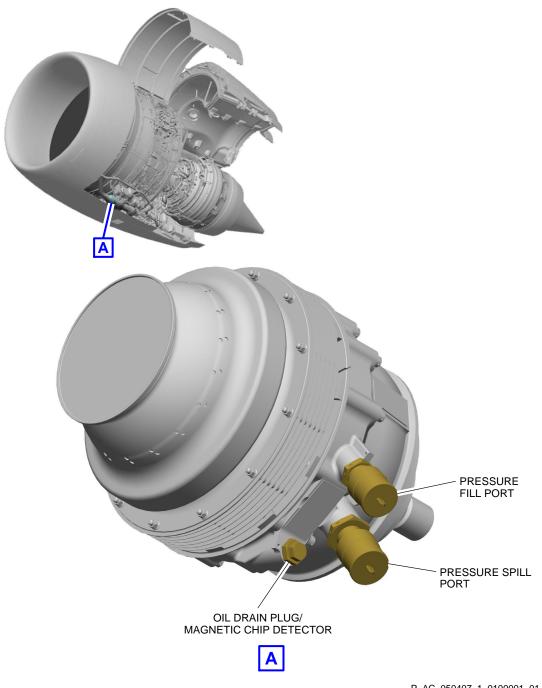
	DISTANCE				
ACCESS	AFT OF NOSE	FROM AIRCRAFT CENTERLINE		MEAN HEIGHT	
	AFTOFNOSE	LH SIDE	RH SIDE	FROM GROUND	
Engine 1:	24.60 m	10.57 m		1.08 m	
Fan Cowl 415AL	(80.71 ft.)	(34.68 ft.)		(3.54 ft.)	
Engine 2:	24.60 m		10.31 m	1.08 m	
Fan Cowl 425AL	(80.71 ft.)		(33.83 ft.)	(3.54 ft.)	

**ON A/C A350-1000

2. Starter Oil Servicing

NOTE: The mean height from ground in the below table may change according to the CG position and aircraft weight.

	DISTANCE				
ACCESS	AFT OF NOSE	FROM AIRCRAFT CENTERLINE		MEAN HEIGHT	
	AFT OF NOSE	LH SIDE	RH SIDE	FROM GROUND	
Engine 1:	28.41 m	10.57 m		1.08 m	
Fan Cowl 415AL	(93.21 ft.)	(34.68 ft.)		(3.54 ft.)	
Engine 2:	28.41 m		10.31 m	1.08 m	
Fan Cowl 425AL	(93.21 ft.)		(33.83 ft.)	(3.54 ft.)	


**ON A/C A350-1000F

3. Starter Oil Servicing

NOTE: The mean height from ground in the below table may change according to the CG position and aircraft weight.

	DISTANCE			
ACCESS	AFT OF NOSE	FROM AIRCRAFT CENTERLINE		MEAN HEIGHT
		LH SIDE	RH SIDE	FROM GROUND
Engine 1:	25.24 m	10.57 m		1.08 m
Fan Cowl 415AL	(82.81 ft.)	(34.68 ft.)		(3.54 ft.)
Engine 2:	25.24 m		10.31 m	1.08 m
Fan Cowl 425AL	(82.81 ft.)		(33.83 ft.)	(3.54 ft.)

**ON A/C A350-1000 A350-1000F A350-900

P_AC_050407_1_0100001_01_00

Starter Oil Servicing FIGURE-5-4-7-991-010-A01

**ON A/C A350-1000 A350-1000F A350-900

APU Oil Servicing

**ON A/C A350-900

1. APU Oil Servicing

NOTE: The mean height from ground in the below table may change according to the CG position and aircraft weight.

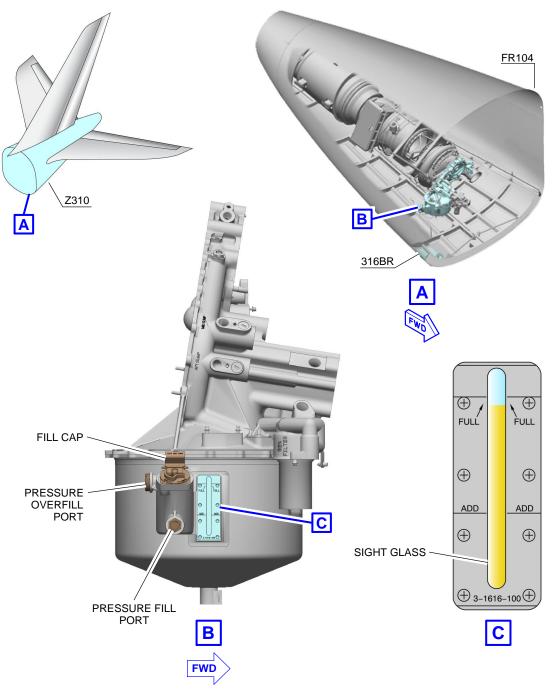
		DISTANCE			
ACCESS	AFT OF NOSE	FROM AIRCRAFT CENTERLINE		MEAN HEIGHT	
	ALL OF NOSE	LH SIDE	RH SIDE	FROM GROUND	
APU:	62.52 m		0.48 m	6.45 m	
Access Door 316BR	(205.12 ft.)			(21.16 ft.)	

**ON A/C A350-1000

2. APU Oil Servicing

NOTE: The mean height from ground in the below table may change according to the CG position and aircraft weight.

		DISTANCE		
ACCESS	CCESS AFT OF NOSE	FROM AIRCRAFT CENTERLINE		MEAN HEIGHT
	ALL OF NOSE	LH SIDE	RH SIDE	FROM GROUND
IAccess L)oor	69.51 m (228.05 ft.)			6.45 m (21.16 ft.)


**ON A/C A350-1000F

APU Oil Servicing

NOTE: The mean height from ground in the below table may change according to the CG position and aircraft weight.

		DISTANCE		
ACCESS	AFT OF NOSE	FROM AIRCRAFT CENTERLINE		MEAN HEIGHT
	ALL OF NOSE	LH SIDE	RH SIDE	FROM GROUND
APU: Access Door 316BR	66.33 m (217.62 ft.)			6.45 m (21.16 ft.)

**ON A/C A350-1000 A350-1000F A350-900

P_AC_050407_1_0110001_01_01

APU Oil Servicing FIGURE-5-4-7-991-011-A01

5-4-8 Potable Water Servicing

**ON A/C A350-1000 A350-1000F A350-900

Potable Water Servicing

**ON A/C A350-900

Potable Water Servicing

NOTE: The mean height from ground in the below table may change according to the CG position and aircraft weight.

		DIST	ANCE	
ACCESS	ACCESS AFT OF NOSE	FROM AIRCRAFT CENTERLINE		MEAN HEIGHT
		LH SIDE	RH SIDE	FROM GROUND
Potable-Water Ground Service Panel: Access Door 164AR	50.20 m (164.70 ft.)		1.60 m (5.25 ft.)	3.30 m (10.83 ft.)

**ON A/C A350-1000

2. Potable Water Servicing

NOTE: The mean height from ground in the below table may change according to the CG position and aircraft weight.

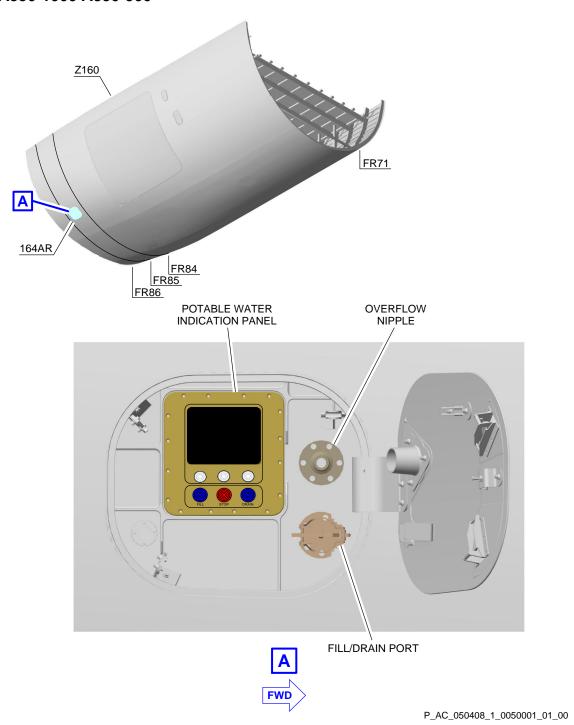
		DISTANCE		
ACCESS	CESS AFT OF NOSE	FROM AIRCRAFT CENTERLINE		MEAN HEIGHT
	ALL OF NOSE	LH SIDE	RH SIDE	FROM GROUND
Potable-Water Ground Service Panel: Access Door 164AR	57.16 m (187.53 ft.)		1.60 m (5.25 ft.)	3.30 m (10.83 ft.)

**ON A/C A350-1000F

3. Potable Water Servicing

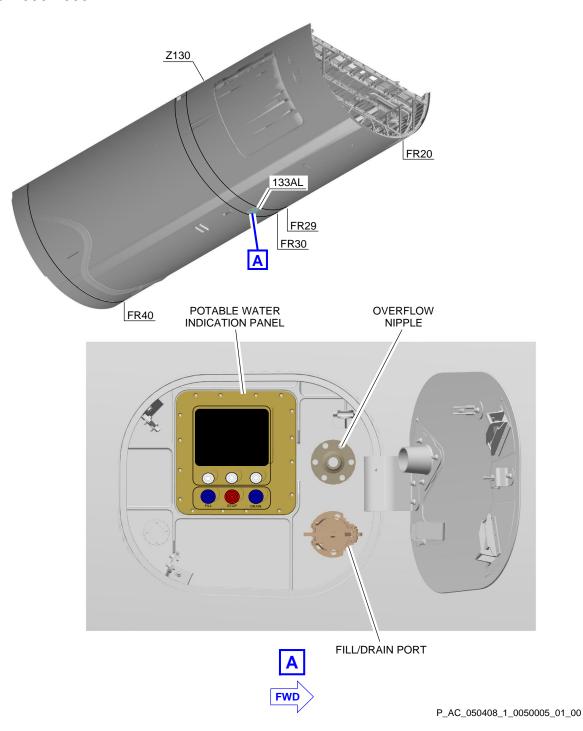
NOTE: The mean height from ground in the below table may change according to the CG position and aircraft weight.

	DISTANCE			
ACCESS	AFT OF NOSE	FROM AIRCRAFT CENTERLINE		MEAN HEIGHT
	ALL OF NOSE	LH SIDE	RH SIDE	FROM GROUND
Potable-Water				
Ground Service	14.73 m		1.60 m	3.30 m
Panel:	(48.33 ft.)		(5.25 ft.)	(10.83 ft.)
Access Door 133AL				


**ON A/C A350-1000 A350-900

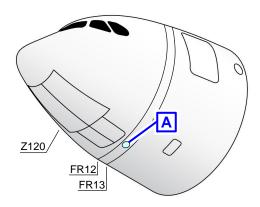
- 4. Technical Specifications
 - A. Connectors:
 - Fill/drain nipple 3/4 in. (ISO 17775).
 - B. Capacity:
 - Standard configuration two tanks (530 L (140 USgal) each): 1060 L (280 USgal),
 - Optional two tanks (750 L (198 USgal) each): 1500 L (396 USgal).
 - C. Filling pressure:
 - Max filling pressure: 8.6 bar (125 psi).

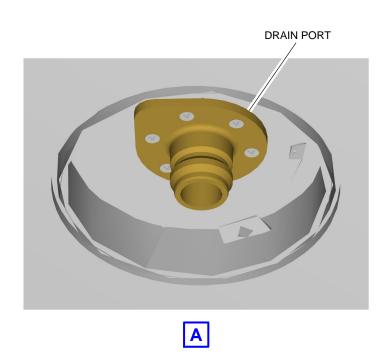
**ON A/C A350-1000F


- 5. Technical Specifications
 - A. Connectors:
 - Fill/drain nipple 3/4 in. (ISO 17775).
 - B. Capacity:
 - Standard configuration one tank 65 L (17.17 USgal).
 - C. Filling pressure:
 - Max filling pressure: 8.6 bar (125 psi).

**ON A/C A350-1000 A350-900

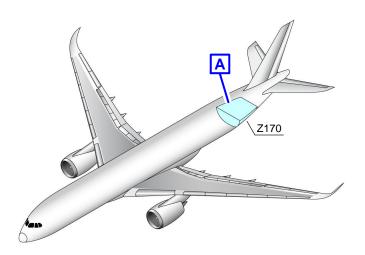
Potable-Water Ground Service Panel FIGURE-5-4-8-991-005-A01

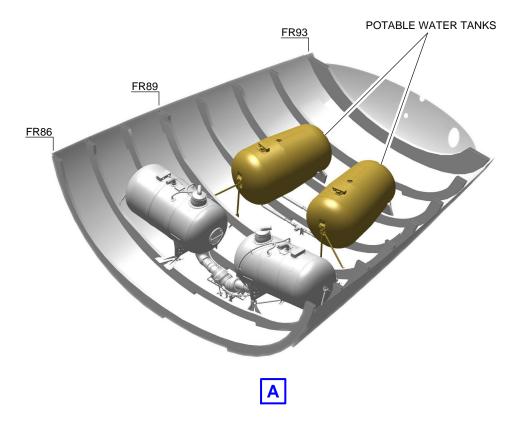

**ON A/C A350-1000F



Potable-Water Ground Service Panel 5-4-8-991-005-E01

**ON A/C A350-1000 A350-1000F A350-900

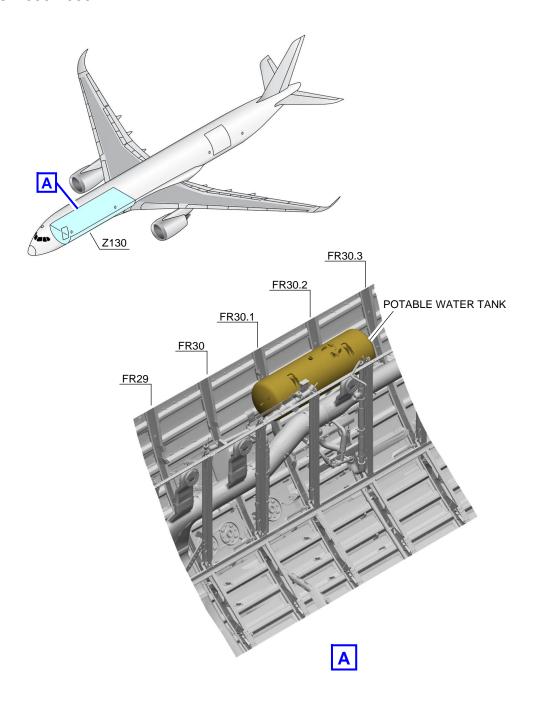




P_AC_050408_1_0060002_01_00

Forward Drain Port FIGURE-5-4-8-991-006-B01

**ON A/C A350-1000 A350-900



P_AC_050408_1_0070001_01_00

Potable-Water Tanks Location FIGURE-5-4-8-991-007-A01

**ON A/C A350-1000F

P_AC_050408_1_0070003_01_00

Potable-Water Tanks Location 5-4-8-991-007-C01

5-4-9 Waste Water Servicing

**ON A/C A350-1000 A350-900

Waste Water Servicing

**ON A/C A350-900

Waste Water Servicing

NOTE: The mean height from ground in the below table may change according to the CG position and aircraft weight.

		DISTA		
ACCESS	ACCESS AFT OF NOSE	FROM AIRCRAFT CENTERLINE		MEAN HEIGHT
	ALL OF NOSE	LH SIDE	RH SIDE	FROM GROUND
	(171.29 ft.)	On centerline		3.69 m (12.11 ft.)

**ON A/C A350-1000

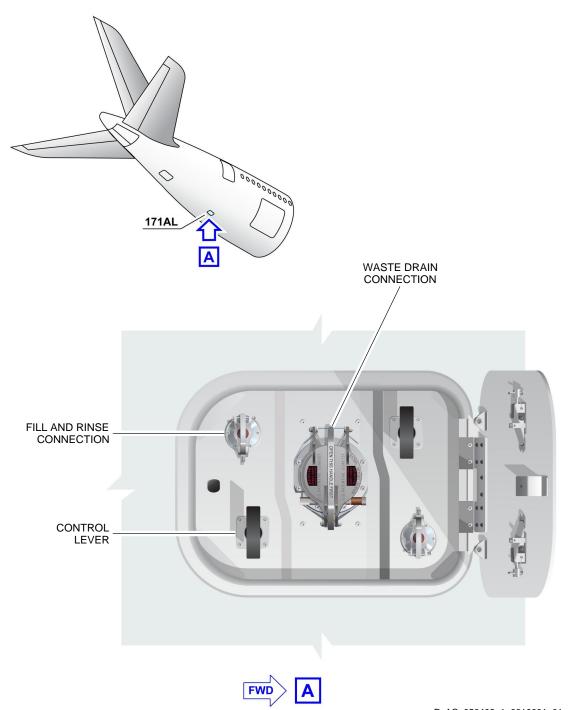
2. Waste Water Servicing

NOTE: The mean height from ground in the below table may change according to the CG position and aircraft weight.

		DISTANCE		
ACCESS	AFT OF NOSE	FROM AIRCRAF	T CENTERLINE	MEAN HEIGHT
	ALL OF NOSE	LH SIDE	RH SIDE	FROM GROUND
Waste-Water				
Ground Service	59.19 m	On centerline		3.69 m
Panel:	(194.19 ft.)	On centernine		(12.11 ft.)
Access Door 171AL				

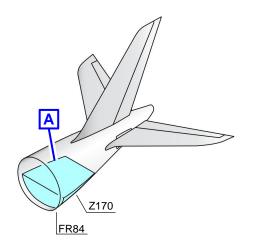
**ON A/C A350-1000 A350-900

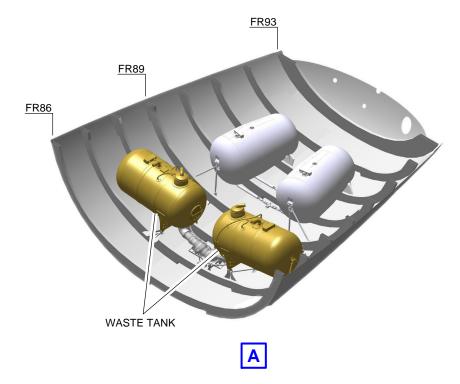
3. Technical Specifications


SA350

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

- A. Connectors:
 - Draining: 4 in. (ISO 17775).
 - Flushing and filling: 1 in. (ISO 17775).
- B. Usable waste tank capacity:
 - Standard configuration two tanks (615 L (162 USgal) each): 1230 L (325 USgal).
- C. Waste tank Rinsing:
 - Operating pressure: 3.5 bar (50 psi).
- D. Waste tank Precharge:
 - No precharge required.


**ON A/C A350-1000 A350-900



P_AC_050409_1_0010001_01_00

Waste-Water Ground Service Panel FIGURE-5-4-9-991-001-A01

**ON A/C A350-1000 A350-900

P_AC_050409_1_0020001_01_01

Waste Tanks Location FIGURE-5-4-9-991-002-A01

5-4-10 Cargo Control Panels

**ON A/C A350-1000 A350-1000F A350-900

Cargo Control Panels

**ON A/C A350-900

Cargo Control Panels

NOTE: The mean height from ground in the below table may change according to the CG position and aircraft weight.

		DISTANCE		
ACCESS	AFT OF NOSE	FROM AIRCRAF	T CENTERLINE	MEAN HEIGHT
	ALL OF NOSE	LH SIDE	RH SIDE	FROM GROUND
Forward Cargo				
Door Control Panel:	9.59 m		2.48 m	3.87 m
Access Door	(31.46 ft.)		(8.14 ft.)	(12.7 ft.)
132AR				
Forward CLS*				
Panel:	9.59 m		2.77 m	4.50 m
Access Door	(31.46 ft.)		(9.09 ft.)	(14.76 ft.)
132BR				
Aft Cargo Door				
Control Panel:	45.18 m		2.46 m	3.80 m
Access Door	(148.23 ft.)		(8.07 ft.)	(12.47 ft.)
152AR				
Aft CLS* Panel:	45.37 m		2.84 m	4.71 m
Access Door	(148.85 ft.)		(9.32 ft.)	(15.45 ft.)
152BR	(110.001)		(0.02 10.)	(10.1010.)

NOTE: * CLS - CARGO LOADING SYSTEMS

**ON A/C A350-1000

2. Cargo Control Panels

NOTE: The mean height from ground in the below table may change according to the CG

position and aircraft weight.

		DISTANCE		
ACCESS	AFT OF NOSE	FROM AIRCRAFT CENTERLINE		MEAN HEIGHT
	ALL OF NOSE	LH SIDE	RH SIDE	FROM GROUND
Forward Cargo				
Door Control Panel:	9.59 m		2.48 m	3.87 m
Access Door	(31.46 ft.)		(8.14 ft.)	(12.70 ft.)
132AR				
Forward CLS*				
Panel:	9.59 m		2.77 m	4.50 m
Access Door	(31.46 ft.)		(9.09 ft.)	(14.76 ft.)
132BR				
Aft Cargo Door				
Control Panel:	52.17 m		2.46 m	3.80 m
Access Door	(171.16 ft.)		(8.07 ft.)	(12.47 ft.)
152AR				
Aft CLS* Panel:	52.36 m		2.84 m	4.71 m
Access Door	(171.78 ft.)		(9.32 ft.)	(15.45 ft.)
152BR	(171.7010.)		(0.02 10.)	(10.70 It.)

NOTE: * CLS - CARGO LOADING SYSTEMS

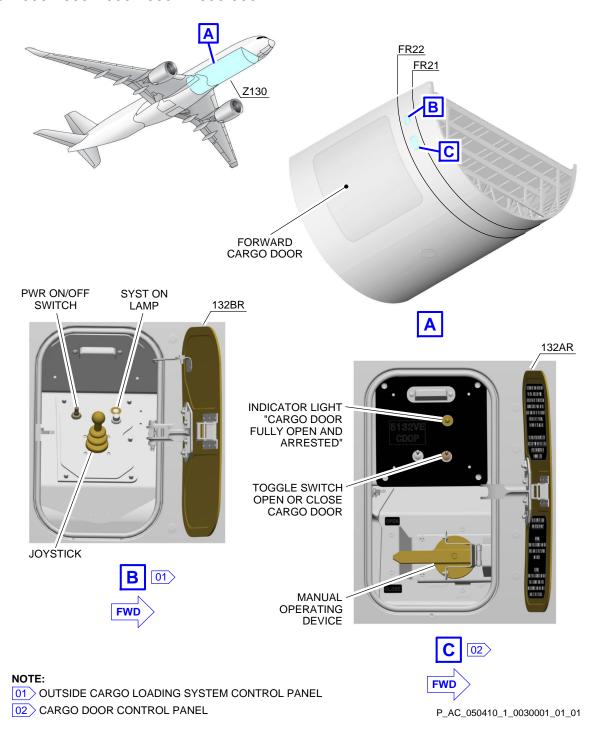
**ON A/C A350-1000F

3. Cargo Control Panels

NOTE: The mean height from ground in the below table may change according to the CG position and aircraft weight.

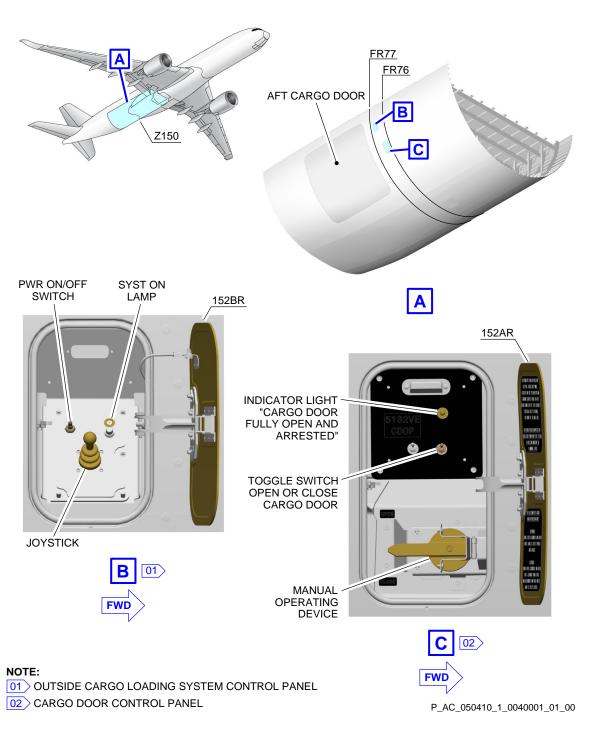
		DIST	ANCE	
ACCESS	AFT OF NOSE	FROM AIRCRAI	FT CENTERLINE	MEAN HEIGHT
	AFTOFINOSE	LH SIDE	RH SIDE	FROM GROUND
Forward Cargo				
Door Control Panel:	9.64 m		2.48 m	3.87 m
Access Door	(31.63 ft.)		(8.14 ft.)	(12.70 ft.)
132AR				
Forward CLS*				
Panel:	9.64 m		2.77 m	4.50 m
Access Door	(31.63 ft.)		(9.09 ft.)	(14.76 ft.)
132BR				
Aft Cargo Door	49.04 m		2.46 m	3.80 m
Control Panel:	(160.89 ft.)		(8.07 ft.)	(12.47 ft.)

@A350


AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

		DIST	ANCE	
ACCESS	S AFT OF NOSE	FROM AIRCRAFT CENTERLINE		MEAN HEIGHT
		LH SIDE	RH SIDE	FROM GROUND
Access Door 152AR				
Aft CLS* Panel: Access Door 152BR	49.68 m (162.99 ft.)		2.84 m (9.32 ft.)	4.71 m (15.45 ft.)

NOTE: * CLS - CARGO LOADING SYSTEMS


**ON A/C A350-1000 A350-1000F A350-900

Forward Cargo Control Panels FIGURE-5-4-10-991-003-A01

**ON A/C A350-1000 A350-1000F A350-900

Aft Cargo Control Panels FIGURE-5-4-10-991-004-A01

5-5-0 Engine Starting Pneumatic Requirements

**ON A/C A350-1000 A350-1000F A350-900

Engine Starting Pneumatic Requirements

1. The purpose of this section is to give the minimum air-data requirements at the aircraft.

ABBREVIATION	DEFINITION
ASU	Air Start Unit
	High Pressure Ground Connection
OAT	Outside Air Temperature

- A. The pressure at HPGC must not be more than 60 psig (75 psia) and less than 33 psig (48 psia). The temperature must be less than 260 deg.C (500 deg.F).
- B. The recommended pressure at HPGC is 40 psig (55 psia).
- C. The OAT and the ASU performances (see the technical data from the ASU manufacturer) effect the ASU output temperature.
- D. The tables provide the global requirements for the airflow start for one engine.

 If necessary, connect two ASUs in parallel which gives the same pressure (one for each HPGC) to supply the necessary airflow to the aircraft.
- 2. RR Trent XWB Engines for an OAT between -40 deg.C (- 40 deg.F) and 55 deg.C (131 deg.F) at Sea Level

ASU OUTPUT TEMPERATURE RANGE	PRESSURE AT HPGC	MASS FLOW AT HPGC
100 deg.C (212 deg.F) - 130 deg.C (266 deg.F)	40 psig (55 psia)	362 ppm (164 kg/min)
130 deg.C (266 deg.F) - 170 deg.C (338 deg.F)	40 psig (55 psia)	349 ppm (158 kg/min)
170 deg.C	40 psig (55 psia)	333 ppm (151 kg/min)

©A350

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

ASU OUTPUT TEMPERATURE RANGE	PRESSURE AT HPGC	MASS FLOW AT HPGC
(338 deg.F)		
-		
210 deg.C		
(410 deg.F)		
210 deg.C		
(410 deg.F)		
-	40 psig (55 psia)	319 ppm (144 kg/min)
260 deg.C		
(500 deg.F)		

5-6-0 **Ground Pneumatic Power Requirements**

**ON A/C A350-1000 A350-900

Ground Pneumatic Power Requirements

1. General

This section provides the time necessary to cool down or heat up the aircraft cabin to the applicable temperature (dynamic cases with aircraft empty).

ABBREVIATION	DEFINITION
A/C	Aircraft
АНМ	Aircraft Handling Manual
GSE	Ground Service Equipment
IFE	In-Flight Entertainment
LP	Low Pressure
OAT	Outside Air Temperature
PCA	Pre-Conditioned Air

- The air flow rates and temperature requirements for the GSE, provided in Sections 5.6 and 5.7, are given at A/C ground connection.
 - NOTE: The cooling capability of a vapour-compression refrigeration system is frequently expressed on the basis of tons of refrigeration (1 ton \equiv 3.5 kW), which is the rate of heat transfer in the evaporator (or the rate of heat transfer to the air passing through the evaporator). The cooling capability of the equipment (kW) is only indication and is not sufficient by itself to make sure of the performance. The air temperature and flow rate combinations at A/C inlet are the requirements that the equipment must obey to make sure this performance.
- B. The air flow rates and temperature requirements for the GSE are given for the A/C in the configuration "2 LP ducts connected".
 - NOTE: The maximum air flow is operated by the limitation on pressure at the ground connection.
- For temperatures at ground connection below 2 deg.C (35.60 deg.F) (Subfreezing), the ground equipment shall be compliant with the Airbus document "Subfreezing PCA Carts -Compliance Document for Suppliers" (contact Airbus to get this document) defining all the requirements with which Subfreezing Pre-Conditioning Air equipment must comply to allow its use on Airbus aircraft. These requirements are in addition to the functional specifications included in the IATA AHM997.

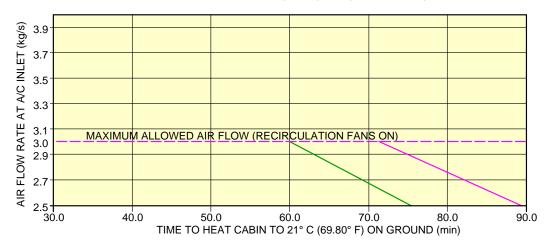
**ON A/C A350-900

2. Ground Pneumatic Power Requirements

This section provides the ground pneumatic power requirements for:

- Heating (pull up) the cabin, initially at OAT, up to 21 deg.C (69.80 deg.F) (FIGURE 5-6-0-991-001-A Sheet 1).
- Cooling (pull down) the cabin, initially at OAT, down to 27 deg.C (80.60 deg.F) (FIGURE 5-6-0-991-001-A Sheet 2).

**ON A/C A350-1000

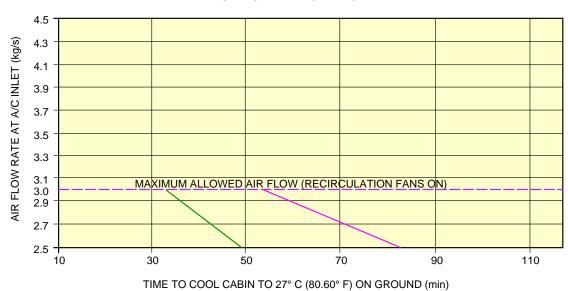

3. Ground Pneumatic Power Requirements

This section provides the ground pneumatic power requirements for:

- Heating (pull up) the cabin, initially at OAT, up to 21 deg.C (69.80 deg.F) (FIGURE 5-6-0-991-002-A Sheet 1).
- Cooling (pull down) the cabin, initially at OAT, down to 27 deg.C (80.60 deg.F) (FIGURE 5-6-0-991-002-A Sheet 2).

**ON A/C A350-900

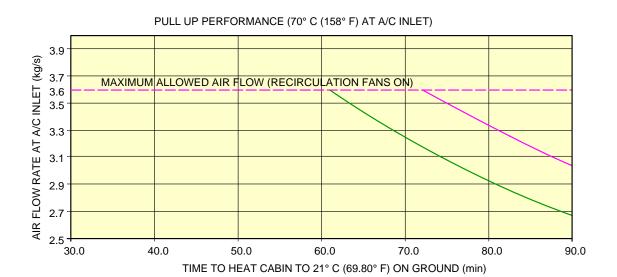
PULL UP PERFORMANCE (70° C (158° F) AT A/C INLET)


P_AC_050600_1_0010001_01_04

Ground Pneumatic Power Requirements Heating (Sheet 1 of 2) FIGURE-5-6-0-991-001-A01

[—] PU1: OAT ISA -38° C (-100.40° F); A/C INLET 70° C (158° F); A/C EMPTY; IFE OFF; NO SOLAR LOAD; LIGHTS ON; RECIRCULATION FANS ON

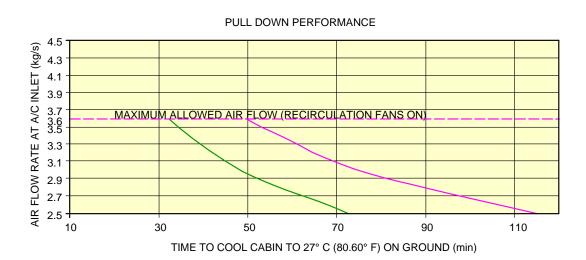
[—] PU2: OAT ISA -45° C (-113° F); A/C INLET 70° C (158° F); A/C EMPTY; IFE OFF; NO SOLAR LOAD; LIGHTS ON; RECIRCULATION FANS ON


PULL DOWN PERFORMANCE

- PD4: OAT ISA 23° C (73.40° F); A/C INLET 2° C (35.60° F); A/C EMPTY; IFE OFF; SOLAR LOAD; LIGHTS ON; RECIRCULATION FANS ON
- PD5: OAT ISA 23° C (73.40° F); A/C INLET -10° C (-50° F); A/C EMPTY; IFE OFF; SOLAR LOAD; LIGHTS ON; RECIRCULATION FANS ON

P_AC_050600_1_0010001_02_03

Ground Pneumatic Power Requirements Cooling (Sheet 2 of 2) FIGURE-5-6-0-991-001-A01



P_AC_050600_1_0020001_01_01

Ground Pneumatic Power Requirements Heating (Sheet 1 of 2) FIGURE-5-6-0-991-002-A01

[—] PU1: OAT ISA -38° C (-100.40° F); A/C INLET 70° C (158° F); A/C EMPTY; IFE OFF; NO SOLAR LOAD; LIGHTS ON; RECIRCULATION FANS ON

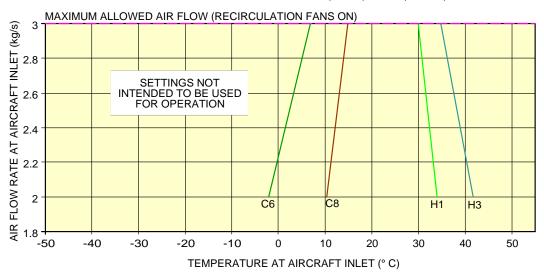
[—] PU2: OAT ISA -45° C (-113° F); A/C INLET 70° C (158° F); A/C EMPTY; IFE OFF; NO SOLAR LOAD; LIGHTS ON; RECIRCULATION FANS ON

- PD4: OAT ISA 23° C (73.40° F); A/C INLET 2° C (35.60° F); A/C EMPTY; IFE OFF; SOLAR LOAD; LIGHTS ON; RECIRCULATION FANS ON
- PD4A: OAT ISA 23° C (73.40° F); A/C INLET -10° C (-50° F); A/C EMPTY; IFE OFF; SOLAR LOAD; LIGHTS ON; RECIRCULATION FANS ON

P_AC_050600_1_0020001_02_01

Ground Pneumatic Power Requirements Cooling (Sheet 2 of 2) FIGURE-5-6-0-991-002-A01

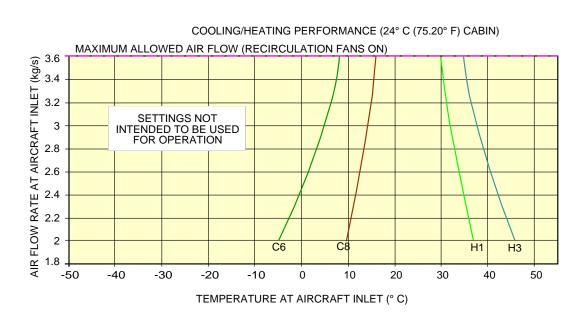
5-7-0 Preconditioned Airflow Requirements


**ON A/C A350-1000 A350-900

<u>Preconditioned Airflow Requirements</u>

1. This section gives the preconditioned airflow rate and temperature necessary to keep the cabin temperature at 24 deg.C (75.20 deg.F).

These settings must not be used for operation (they are not alternatives for the settings given in the AMM). They are based on theoretical simulations and give the picture of a real steady state. The function of the air conditioning (cooling) on the ground (described in the AMM) is to keep the cabin temperature below 24 deg.C (75.20 deg.F) during the boarding-up and until the dispatch of the aircraft (thus it is not a steady state).


COOLING/HEATING PERFORMANCE (24° C (75.20° F) CABIN)

- OAT ISA 23° C (73.40° F); AIRCRAFT EMPTY; IFE OFF; LIGHTS ON; SOLAR LOAD; RECIRCULATION FANS ON
- OAT ISA; AIRCRAFT EMPTY; IFE OFF; LIGHTS ON; SOLAR LOAD; RECIRCULATION FANS ON
- OAT ISA -38° C (-100.40° F); AIRCRAFT EMPTY; IFE OFF; NO SOLAR LOAD; LIGHTS ON; RECIRCULATION FANS ON
- OAT ISA -55° C (-131° F); AIRCRAFT EMPTY; IFE OFF; NO SOLAR LOAD; LIGHTS ON; RECIRCULATION FANS ON

P_AC_050700_1_0010001_01_04

Preconditioned Airflow Requirements FIGURE-5-7-0-991-001-A01

- OAT ISA 23° C (73.40° F); AIRCRAFT EMPTY; IFE OFF; LIGHTS ON; SOLAR LOAD; RECIRCULATION FANS ON
- OAT ISA; AIRCRAFT EMPTY; IFE OFF; LIGHTS ON; SOLAR LOAD; RECIRCULATION FANS ON
- OAT ISA -38° C (-100.40° F); AIRCRAFT EMPTY; IFE OFF; NO SOLAR LOAD; LIGHTS ON; RECIRCULATION FANS ON
- OAT ISA -55° C (-131° F); AIRCRAFT EMPTY; IFE OFF; NO SOLAR LOAD; LIGHTS ON; RECIRCULATION FANS ON

P_AC_050700_1_0020002_01_01

Preconditioned Airflow Requirements FIGURE-5-7-0-991-002-B01

5-8-0 Ground Towing Requirements

**ON A/C A350-1000 A350-1000F A350-900

Ground Towing Requirements

1. This section provides information on aircraft towing.

The A350 is designed with means for conventional or towbarless towing. Information/procedures can be found in chapter 9 of the Aircraft Maintenance Manual.

Status on towbarless towing equipment qualification can be found in ISI 09.11.00001.

<u>NOTE</u>: The NLG steering deactivation pin has the same design for all Airbus programs. It is possible to tow or push the aircraft, at maximum ramp weight with engines at zero or up to idle thrust, using a towbar attached to the NLG.

One towbar fitting is installed at the front of the leg (optional towing fitting for towing from the rear of the NLG available).

The main landing gears have attachment points for towing or debogging (for details, ARM 7).

This section shows the chart to determine the drawbar pull and tow tractor mass requirements as a function of the following physical characteristics:

- Aircraft weight,
- Number of engines at idle,
- Slope.

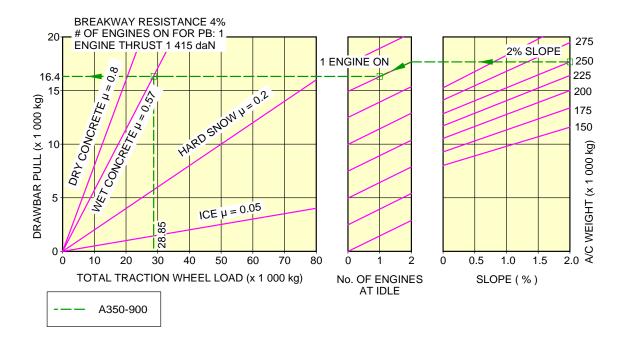
The chart is based on the A350 engine type with the highest idle thrust. The chart is therefore valid for all A350 models.

2. Towbar design guidelines

The A350 towbar requirements are identical to the towbar requirements of the long range aircraft.

- ISO 8267-1, "Aircraft Towbar Attachment Fitting Interface Requirements Part 1: Main Line Aircraft".
- ISO 9667, "Aircraft Ground Support Equipment Towbars",
- IATA Airport Handling Manual AHM 958, "Functional Specification for an Aircraft Towbar".

A conventional type towbar should be equipped with a damping system (to protect the NLG against jerks), a rotating toweye and with towing shear pins:


- A traction shear pin calibrated at 28 620 daN (64 340 lbf),
- A torsion pin calibrated at 3 130 m.daN (277 028 lbf.in).

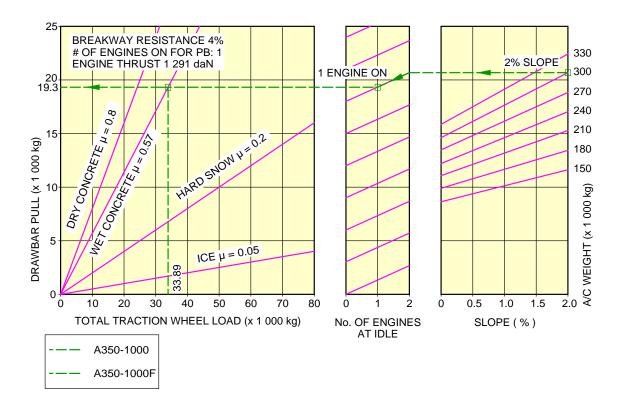
The towing head is designed according to ISO 8267-1, cat. III.

@A350

AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING

**ON A/C A350-900

EXAMPLE HOW TO DETERMINE THE TRACTION WHEEL LOAD REQUIREMENT TO TOW A A350-900 AT 250 000 kg, AT 2% SLOPE, 1 ENGINE AT IDLE AND FOR WET TARMAC CONDITIONS:


- ON THE RIGHT HAND SIDE OF THE GRAPH, CHOOSE THE RELEVANT AIRCRAFT WEIGHT (250 000 kg),
- FROM THIS POINT DRAW A PARALLEL LINE TO THE REQUIRED SLOPE PERCENTAGE (2%),
 FROM THIS POINT OBTAINED DRAW A STRAIGHT HORIZONTAL LINE UNTIL №. OF ENGINES AT IDLE = 2,
- FROM THIS POINT DRAW A PARALLEL LINE TO THE REQUESTED NUMBER OF ENGINES (1),
- FROM THIS POINT DRAW A STRAIGHT HORIZONTAL LINE TO THE DRAWBAR PULL AXIS,
 THE Y-COORDINATE OBTAINED IS THE NECESSARY DRAWBAR PULL FOR THE TRACTOR (16 400 kg),
- SEARCH THE INTERSECTION WITH THE "WET CONCRETE" LINE.
- THE OBTAINED X-COORDINATE IS THE TOTAL TRACTION WHEEL LOAD (28 850 kg).

NOTE:

USE A TRACTOR WITH A LIMITED DRAWBAR PULL TO PREVENT LOADS ABOVE THE TOW-BAR SHEAR-PIN CAPACITY. FOR ALL WHEEL-DRIVEN VEHICLES, THE TOTAL TRACTION WHEEL LOAD IS THE TRACTOR WEIGHT.

P_AC_050800_1_0010001_01_05

Ground Towing Requirements FIGURE-5-8-0-991-001-A01

EXAMPLE HOW TO DETERMINE THE TRACTION WHEEL LOAD REQUIREMENT TO TOW A A350-1000 AT 300 000 kg, AT 2% SLOPE, 1 ENGINE AT IDLE AND FOR WET TARMAC CONDITIONS:

- ON THE RIGHT HAND SIDE OF THE GRAPH, CHOOSE THE RELEVANT AIRCRAFT WEIGHT (300 000 kg), FROM THIS POINT DRAW A PARALLEL LINE TO THE REQUIRED SLOPE PERCENTAGE (2%),
- FROM THIS POINT OBTAINED DRAW A STRAIGHT HORIZONTAL LINE UNTIL No. OF ENGINES AT IDLE = 2,
- FROM THIS POINT DRAW A PARALLEL LINE TO THE REQUESTED NUMBER OF ENGINES (1),
- FROM THIS POINT DRAW A STRAIGHT HORIZONTAL LINE TO THE DRAWBAR PULL AXIS.
- THE Y-COORDINATE OBTAINED IS THE NECESSARY DRAWBAR PULL FOR THE TRACTOR (19 300 kg),
- SEARCH THE INTERSECTION WITH THE "WET CONCRETE" LINE. THE OBTAINED X-COORDINATE IS THE TOTAL TRACTION WHEEL LOAD (33 890 kg).

NOTE:

USE A TRACTOR WITH A LIMITED DRAWBAR PULL TO PREVENT LOADS ABOVE THE TOW-BAR SHEAR-PIN CAPACITY. FOR ALL WHEEL-DRIVEN VEHICLES, THE TOTAL TRACTION WHEEL LOAD IS THE TRACTOR WEIGHT.

P_AC_050800_1_0010004_01_01

Ground Towing Requirements FIGURE-5-8-0-991-001-D01

5-9-0 De-Icing and External Cleaning

**ON A/C A350-1000 A350-1000F A350-900

De-Icing and External Cleaning

1. De-Icing and External Cleaning on Ground

The mobile equipment for aircraft de-icing and external cleaning must be capable of reaching heights up to approximately 17 m (56 ft.).

2. De-Icing

AIRCRAFT TYPE	Wing Top Surface (Both Sides)	Wingtip Devices (Both Inside and Outside Surfaces) (Both Sides)	HTP Top Surface (Both Sides)	VTP (Both Sides)
A350–900	354 m2 (3 810 ft.2)	25 m2 (269 ft.2)	72 m2 (775 ft.2)	102 m2 (1 098 ft.2)
A350–1000	370 m2 (3 983 ft.2)		72 m2 (775 ft.2)	102 m2 (1 098 ft.2)
A350–1000F	370 m2 (3 983 ft.2)	13() m2	72 m2 (775 ft.2)	102 m2 (1 098 ft.2)

AIRCRAFT TYPE	Fuselage Top Surface (Top Third - 120° Arc)	Nacelle and Pylon (Top Third - 120° Arc) (All Engines)	Total De-Iced Area
14.320-000		56 m2 (603 ft.2)	966 m2 (10 398 ft.2)
14350-1000		56 m2 (603 ft.2)	1 024 m2 (11 022 ft.2)
	I(Δ ()3/ ff ラ)	56 m2 (603 ft.2)	1 004 m2 (10 807 ft.2)

NOTE: Dimensions are approximate.

3. External Cleaning

AIRCRAFT TYPE	Wing Top Surface (Both Sides)	Wing Lower Surface (Including Flap Track Fairing) (Both Sides)	Wingtip Devices (Both Inside and Outside Surfaces) (Both Sides)	HTP Top Surface (Both Sides)	HTP Lower Surface (Both Sides)
A350–900					72 m2
A330-300	(3 810 ft.2)	(4 133 ft.2)	(269 ft.2)	(775 ft.2)	(775 ft.2)
A350–1000	370 m2	399 m2	30 m2	72 m2	72 m2
A330-1000	(3 983 ft.2)	(4 295 ft.2)	(323 ft.2)	(775 ft.2)	(775 ft.2)
A350–1000F	370 m2 (3 983 ft.2)				72 m2 (775 ft.2)

AIRCRAFT TYPE	VTP	Fuselage and	Nacelle and Pylon	Total
AIRCRAFTITE	(Both Sides)	Belly Fairing	(All Engines)	Cleaned Area
A350–900	102 m2	1 073 m2	166 m2	2 242 m2
	(1 098 ft.2)	(11 550 ft.2)	(1 787 ft.2)	(24 133 ft.2)
A350–1000	102 m2	1 187 m2	166 m2	2 392 m2
A330-1000	(1 098 ft.2)	(12 777 ft.2)	(1 787 ft.2)	(25 747 ft.2)
A350–1000F	102 m2	1 127 m2	166 m2	2 331 m2
	(1 098 ft.2)	(12 131 ft.2)	(1 787 ft.2)	(25 091 ft.2)

 $\underline{\mathsf{NOTE}}: \ \ \mathsf{Dimensions} \ \mathsf{are} \ \mathsf{approximate}.$

OPERATING CONDITIONS

6-1-0 Engine Exhaust Velocities and Temperatures

**ON A/C A350-1000 A350-1000F A350-900

Engine Exhaust Velocities and Temperatures

General

This section provides the estimated engine exhaust-efflux velocity and temperature contours for Ground Idle, Breakaway 11% MTO, Breakaway 22% MTO and Maximum Take-Off (MTO) conditions for the A350 engines.

The contours are available for the Rolls-Royce Trent XWB-84 and Trent XWB-97 engines.

The Maximum Take-Off data are presented at the maximum thrust rating.

The Breakaway data are presented at a rating that corresponds to the minimum thrust level necessary to start the movement of the A350 at its maximum ramp weight, from a static position or when on an uphill surface with a slope of 1.5%. Breakaway thrust corresponds to 11% MTO when applied on both engines and 22% MTO when applied on a single engine (Idle thrust on the other engine).

The Idle data are directly provided by the engine manufacturer.

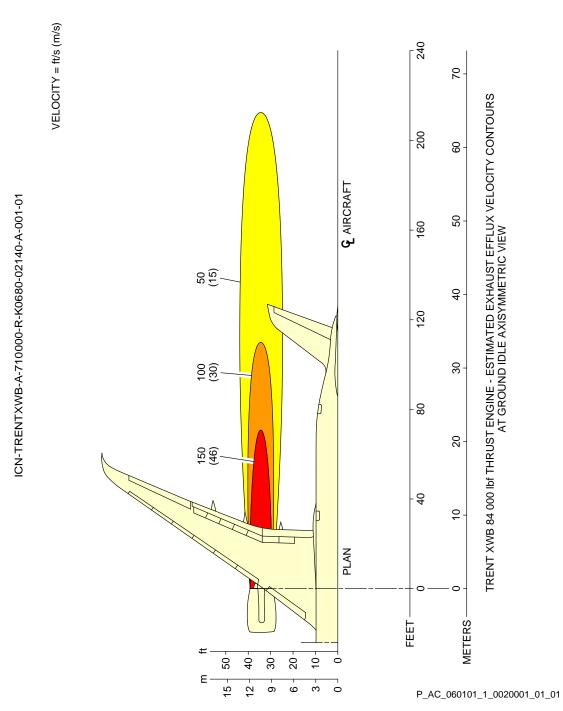
In the charts, the longitudinal distances are measured from the inboard engine core-nozzle exit section. The lateral distances are measured from the aircraft fuselage centerline.

The estimated efflux data are shown at ISA +15K (+15°C), Sea Level Static and no headwind conditions.

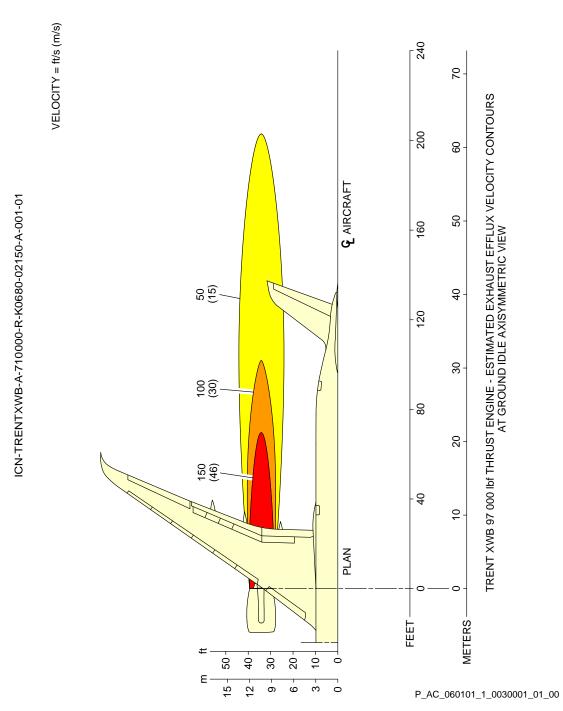
The analysis assumes that the core and the bypass streams are fully mixed by the nozzle exit plane. The effects of on-wing installation or ground proximity are not taken into account and the ambient air is assumed to be still.

The velocity contours are presented at 50 ft/s (15 m/s), 100 ft/s (30 m/s) and 150 ft/s (46 m/s). The temperature contours are shown at ambient temperature +10K (+10°C), ambient temperature +20K (+20°C) and ambient temperature +30K (+30°C).

In the case of the velocity contours for the Maximum Take-Off operating condition, there is some coalescence of the jet plumes from the port and starboard engines, hence the contours are presented with both a plan view and a side view for twin-engine operation.


An axisymmetric view is also provided for this case, to be applied only for single engine operation. For the other figures, there is no interference between the two engine plumes in the operating conditions studied and hence the efflux can be adequately described by the axisymmetric contours of a single plume.

6-1-1 Engine Exhaust Velocities Contours - Ground Idle Power

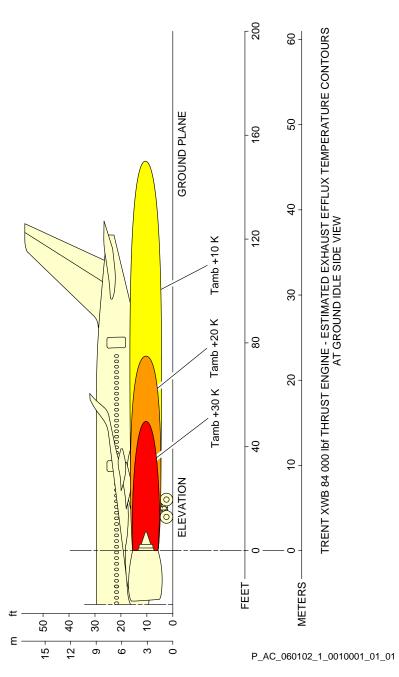

**ON A/C A350-1000 A350-1000F A350-900

Engine Exhaust Velocities Contours - Ground Idle Power

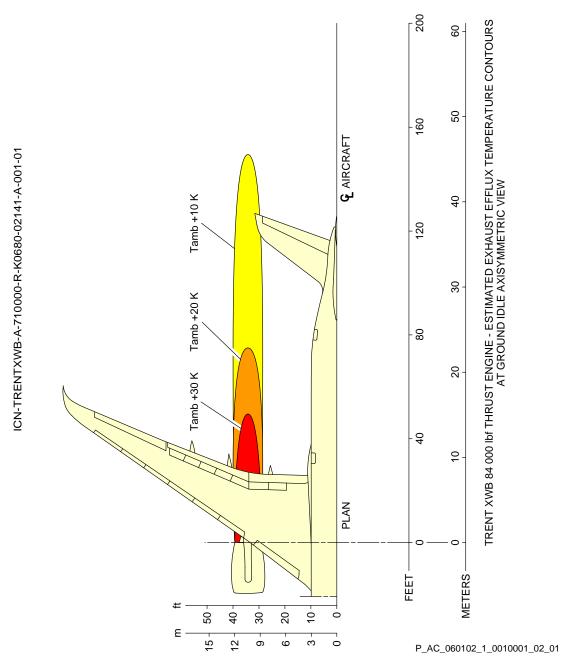
1. This section provides engine exhaust velocities contours at ground idle power.

Ground Idle Power - TRENT XWB-84 Engine FIGURE-6-1-1-991-002-A01

Ground Idle Power - TRENT XWB-97 Engine FIGURE-6-1-1-991-003-A01

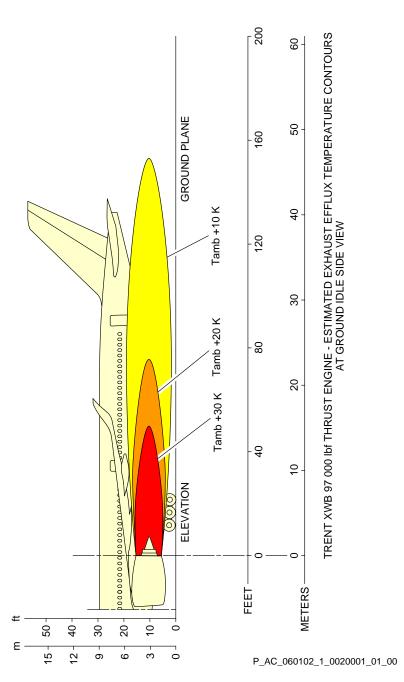

6-1-2 Engine Exhaust Temperatures Contours - Ground Idle Power

**ON A/C A350-1000 A350-1000F A350-900

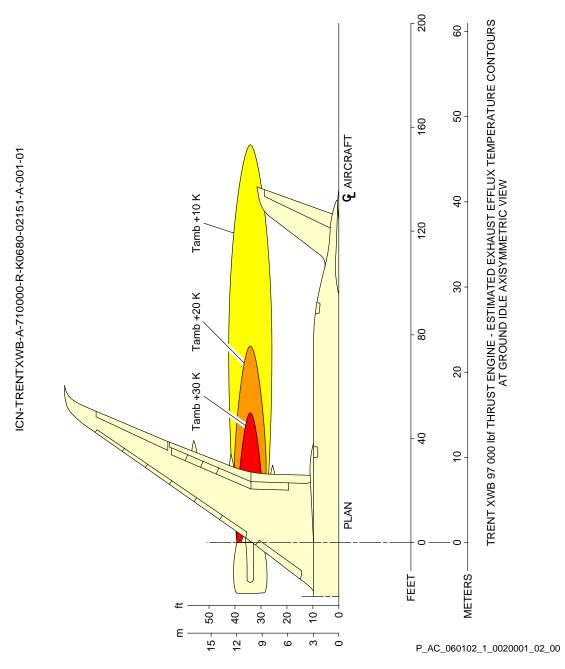

Engine Exhaust Temperatures Contours - Ground Idle Power

1. This section provides engine exhaust temperatures contours at ground idle power.

ICN-TRENTXWB-A-710000-R-K0680-02294-A-001-01



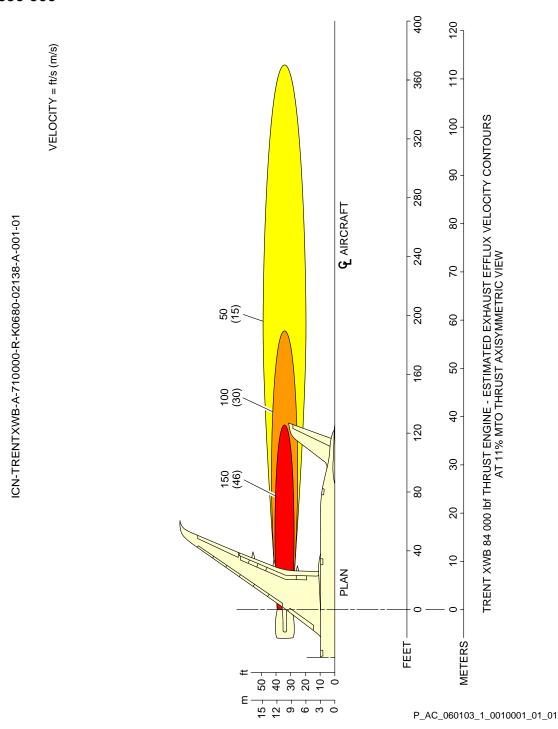
Ground Idle Power - TRENT XWB-84 Engine (Sheet 1 of 2) FIGURE-6-1-2-991-001-A01



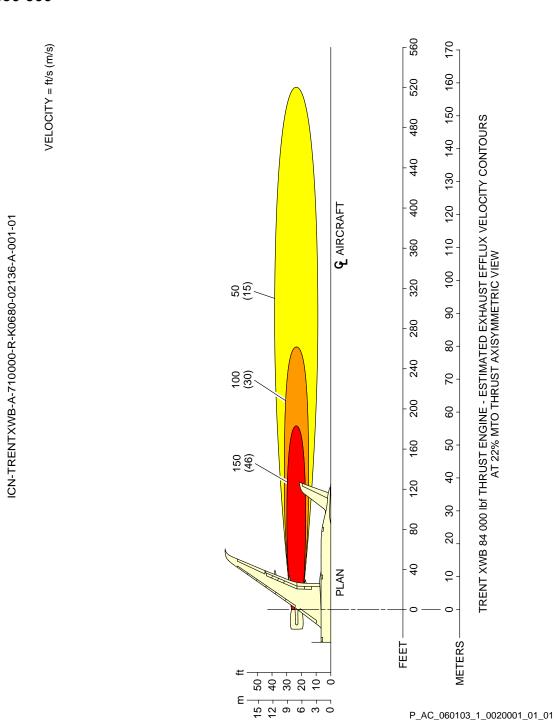
Ground Idle Power - TRENT XWB-84 Engine (Sheet 2 of 2) FIGURE-6-1-2-991-001-A01

ICN-TRENTXWB-A-710000-R-K0680-02302-A-001-01

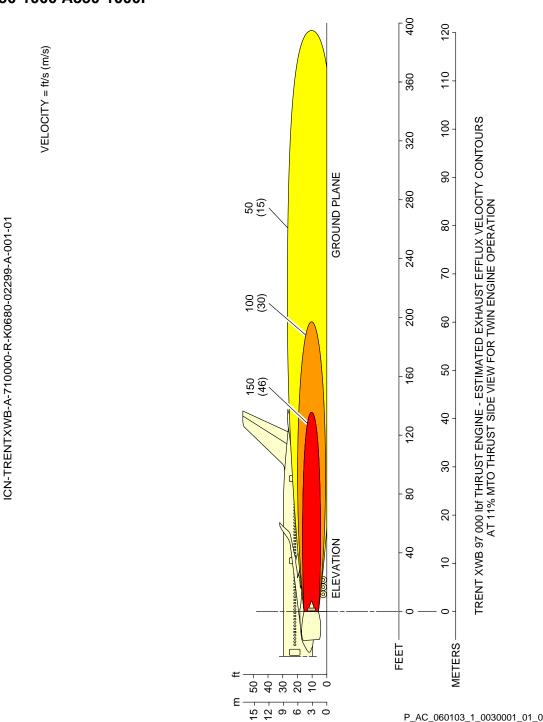
Ground Idle Power - TRENT XWB-97 Engine (Sheet 1 of 2) FIGURE-6-1-2-991-002-A01


Ground Idle Power - TRENT XWB-97 Engine (Sheet 2 of 2) FIGURE-6-1-2-991-002-A01

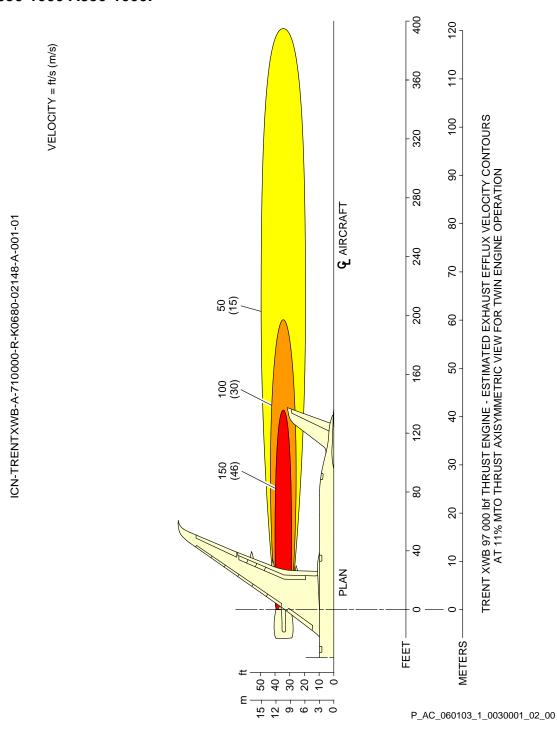
6-1-3 Engine Exhaust Velocities Contours - Breakaway Power


**ON A/C A350-1000 A350-1000F A350-900

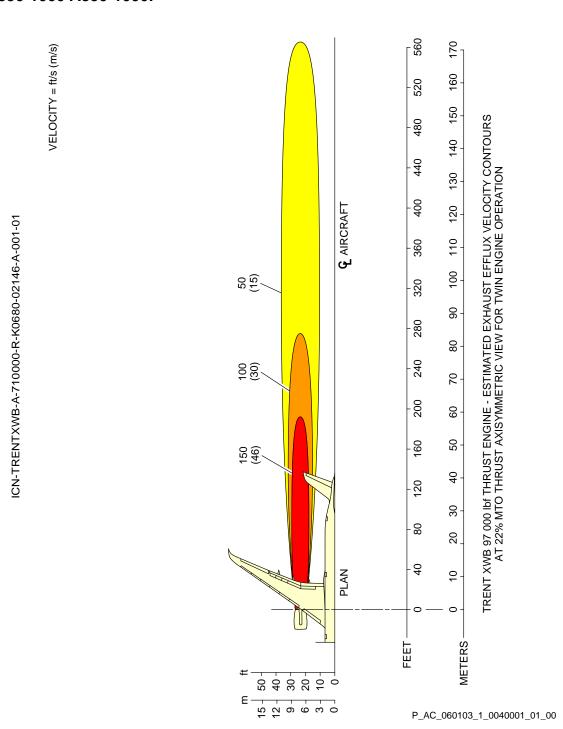
Engine Exhaust Velocities Contours - Breakaway Power


1. This section provides engine exhaust velocities contours at breakaway power.

Breakaway Power (11% MTO Thrust) - TRENT XWB-84 Engine FIGURE-6-1-3-991-001-A01



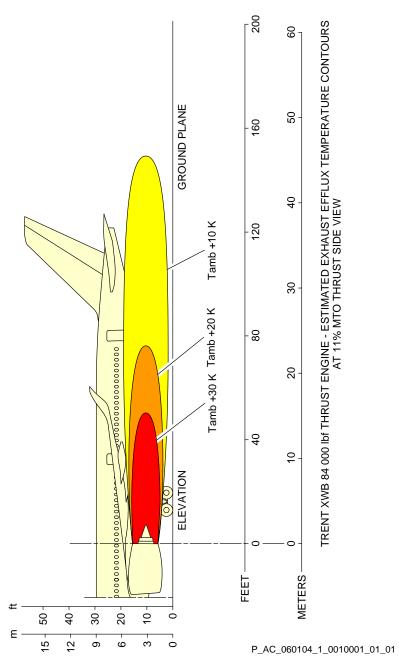
Breakaway Power (22% MTO Thrust) - TRENT XWB-84 Engine FIGURE-6-1-3-991-002-A01



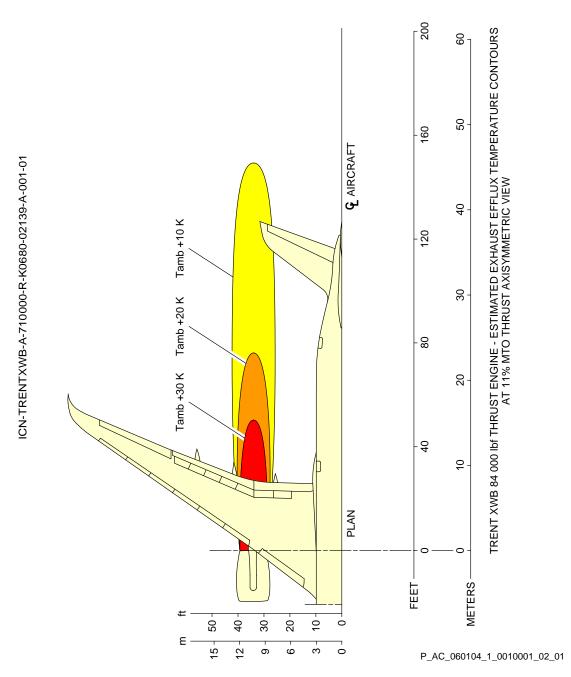
Breakaway Power (11% MTO Thrust) - TRENT XWB-97 Engine (Sheet 1 of 2) FIGURE-6-1-3-991-003-A01

P_AC_060103_1_0030001_01_00

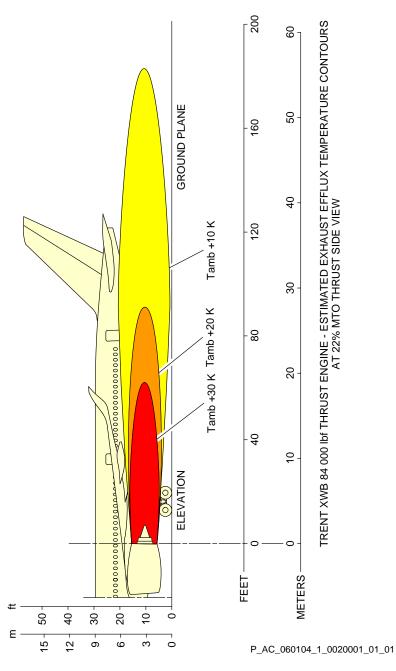
Breakaway Power (11% MTO Thrust) - TRENT XWB-97 Engine (Sheet 2 of 2)
FIGURE-6-1-3-991-003-A01


Breakaway Power (22% MTO Thrust) - TRENT XWB-97 Engine FIGURE-6-1-3-991-004-A01

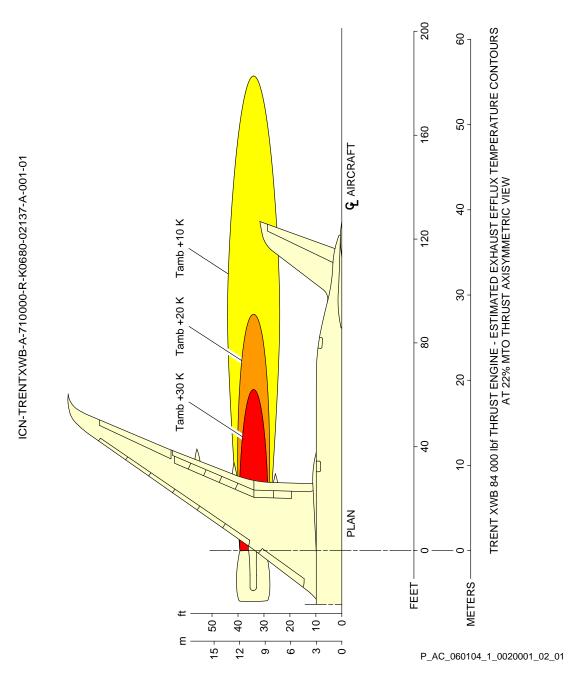
6-1-4 Engine Exhaust Temperatures Contours - Breakaway Power


**ON A/C A350-1000 A350-1000F A350-900

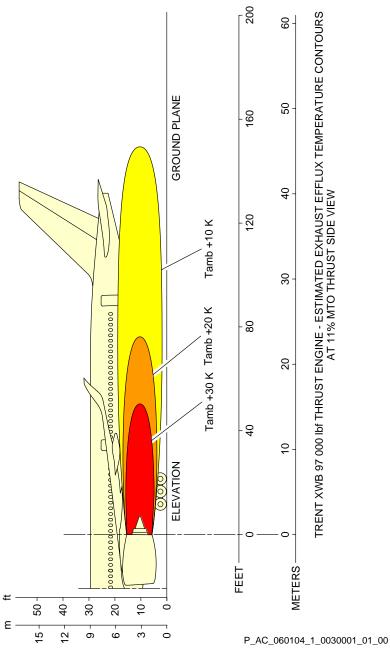
Engine Exhaust Temperatures Contours - Breakaway Power


1. This section provides engine exhaust temperatures contours at breakaway power.

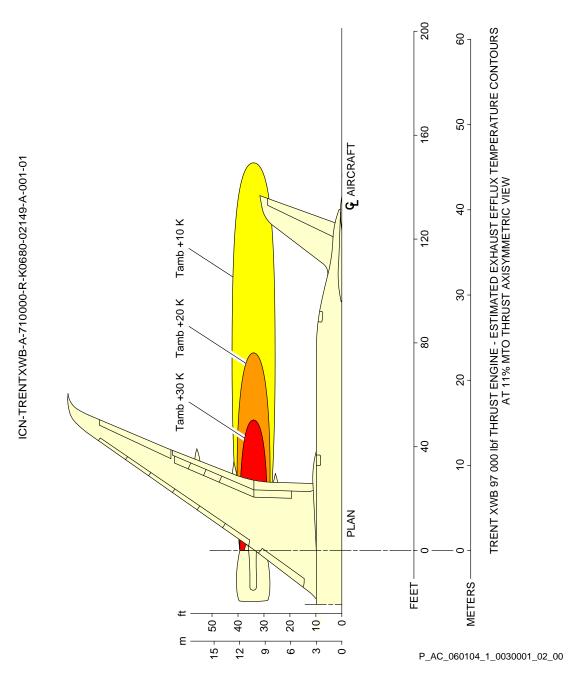
Breakaway Power (11% MTO Thrust) - TRENT XWB-84 Engine (Sheet 1 of 2)
FIGURE-6-1-4-991-001-A01

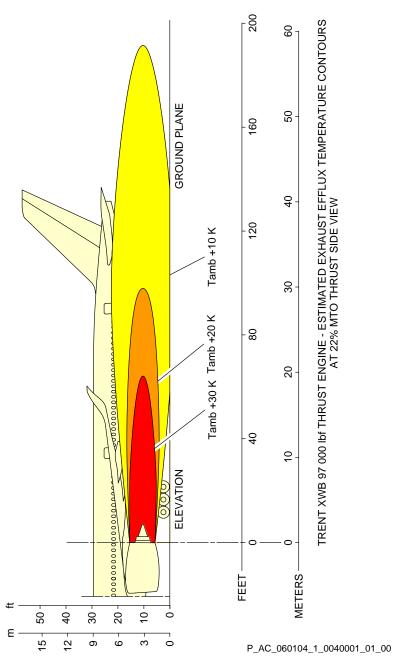


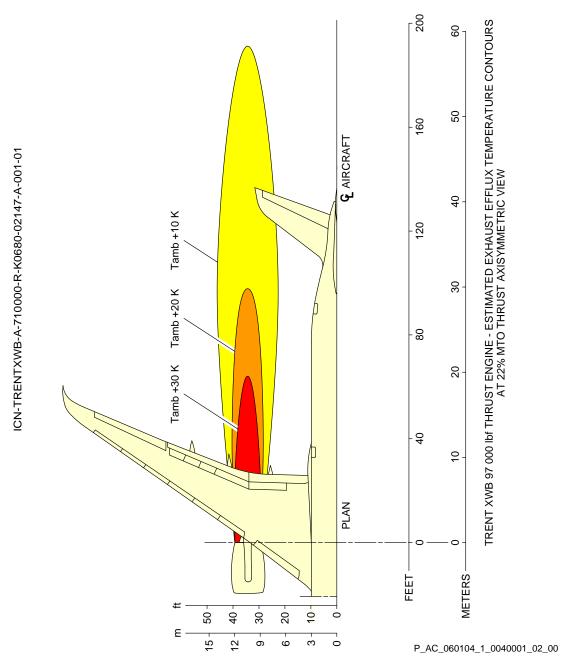
Breakaway Power (11% MTO Thrust) - TRENT XWB-84 Engine (Sheet 2 of 2)
FIGURE-6-1-4-991-001-A01



Breakaway Power (22% MTO Thrust) - TRENT XWB-84 Engine (Sheet 1 of 2)
FIGURE-6-1-4-991-002-A01


ICN-TRENTXWB-A-710000-R-K0680-02290-A-001-01


Breakaway Power (22% MTO Thrust) - TRENT XWB-84 Engine (Sheet 2 of 2)
FIGURE-6-1-4-991-002-A01


Breakaway Power (11% MTO Thrust) - TRENT XWB-97 Engine (Sheet 1 of 2)
FIGURE-6-1-4-991-003-A01

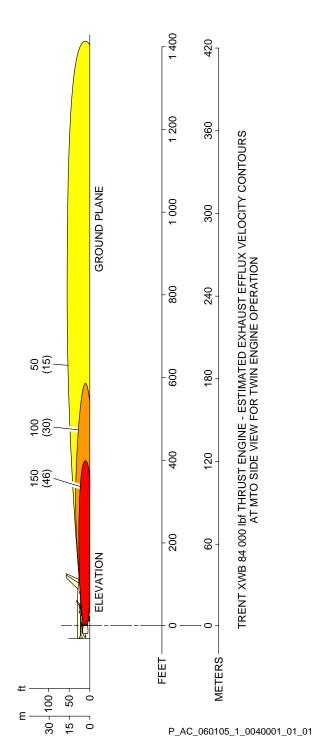
Breakaway Power (11% MTO Thrust) - TRENT XWB-97 Engine (Sheet 2 of 2)
FIGURE-6-1-4-991-003-A01

Breakaway Power (22% MTO Thrust) - TRENT XWB-97 Engine (Sheet 1 of 2)
FIGURE-6-1-4-991-004-A01

Breakaway Power (22% MTO Thrust) - TRENT XWB-97 Engine (Sheet 2 of 2)
FIGURE-6-1-4-991-004-A01

6-1-5 Engine Exhaust Velocities Contours - Max Take-Off Power

**ON A/C A350-1000 A350-1000F A350-900

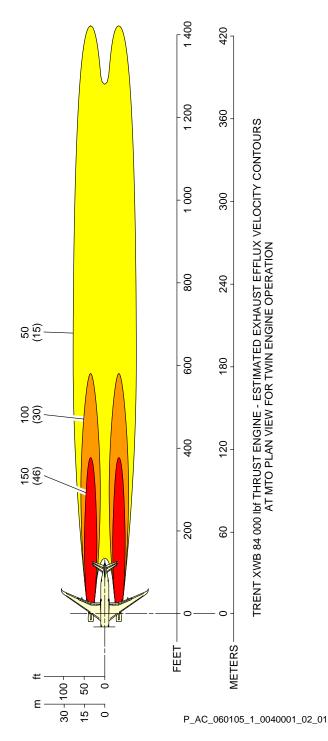

Engine Exhaust Velocities Contours - Max Take-Off Power

1. This section provides engine exhaust velocities contours at max take-off power.

**ON A/C A350-900

VELOCITY = ft/s (m/s)

ICN-TRENTXWB-A-710000-R-K0680-02133-A-001-01

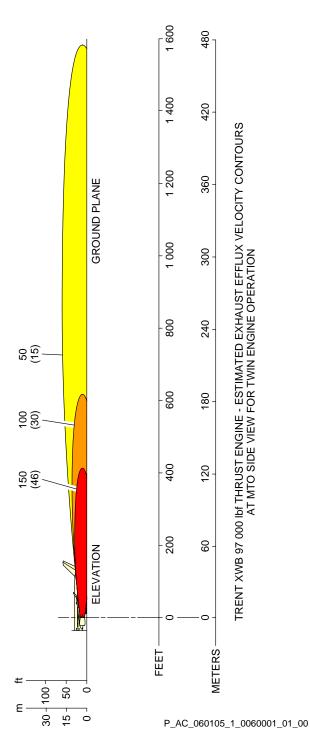


Max Take-Off Power - TRENT XWB-84 Engine (Sheet 1 of 2) FIGURE-6-1-5-991-004-A01

**ON A/C A350-900

VELOCITY = ft/s (m/s)

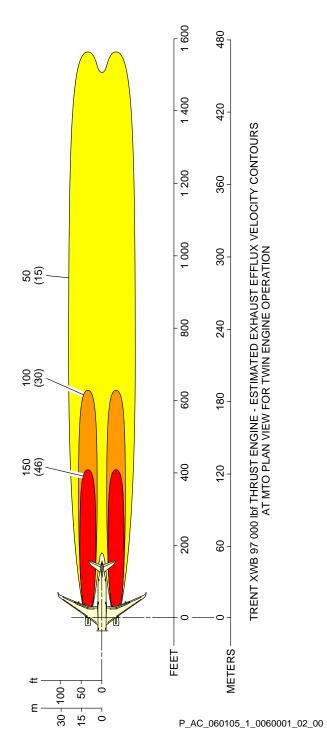
ICN-TRENTXWB-A-710000-R-K0680-02132-A-001-01



Max Take-Off Power - TRENT XWB-84 Engine (Sheet 2 of 2) FIGURE-6-1-5-991-004-A01

**ON A/C A350-1000 A350-1000F

ICN-TRENTXWB-A-710000-R-K0680-02143-A-001-01



Max Take-Off Power - TRENT XWB-97 Engine (Sheet 1 of 2) FIGURE-6-1-5-991-006-A01

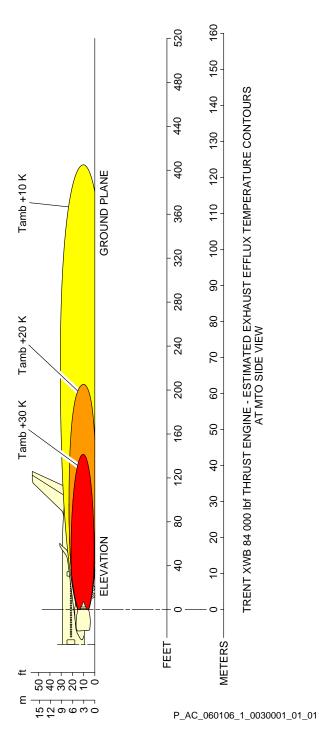
**ON A/C A350-1000 A350-1000F

VELOCITY = ft/s (m/s)

ICN-TRENTXWB-A-710000-R-K0680-02142-A-001-01

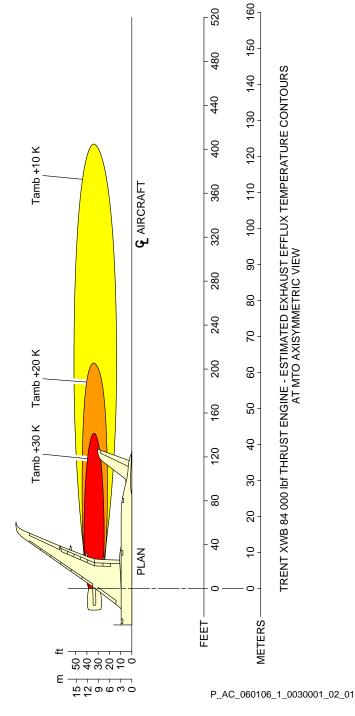
Max Take-Off Power - TRENT XWB-97 Engine (Sheet 2 of 2) FIGURE-6-1-5-991-006-A01

6-1-6 Engine Exhaust Temperatures Contours - Max Take-Off Power


**ON A/C A350-1000 A350-1000F A350-900

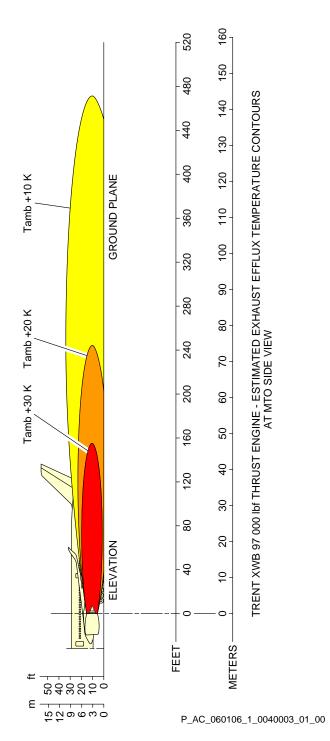
Engine Exhaust Temperatures Contours - Max Take-Off Power

1. This section provides engine exhaust temperatures contours at max take-off power.


**ON A/C A350-900

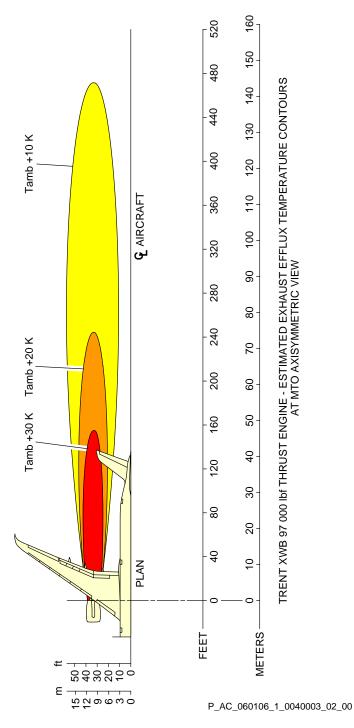
Max Take-Off Power - TRENT XWB-84 Engine (Sheet 1 of 2) FIGURE-6-1-6-991-003-A01

**ON A/C A350-900



Max Take-Off Power - TRENT XWB-84 Engine (Sheet 2 of 2) FIGURE-6-1-6-991-003-A01

ICN-TRENTXWB-A-710000-R-K0680-02135-A-001-01


**ON A/C A350-1000 A350-1000F

Max Take-Off Power - TRENT XWB-97 Engine (Sheet 1 of 2) FIGURE-6-1-6-991-004-C01

**ON A/C A350-1000 A350-1000F

Max Take-Off Power - TRENT XWB-97 Engine (Sheet 2 of 2) FIGURE-6-1-6-991-004-C01

ICN-TRENTXWB-A-710000-R-K0680-02145-A-001-01

6-1-6

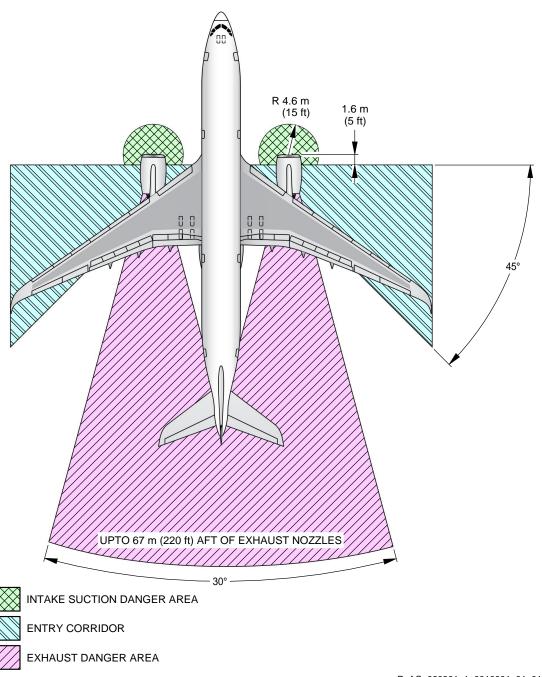
6-3-0 Danger Areas of the Engines

**ON A/C A350-1000 A350-1000F A350-900

Danger Areas of the Engines

1. Danger Areas of the Engines

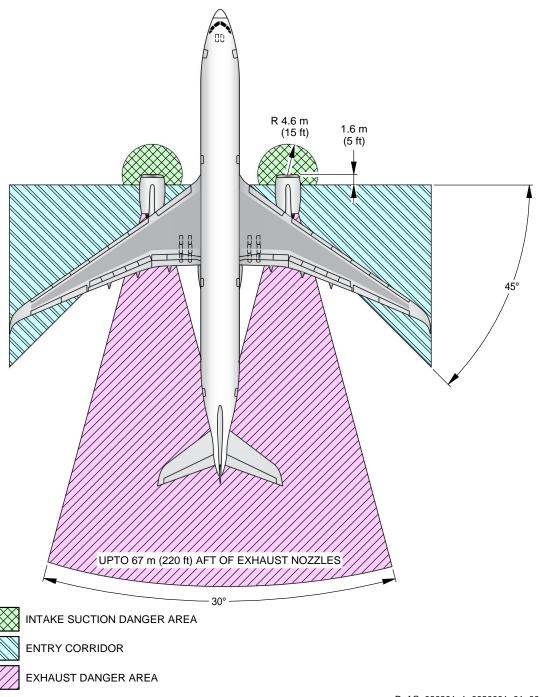
The intake suction danger areas, which are plotted in this chapter, correspond to very low suction velocities in order to prevent very low density objects (hat, handkerchief) from ingestion by engines. The primary aim of those danger areas is to protect the people working around the engines.


6-3-1 Danger Areas of the Engines - Ground Idle Power

**ON A/C A350-1000 A350-1000F A350-900

Danger Areas of the Engines - Ground Idle Power

1. This section provides danger areas of the engines at ground idle power conditions.


**ON A/C A350-900

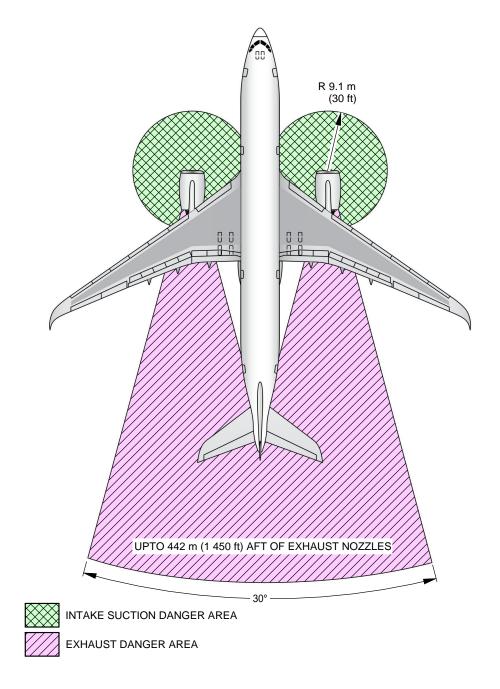
P_AC_060301_1_0010001_01_01

Ground Idle Power - TRENT XWB-84 Engine FIGURE-6-3-1-991-001-A01

**ON A/C A350-1000 A350-1000F

P_AC_060301_1_0020001_01_00

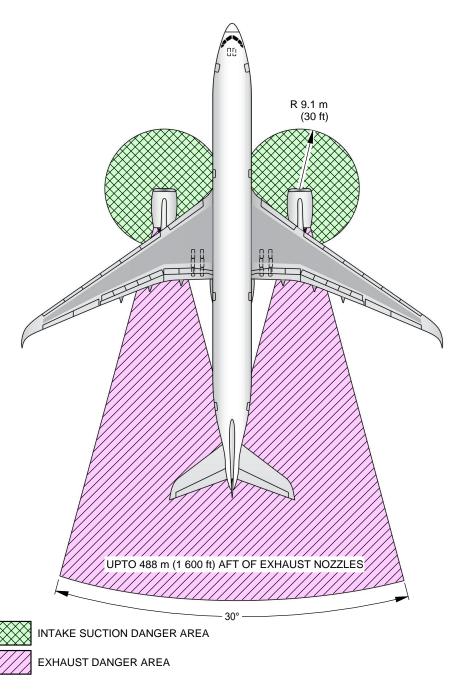
Ground Idle Power - TRENT XWB-97 Engine FIGURE-6-3-1-991-002-A01


6-3-3 Danger Areas of the Engines - Max Take-Off Power

**ON A/C A350-1000 A350-1000F A350-900

Danger Areas of the Engines - Max Take-Off Power

1. This section provides danger areas of the engines at maximum take-off power conditions.


**ON A/C A350-900

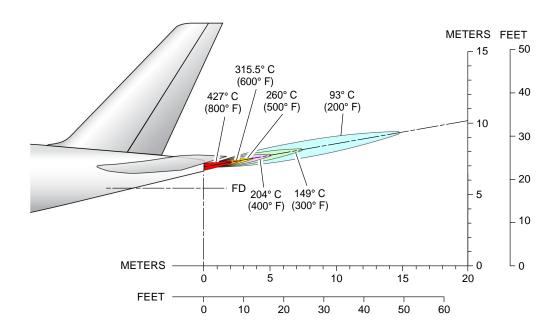
P_AC_060303_1_0010001_01_01

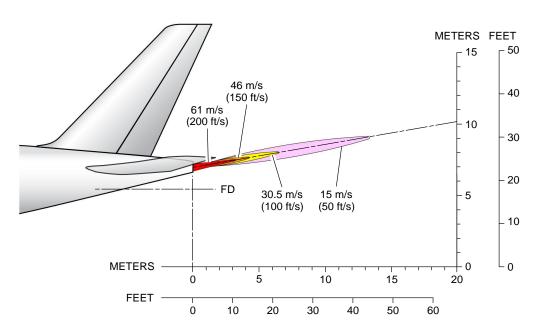
Max Take-Off Power - TRENT XWB-84 Engine FIGURE-6-3-3-991-001-A01

**ON A/C A350-1000 A350-1000F

P_AC_060303_1_0020001_01_00

Max Take-Off Power - TRENT XWB-97 Engine FIGURE-6-3-3-991-002-A01


6-4-0 APU Exhaust Velocities and Temperatures


**ON A/C A350-1000 A350-1000F A350-900

APU Exhaust Velocities and Temperatures

1. This section provides APU exhaust velocities and temperatures.

**ON A/C A350-1000 A350-1000F A350-900

P_AC_060400_1_0010001_01_01

APU Exhaust Velocities and Temperatures FIGURE-6-4-0-991-001-A01

PAVEMENT DATA

7-1-0 General Information

**ON A/C A350-1000 A350-1000F A350-900

General Information

1. A brief description of the pavement charts that follow will help in airport planning.

To aid in the interpolation between the discrete values shown, each aircraft configuration is shown with a minimum range of five loads on the Main Landing Gear (MLG).

All curves on the charts represent data at a constant specified tire pressure with:

- The aircraft loaded to the Maximum Ramp Weight (MRW),
- The CG at its maximum permissible aft position.

Pavement requirements for commercial aircraft are derived from the static analysis of loads imposed on the MLG struts.

Landing Gear Footprint:

Section 7-2-0 presents basic data on the landing gear footprint configuration, MRW and tire sizes and pressures.

Maximum Pavement Loads:

Section 7-3-0 shows maximum vertical and horizontal pavement loads for certain critical conditions at the tire-ground interfaces.

Landing Gear Loading on Pavement:

The curves related to the landing gear loading on pavement are not given in section 7-4-0. Because the relationship between the aircraft weight, the center of gravity and the landing gear loading on the pavement is not strictly linear, it cannot be shown in chart format.

But you can find in section 7-3-0 the maximum vertical and horizontal pavement loads for some critical conditions at the tire/ground interfaces for all the operational weight variants of the aircraft.

For questions related to landing gear loading on pavement, contact Airbus.

Flexible Pavement Requirements - US Army Corps of Engineers Design Method: The flexible pavement-requirements curves as per as U.S. Army Corps of Engineers Design Method are not given in section 7-5-0 since the related data is available through free software.

Sections 7-2-0 and 7-3-0 give all the inputs data required for the use of such software. For questions related to the flexible pavement requirements, contact Airbus.

Flexible Pavement Requirements - LCN Conversion Method:

The Load Classification Number (LCN) curves are not given in section 7-6-0 since the LCN system for reporting pavement strength is old and are been replaced by the ICAO recommended ACN/PCN system in 1983 and ACR/PCR system in 2020.

For questions related to the LCN system, contact Airbus.

Rigid Pavement Requirements - PCA (Portland Cement Association) Design Method: The rigid pavement requirements curves as per as Portland Cement Association Design Method are not given in section 7-7-0 since the corresponding data is available through free software. Sections 7-2-0 and 7-3-0 give all the inputs data required for the use of such software. For questions related to the rigid pavement requirements, contact Airbus.

Rigid Pavement Requirements - LCN Conversion:

The Load Classification Number (LCN) curves are not given in section 7-8-0 since the LCN system for reporting pavement strength is old and are replaced by the ICAO recommended ACN/PCN system in 1983 and ACR/PCR system in 2020.

For questions related to the LCN system, contact Airbus.

ACN/PCN Reporting System:

Section 7-9-0 gives ACN data prepared according to the ACN/PCN system as referenced in ICAO Annex 14, "Aerodromes", Volume 1 "Aerodrome Design and Operations".

Eighth Edition July 2018, incorporating Amendments 1 to 14 and ICAO doc 9157, "Aerodrome Design Manual", part 3 "Pavements" Second Edition 1983.

The ACN/PCN system is applicable until November 2024.

ACN is the Aircraft Classification Number and PCN is the related Pavement Classification Number.

An aircraft with an ACN less than or equal to the PCN can operate without restriction on the pavement.

Numerically the ACN is two times the derived single-wheel load expressed in thousands of kilograms.

The derived single-wheel load is defined as the load on a single tire inflated to 1.25 MPa (181 psi) that would have the same pavement requirements as the aircraft.

Computationally the ACN/PCN system uses the PCA program PDILB for rigid pavements and S-77-1 for flexible pavements to calculate ACN values.

The airport authority must select the method of pavement analysis.

The results of their evaluation should be reported using the following format:

PCN							
PAVEMENT TYPE	SUBGRADE CATEGORY	TIRE PRESSURE CATEGORY	EVALUATION METHOD				
R - Rigid	A - High	W - No pressure limit	T - Technical				
F - Flexible	B - Medium	X - High pressure limited to 1.75 MPa (254 psi)	U - Using aircraft				
	C - Low	Y - Medium pressure limited to 1.25 MPa (181 psi)					
		Z - Low pressure limited to 0.5 MPa (73 psi)					

Section 7-9-0 shows the aircraft ACN values.

For flexible pavements, the four subgrade categories (CBR) are:

CBR 15
CBR 10
CBR 6
CBR 3

For rigid pavements, the four subgrade categories (k) are:

A. High Strength	k = 150 MN/m³ (550 pci)
B. Medium Strength	k = 80 MN/m³ (300 pci)
C. Low Strength	k = 40 MN/m³ (150 pci)
D. Ultra Low Strength	k = 20 MN/m³ (75 pci)

ACR/PCR Reporting System:

Section 7-10-0 gives ACR data prepared according to the ACR/PCR system as referenced in ICAO Annex 14, "Aerodromes", Volume 1 "Aerodrome Design and Operations".

Eight Edition July 2018, incorporating Amendments 1 to 15 and ICAO doc 9157, "Aerodrome Design Manual", part 3 "Pavements" Third Edition 2021.

The ACR/PCR system is effective from November 2020 and will be applicable in November 2024.

ACR is the Aircraft Classification Rating and PCR is the related Pavement Classification Rating. An aircraft having an ACR equal to or less than the PCR can operate without restriction on the pavement.

Numerically the ACR is two times the derived single-wheel load expressed in hundreds of kilograms.

The derived single-wheel load is defined as the load on a single tire inflated to 1.50 Mpa (218 psi) that would have the same pavement requirements as the aircraft.

Computationally the ACR/PCR system relies on the Linear Elastic Analysis (LEA). The ACR are computed using the official ICAO-ACR software.

States can start their own methods for PCR determination, which agree with the overall parameters of the ACR/PCR method.

The results of their evaluation should be reported using the following format:

	PCR							
PAVEMENT TYPE	SUBGRADE	TIRE PRESSURE	EVALUATION METHOD					
1 AVEIVICINI I I I E	CATEGORY	CATEGORY	VALUATION METTION					
R - Rigid	A - High	W - No pressure limit	T - Technical					
F - Flexible		X - High pressure limited to 1.75 MPa (254 psi)	U - Using aircraft					
		Y - Medium pressure limited to 1.25 MPa (181 psi)						
		Z - Low pressure limited to 0.5 MPa (73 psi)						

Section 7-10-0 shows the aircraft ACR values.

For flexible and rigid pavements, the four subgrade categories are defined based on the subgrade modulus of elasticity (E):

	E = 200 MPa (29 008 psi)
B. Medium Strength	E = 120 MPa (17 405 psi)
C. Low Strength	E = 80 MPa (11 603 psi)
D. Ultra Low Strength	E = 50 MPa (7 252 psi)

7-2-0 Landing Gear Footprint


**ON A/C A350-1000 A350-1000F A350-900

Landing Gear Footprint

1. This section gives data about the landing gear footprint in relation to the aircraft Maximum Ramp Weight (MRW), tire sizes and pressures.

The landing-gear footprint information is given for all the operational weight variants of the aircraft.

**ON A/C A350-900

WEIGHT VARIANT	MAXIMUM RAMP WEIGHT	PERCENTAGE OF WEIGHT ON MAIN GEAR GROUP	NOSE GEAR TIRE SIZE	NOSE GEAR TIRE PRESSURE	MAIN GEAR TIRE SIZE	MAIN GEAR TIRE PRESSURE
A350-900 WV000 (CG 33%)	268 900 kg (592 825 lb)	93.7%	1 050x395R16 28PR	12.2 bar (177 psi)	1 400x530R23 42PR	16.6 bar (241 psi)
A350-900 WV000 (CG 38.09%)	268 900 kg (592 825 lb)	95.3%	1 050x395R16 28PR	12.2 bar (177 psi)	1 400x530R23 42PR	16.6 bar (241 psi)
A350-900 WV000 (CG 38.1%)	268 900 kg (592 825 lb)	95.3%	1 050x395R16 28PR	12.2 bar (177 psi)	1 400x530R23 42PR	16.6 bar (241 psi)
A350-900 WV001 (CG 33.2%)	275 900 kg (608 250 lb)	93.7%	1 050x395R16 28PR	12.2 bar (177 psi)	1 400x530R23 42PR	16.8 bar (244 psi)
A350-900 WV001 (CG 34.83%)	275 900 kg (608 250 lb)	94.3%	1 050x395R16 28PR	12.2 bar (177 psi)	1 400x530R23 42PR	16.8 bar (244 psi)
A350-900 WV001 (CG 37.07%)	275 900 kg (608 250 lb)	95.0%	1 050x395R16 28PR	12.2 bar (177 psi)	1 400x530R23 42PR	16.8 bar (244 psi)
A350-900 WV002 (CG 36.39%)	272 900 kg (601 650 lb)	94.8%	1 050x395R16 28PR	12.2 bar (177 psi)	1 400x530R23 42PR	16.8 bar (244 psi)

P_AC_070200_1_0010001_01_08

Landing Gear Footprint (Sheet 1 of 4) FIGURE-7-2-0-991-001-A01

**ON A/C A350-900

WEIGHT VARIANT	MAXIMUM RAMP WEIGHT	PERCENTAGE OF WEIGHT ON MAIN GEAR GROUP	NOSE GEAR TIRE SIZE	NOSE GEAR TIRE PRESSURE	MAIN GEAR TIRE SIZE	MAIN GEAR TIRE PRESSURE
A350-900 WV002 (CG 36.83%)	272 900 kg (601 650 lb)	94.9%	1 050x395R16 28PR	12.2 bar (177 psi)	1 400x530R23 42PR	16.8 bar (244 psi)
A350-900 WV002 (CG 37.53%)	272 900 kg (601 650 lb)	95.1%	1 050x395R16 28PR	12.2 bar (177 psi)	1 400x530R23 42PR	16.8 bar (244 psi)
A350-900 WV003	268 900 kg (592 825 lb)	95.3%	1 050x395R16 28PR	12.2 bar (177 psi)	1 400x530R23 42PR	16.6 bar (241 psi)
A350-900 WV004	260 900 kg (575 175 lb)	95.7%	1 050x395R16 28PR	12.2 bar (177 psi)	1 400x530R23 42PR	16.6 bar (241 psi)
A350-900 WV005	250 900 kg (553 150 lb)	96.2%	1 050x395R16 28PR	12.2 bar (177 psi)	1 400x530R23 42PR	16.6 bar (241 psi)
A350-900 WV006 (CG 36.4%)	272 900 kg (601 650 lb)	94.8%	1 050x395R16 28PR	12.2 bar (177 psi)	1 400x530R23 42PR	16.8 bar (244 psi)
A350-900 WV006 (CG 36.83%)	272 900 kg (601 650 lb)	94.9%	1 050x395R16 28PR	12.2 bar (177 psi)	1 400x530R23 42PR	16.8 bar (244 psi)
A350-900 WV006 (CG 37.53%)	272 900 kg (601 650 lb)	95.1%	1 050x395R16 28PR	12.2 bar (177 psi)	1 400x530R23 42PR	16.8 bar (244 psi)
A350-900 WV007 (CG 33%)	268 900 kg (592 825 lb)	93.7%	1 050x395R16 28PR	12.2 bar (177 psi)	1 400x530R23 42PR	16.6 bar (241 psi)
A350-900 WV007 (CG 38.1%)	268 900 kg (592 825 lb)	95.3%	1 050x395R16 28PR	12.2 bar (177 psi)	1 400x530R23 42PR	16.6 bar (241 psi)
A350-900 WV008	240 900 kg (531 100 lb)	96.7%	1 050x395R16 28PR	12.2 bar (177 psi)	1 400x530R23 42PR	15.2 bar (220 psi)
A350-900 WV009	275 900 kg (608 250 lb)	93.7%	1 050x395R16 28PR	12.2 bar (177 psi)	1 400x530R23 42PR	16.8 bar (244 psi)
A350-900 WV010 (CG 31.2%)	280 900 kg (619 275 lb)	93.1%	1 050x395R16 28PR	12.2 bar (177 psi)	1 400x530R23 42PR	17.1 bar (248 psi)
A350-900 WV010 (CG 33.36%)	280 900 kg (619 275 lb)	93.8%	1 050x395R16 28PR	12.2 bar (177 psi)	1 400x530R23 42PR	17.1 bar (248 psi)
A350-900 WV011	255 900 kg (564 175 lb)	95.9%	1 050x395R16 28PR	12.2 bar (177 psi)	1 400x530R23 42PR	16.6 bar (241 psi)
A350-900 WV012	250 900 kg (553 150 lb)	96.2%	1 050x395R16 28PR	12.2 bar (177 psi)	1 400x530R23 42PR	16.6 bar (241 psi)

P_AC_070200_1_0010001_02_06

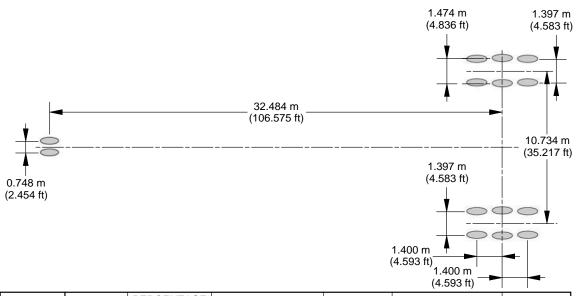
Landing Gear Footprint (Sheet 2 of 4) FIGURE-7-2-0-991-001-A01

**ON A/C A350-900

WEIGHT VARIANT	MAXIMUM RAMP WEIGHT	PERCENTAGE OF WEIGHT ON MAIN GEAR GROUP	NOSE GEAR TIRE SIZE	NOSE GEAR TIRE PRESSURE	MAIN GEAR TIRE SIZE	MAIN GEAR TIRE PRESSURE
A350-900 WV013 (CG 31.2%)	280 900 kg (619 275 lb)	93.1%	1 050x395R16 28PR	12.2 bar (177 psi)	1 400x530R23 42PR	17.1 bar (248 psi)
A350-900 WV013 (CG 33.36%)	280 900 kg (619 275 lb)	93.8%	1 050x395R16 28PR	12.2 bar (177 psi)	1 400x530R23 42PR	17.1 bar (248 psi)
A350-900 WV014	235 900 kg (520 075 lb)	96.7%	1 050x395R16 28PR	12.2 bar (177 psi)	1 400x530R23 42PR	15.2 bar (220 psi)
A350-900 WV015 (CG 31.15%)	277 900 kg (612 675 lb)	93.1%	1 050x395R16 28PR	12.2 bar (177 psi)	1 400x530R23 42PR	16.8 bar (244 psi)
A350-900 WV015 (CG 33.27%)	277 900 kg (612 675 lb)	93.8%	1 050x395R16 28PR	12.2 bar (177 psi)	1 400x530R23 42PR	16.8 bar (244 psi)
A350-900 WV015 (CG 35.57%)	277 900 kg (612 675 lb)	94.5%	1 050x395R16 28PR	12.2 bar (177 psi)	1 400x530R23 42PR	16.8 bar (244 psi)
A350-900 WV016 (CG 32.58%)	278 900kg (614 875 lb)	93.6%	1 050x395R16 28PR	12.2 bar (177 psi)	1 400x530R23 42PR	17.1 bar (248 psi)
A350-900 WV016 (CG 34.83%)	278 900kg (614 875 lb)	94.3%	1 050x395R16 28PR	12.2 bar (177 psi)	1 400x530R23 42PR	17.1 bar (248 psi)
A350-900 WV017	210 900kg (464 950 lb)	94.6%	1 050x395R16 28PR	12.2 bar (177 psi)	1 400x530R23 42PR	13.6 bar (197 psi)
A350-900 WV018	217 900kg (480 375 lb)	94.6%	1 050x395R16 28PR	12.2 bar (177 psi)	1 400x530R23 42PR	16.8 bar (244 psi)
A350-900 WV019	235 900kg (520 075 lb)	96.7%	1 050x395R16 28PR	12.2 bar (177 psi)	1 400x530R23 42PR	15.2 bar (220 psi)
A350-900 WV020	283 900kg (625 900 lb)	93.1%	1 050x395R16 28PR	12.2 bar (177 psi)	1 400x530R23 42PR	17.1 bar (248 psi)
A350-900 WV021	277 900kg (612 675 lb)	93.1%	1 050x395R16 28PR	12.2 bar (177 psi)	1 400x530R23 42PR	16.8 bar (244 psi)
A350-900 WV022 (CG 31.2%)	280 900kg (619 275 lb)	93.1%	1 050x395R16 28PR	12.2 bar (177 psi)	1 400x530R23 42PR	17.1 bar (248 psi)
A350-900 WV022 (CG 33.36%)	280 900kg (619 275 lb)	93.8%	1 050x395R16 28PR	12.2 bar (177 psi)	1 400x530R23 42PR	17.1 bar (248 psi)

P_AC_070200_1_0010001_03_02

Landing Gear Footprint (Sheet 3 of 4) FIGURE-7-2-0-991-001-A01


**ON A/C A350-900

WEIGHT VARIANT	MAXIMUM RAMP WEIGHT	PERCENTAGE OF WEIGHT ON MAIN GEAR GROUP	NOSE GEAR TIRE SIZE	NOSE GEAR TIRE PRESSURE	MAIN GEAR TIRE SIZE	MAIN GEAR TIRE PRESSURE
A350-900 WV023 (CG 31.2%)	280 900kg (619 275 lb)	93.1%	1 050x395R16 28PR	12.2 bar (177 psi)	1 400x530R23 42PR	17.1 bar (244 psi)
A350-900 WV023 (CG 33.36%)	280 900kg (619 275 lb)	93.8%	1 050x395R16 28PR	12.2 bar (177 psi)	1 400x530R23 42PR	17.1 bar (248 psi)
A350-900 WV024	250 900kg (553 150 lb)	96.2%	1 050x395R16 28PR	12.2 bar (177 psi)	1 400x530R23 42PR	16.6 bar (241 psi)
A350-900 WV025	245 900kg (542 125 lb)	96.5%	1 050x395R16 28PR	12.2 bar (177 psi)	1 400x530R23 42PR	15.2 bar (220 psi)

P_AC_070200_1_0010001_04_01

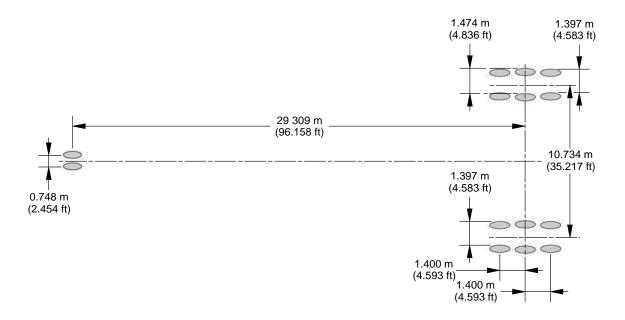
Landing Gear Footprint (Sheet 4 of 4) FIGURE-7-2-0-991-001-A01

**ON A/C A350-1000

WEIGHT VARIANT	MAXIMUM RAMP WEIGHT	PERCENTAGE OF WEIGHT ON MAIN GEAR GROUP	NOSE GEAR TIRE SIZE	NOSE GEAR TIRE PRESSURE	MAIN GEAR TIRE SIZE	MAIN GEAR TIRE PRESSURE
A350-1000 WV000 (CG 35.88%)	308 900 kg (681 000 lb)	94.7%	1 050x395R16 28PR	12.2 bar (177 psi)	50x20R22 34PR	15.2 bar (220 psi)
A350-1000 WV000 (CG 35.96%)	308 900 kg (681 000 lb)	94.7%	1 050x395R16 28PR	12.2 bar (177 psi)	50x20R22 34PR	15.2 bar (220 psi)
A350-1000 WV001 (CG 34%)	311 900 kg (687 625 lb)	94.2%	1 050x395R16 28PR	12.2 bar (177 psi)	50x20R22 34PR	15.2 bar (220 psi)
A350-1000 WV001 (CG 35.53%)	311 900 kg (687 625 lb)	94.6%	1 050x395R16 28PR	12.2 bar (177 psi)	50x20R22 34PR	15.2 bar (220 psi)
A350-1000 WV002 (CG 30.8%)	316 900 kg (698 650 lb)	93.3%	1 050x395R16 28PR	12.2 bar (177 psi)	50x20R22 34PR	15.2 bar (220 psi)
A350-1000 WV002 (CG 34.95%)	316 900 kg (698 650 lb)	94.4%	1 050x395R16 28PR	12.2 bar (177 psi)	50x20R22 34PR	15.2 bar (220 psi)
A350-1000 WV004 (CG 35.88%)	308 900kg (681 000 lb)	94.7%	1 050x395R16 28PR	12.2 bar (177 psi)	50x20R22 34PR	15.2 bar (220 psi)
A350-1000 WV004 (CG 35.96%)	308 900kg (681 000 lb)	94.7%	1 050x395R16 28PR	12.2 bar (177 psi)	50x20R22 34PR	15.2 bar (220 psi)

P_AC_070200_1_0020001_01_08

Landing Gear Footprint (Sheet 1 of 2) FIGURE-7-2-0-991-002-A01


**ON A/C A350-1000

WEIGHT VARIANT	MAXIMUM RAMP WEIGHT	PERCENTAGE OF WEIGHT ON MAIN GEAR GROUP	NOSE GEAR TIRE SIZE	NOSE GEAR TIRE PRESSURE	MAIN GEAR TIRE SIZE	MAIN GEAR TIRE PRESSURE
A350-1000 WV005	270 900 kg (597 255 lb)	96.2%	1 050x395R16 28PR	12.2 bar (177 psi)	50x20R22 34PR	15.2 bar (220 psi)
A350-1000 WV006	319 900 kg (705 250 lb)	93.9%	1 050x395R16 28PR	12.2 bar (177 psi)	50x20R22 34PR	15.6 bar (226 psi)
A350-1000 WV007	260 900 kg (575 175 lb)	96.2%	1 050x395R16 28PR	12.2 bar (177 psi)	50x20R22 34PR	13.1 bar (190 psi)
A350-1000 WV009 (CG 38.17%)	290 900 kg (641 325 lb)	95.3%	1 050x395R16 28PR	12.2 bar (177 psi)	50x20R22 34PR	15.2 bar (220 psi)
A350-1000 WV009 (CG 38.21%)	290 900 kg (641 325 lb)	95.3%	1 050x395R16 28PR	12.2 bar (177 psi)	50x20R22 34PR	15.2 bar (220 psi)
A350-1000 WV010 (CG 36.86%)	300 900 kg (663 375 lb)	95.0%	1 050x395R16 28PR	12.2 bar (177 psi)	50x20R22 34PR	15.2 bar (220 psi)
A350-1000 WV010 (CG 36.93%)	300 900 kg (663 375 lb)	95.0%	1 050x395R16 28PR	12.2 bar (177 psi)	50x20R22 34PR	15.2 bar (220 psi)
A350-1000 WV011 (CG 30.8%)	316 900 kg (698 650 lb)	93.3%	1 050x395R16 28PR	12.2 bar (177 psi)	50x20R22 34PR	15.2 bar (220 psi)
A350-1000 WV011 (CG 34.95%)	316 900 kg (698 650 lb)	94.4%	1 050x395R16 28PR	12.2 bar (177 psi)	50x20R22 34PR	15.2 bar (220 psi)
A350-1000 WV014 (CG 32.47%)	314 750 kg (693 900 lb)	93.7%	1 050x395R16 28PR	12.2 bar (177 psi)	50x20R22 34PR	15.2 bar (220 psi)
A350-1000 WV014 (CG 35.19%)	314 750 kg (693 900 lb)	94.5%	1 050x395R16 28PR	12.2 bar (177 psi)	50x20R22 34PR	15.2 bar (220 psi)

P_AC_070200_1_0020001_02_00

Landing Gear Footprint (Sheet 2 of 2) FIGURE-7-2-0-991-002-A01

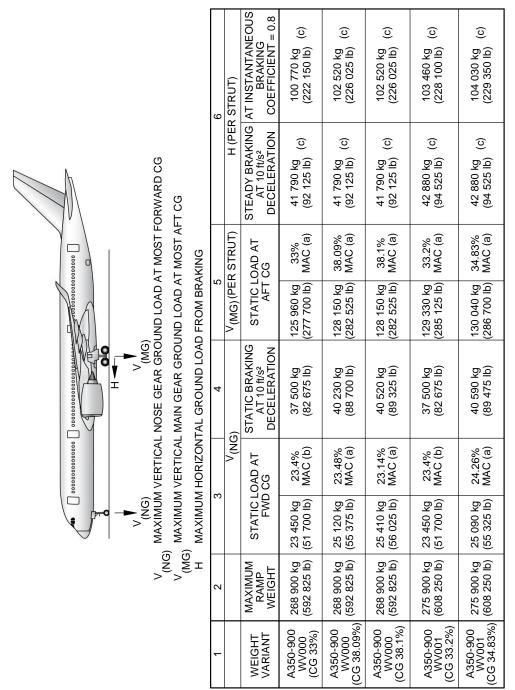
**ON A/C A350-1000F

WEIGHT VARIANT	MAXIMUM RAMP WEIGHT	PERCENTAGE OF WEIGHT ON MAIN GEAR GROUP	NOSE GEAR TIRE SIZE	NOSE GEAR TIRE PRESSURE	MAIN GEAR TIRE SIZE	MAIN GEAR TIRE PRESSURE
A350-1000F WV000	319 900 kg (705 250 lb)	93.3%	1 050x395R16 28PR	13.1 bar (190 psi)	50x20R22 36PR	16.2 bar (235 psi)
A350-1000F WV002	319 900 kg (705 250 lb)	93.3%	1 050x395R16 28PR	13.1 bar (190 psi)	50x20R22 36PR	16.2 bar (235 psi)

P_AC_070200_1_0030001_01_00

Landing Gear Footprint FIGURE-7-2-0-991-003-A01

7-3-0 Maximum Pavement Loads


**ON A/C A350-1000 A350-1000F A350-900

Maximum Pavement Loads

1. This section gives maximum vertical and horizontal pavement loads for some critical conditions at the tire-ground interfaces.

The maximum pavement loads are given for all the operational weight variants of the aircraft.

**ON A/C A350-900

(a) LOADS CALCULATED USING AIRCRAFT AT MRW. (b) LOADS CALCULATED USING AIRCRAFT AT 250 200 kg (551 600 lb). (c) BRAKED MAIN GEAR. P_AC_070300_1_0010001_01_09

NOTE

Maximum Pavement Loads (Sheet 1 of 5) FIGURE-7-3-0-991-001-A01

**ON A/C A350-900

		10										
9	H (PER STRUT)	STEADY BRAKING AT INSTANTANEOUS AT 10 ft/s² BRAKING DECELERATION COEFFICIENT = 0.8	104 830 kg (231 100 lb) (c)	103 450 kg (228 075 lb)	103 600 kg (228 400 lb) (c)	103 850 kg (228 950 lb) (c)	102 520 kg (226 025 lb)	99 870 kg (c) (220 175 lb)	96 550 kg (c) (212 875 lb)	103 450 kg (c) (228 075 lb)	103 600 kg (c) (228 400 lb)	103 850 kg (c) (228 950 lb)
	H (PE	STEADY BRAKING AT 10 ft/s² DECELERATION	42 880 kg (94 525 lb) (c)	42 410 kg (93 500 lb)	42 410 kg (93 500 lb) (c)	42 410 kg (93 500 lb) (c)	41 790 kg (92 125 lb)	40 550 kg (89 375 lb) (c)	38 990 kg (85 950 lb)	42 410 kg (c) (93 500 lb)	42 410 kg (c) (93 500 lb)	42 410 kg (c) (93 500 lb)
	STRUT)	OAD AT CG	37.07% MAC (a)	36.39% MAC (a)	36.83% MAC (a)	37.53% MAC (a)	38.1% MAC (a)	39.28% MAC (a)	40.86% MAC (a)	36.4% MAC (a)	36.83% MAC (a)	37.53% MAC (a)
5	V _(MG) (PER STRUT)	STATIC LOAD AFT CG	131 030 kg (288 875 lb)	129 310 kg (285 075 lb)	129 500 kg (285 500 lb)	129 810 kg (286 175 lb)	128 150 kg (282 525 lb)	124 830 kg (275 225 lb)	120 690 kg (266 075 lb)	129 310 kg (285 100 lb)	129 500 kg (285 500 lb)	129 810 kg (286 175 lb)
4	(5)	STATIC BRAKING AT 10 ft/s² DECELERATION	41 210 kg (90 850 lb)	37 500 kg (82 675 lb)	40 440 kg (89 150 lb)	40 910 kg (90 200 lb)	40 520 kg (89 325 lb)	39 690 kg (87 500 lb)	38 530 kg (84 950 lb)	37 500 kg (82 675 lb)	40 440 kg (89 150 lb)	40 910 kg (90 200 lb)
	(NG)	OAD AT CG	23.55% MAC (a)	23.4% MAC (b)	23.93% MAC (a)	23.38% MAC (a)	23.14% MAC (a)	22.69% MAC (a)	22.24% MAC (a)	23.4% MAC (b)	23.93% MAC (a)	23.38% MAC (a)
3		STATIC LOAD, FWD CG	25 710 kg (56 700 lb)	23 450 kg (51 700 lb)	25 110 kg (55 350 lb)	25 580 kg (56 400 lb)	25 410 kg (56 025 lb)	25 030 kg (55 200 lb)	24 440 kg (53 875 lb)	23 450 kg (51 700 lb)	25 110 kg (55 350 lb)	25 580 kg (56 400 lb)
2		MAXIMUM RAMP WEIGHT	275 900 kg (608 250 lb)	272 900 kg (601 650 lb)	272 900 kg (601 650 lb)	272 900 kg (601 650 lb)	268 900 kg (592 825 lb)	260 900 kg (575 175 lb)	250 900 kg (553 150 lb)	272 900 kg (601 650 lb)	272 900 kg (601 650 lb)	272 900 kg (601 650 lb)
_		WEIGHT VARIANT	A350-900 WV001 (CG 37.07%)	A350-900 WV002 (CG 36.39%)	A350-900 WV002 (CG 36.83%)	A350-900 WV002 (CG 37.53%)	A350-900 WV003	A350-900 WV004	A350-900 WV005	A350-900 WV006 (CG 36.4%)	A350-900 WV006 (CG 36.83%)	A350-900 WV006 (CG 37.53%)

NOTE:
(a) LOADS CALCULATED USING AIRCRAFT AT MRW.
(b) LOADS CALCULATED USING AIRCRAFT AT 250 200 kg (551 600 lb).
(c) BRAKED MAIN GEAR. P_AC_070300_1_0010001_02_07

Maximum Pavement Loads (Sheet 2 of 5) FIGURE-7-3-0-991-001-A01

**ON A/C A350-900

		(0		I								<u> </u>
9	H (PER STRUT)	AT INSTANTANEOUS BRAKING COEFFICIENT = 0.8	100 770 kg (222 150 lb)	102 520 kg (226 025 lb)	93 190 kg (205 450 lb)	103 460 kg (d) (228 100 lb)	104 620 kg (230 650 lb)	105 390 kg (232 350 lb)	98 210 kg (216 525 lb) ^(d)	96 550 kg (212 875 lb) ^(d)	104 620 kg (230 650 lb) ^(d)	105 390 kg (232 350 lb)
		STEADY BRAKING AT 10 ft/s² DECELERATION	41 790 kg (92 125 lb) (d)	41 790 kg (d) (92 125 lb)	37 440 kg (d) (82 525 lb)	42 880 kg (d) (94 525 lb)	43 650 kg (96 250 lb) (d)	43 650 kg (96 250 lb) ^(d)	39 770 kg (87 675 lb) (d)	38 990 kg (85 950 lb) (d)	43 650 kg (96 250 lb)	43 650 kg (d) (96 250 lb)
	R STRUT)	OAD AT CG	33% MAC (a)	38.1% MAC (a)	42.4% MAC (a)	33.2% MAC (a)	31.2% MAC (a)	33.36% MAC (a)	40.06% MAC (a)	40.86% MAC (a)	31.2% MAC (a)	33.36% MAC (a)
5	V _(MG) (PER STRUT)	STATIC LOAD AT AFT CG	125 960 kg (277 700 lb)	128 150 kg (282 525 lb)	116 490 kg (256 825 lb)	129 330 kg (285 125 lb)	130 780 kg (288 300 lb)	131 740 kg (290 450 lb)	122 760 kg (270 650 lb)	120 690 kg (266 075 lb)	130 780 kg (288 300 lb)	131 740 kg (290 450 lb)
4	3)	STATIC BRAKING AT 10 ft/s² DECELERATION	37 500 kg (82 675 lb)	40 520 kg (89 325 lb)	37 370 kg (82 400 lb)	37 500 kg (82 675 lb)	39 800 kg (87 750 lb)	41 690 kg (91 925 lb)	39 110 kg (86 225 lb)	38 530 kg (84 950 lb)	39 800 kg (87 750 lb)	41 690 kg (91 925 lb)
	(NG)	OAD AT CG	23.4% MAC (b)	23.14% MAC (a)	21.75% MAC (a)	23.4% MAC (b)	22.78% MAC (c)	23.84% MAC (a)	22.47% MAC (a)	22.24% MAC (a)	22.78% MAC (c)	23.84% MAC (a)
3		STATIC LOAD AT FWD CG	23 450 kg (51 700 lb)	25 410 kg (56 025 lb)	23 840 kg (52 550 lb)	23 450 kg (51 700 lb)	25 080 kg (55 275 lb)	25 910 kg (57 125 lb)	24 740 kg (54 525 lb)	24 440 kg (53 875 lb)	25 080 kg (55 275 lb)	25 910 kg (57 125 lb)
2		MAXIMUM RAMP WEIGHT	268 900 kg (592 825 lb)	268 900kg (592 825 lb)	240 900 kg (531 100 lb)	275 900 kg (608 250 lb)	280 900 kg (619 275 lb)	280 900 kg (619 275 lb)	255 900 kg (564 175 lb)	250 900 kg (553 150 lb)	280 900 kg (619 275 lb)	280 900 kg (619 275 lb)
		WEIGHT VARIANT	A350-900 WV007 (CG 33%)	A350-900 WV007 (CG 38.1%)	A350-900 WV008	A350-900 WV009	A350-900 WV010 (CG 31.2%)	A350-900 WV010 (CG 33.36%)	A350-900 WV011	A350-900 WV012	A350-900 WV013 (CG 31.2%)	A350-900 WV013 (CG 33.36%)

NOTE:
(a) LOADS CALCULATED USING AIRCRAFT AT MRW.
(b) LOADS CALCULATED USING AIRCRAFT AT 250 200 kg (551 600 lb).
(c) LOADS CALCULATED USING AIRCRAFT AT 262 140 kg (577 900 lb).
(d) BRAKED MAIN GEAR. P_AC_070300_1_0010001_03_05

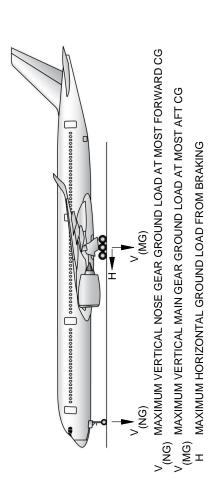
Maximum Pavement Loads (Sheet 3 of 5) FIGURE-7-3-0-991-001-A01

**ON A/C A350-900

		0US 0.8											
9		AT INSTANTANEOUS BRAKING COEFFICIENT = 0.8	5 lb) (d)	0 kg (d) 0 lb) (d)	0 kg 0 lb) (d)	0 kg 0 lb) (d)	0 kg 5 lb) (d)	0 kg 0 lb) (d)	o lb) (d)	0 lb) (d)	5 lb) (d)	0 kg 5 lb) (d)	
	H (PER STRUT)	AT INSTANTANEOUS BRAKING COEFFICIENT = 0.8	91 260 kg (201 175 lb)	103 480 kg (228 150 lb)	104 240 kg (229 800 lb)	105 050 kg (231 600 lb)	104 370 kg (230 075 lb)	105 170 kg (231 850 lb)	79 840 kg (176 000 lb)	82 480 kg (181 850 lb)	91 260 kg (201 175 lb)	105 740 kg (233 125 lb)	
			(p)	(p)	(p)	(p)	(p)	(p)	(p)	(p)	(p)	(p)	-
		STEADY BRAKING AT 10 ft/s² DECELERATION	36 660 kg (80 825 lb)	43 190 kg (95 200 lb)	43 190 kg (95 200 lb)	43 190 kg (95 200 lb)	43 340 kg (95 550 lb)	43 340 kg (95 550 lb)	32 770 kg (72 250 lb)	33 860 kg (74 650 lb)	36 660 kg (80 825 lb)	44 120 kg (97 275 lb)	
	STRUT)	OAD AT CG	42.4% MAC (a)	31.15% MAC (a)	33.27% MAC (a)	35.57% MAC (a)	32.58% MAC (a)	34.83% MAC (a)	36% MAC (a)	35.99% MAC (a)	42.4% MAC (a)	31.2 % MAC (a)	
5	V _(MG) (PER STRUT)	STATIC LOAD AFT CG	114 070 kg (251 475 lb)	129 360 kg (285 175 lb)	130 290 kg (287 250 lb)	131 320 kg (289 500 lb)	130 460 kg (287 600 lb)	131 460 kg (289 825 lb)	99 790 kg (220 000 lb)	103 100 kg (227 300 lb)	114 070 kg (251 475 lb)	132 170 kg (291 400 lb)	
4	(9	STATIC BRAKING AT 10 ft/s² DECELERATION	36 800 kg (81 125 lb)	37 500 kg (82 675 lb)	40 690 kg (89 700 lb)	41 410 kg (91 275 lb)	39 800 kg (87 750 lb)	41 510 kg (91 525 lb)	33 900 kg (74 750 lb)	34 700 kg (76 500 lb)	36 800 kg (81 125 lb)	42 000 kg (92 600 lb)	NOTE: (a) LOADS CALCULATED USING AIRCRAFT AT MRW. (b) LOADS CALCULATED USING AIRCRAFT AT 250 200 kg (551 600 lb). (c) I OADS CALCULATED USING AIRCRAFT AT 252 140 kg (577 900 lb).
	(NG)	OAD AT CG	21.49% MAC (a)	23.4% MAC (b)	24.48% MAC (a)	23.67% MAC (a)	22.78% MAC (c)	23.72% MAC (a)	20% MAC (a)	20.47% MAC (a)	21.49% MAC (a)	24% MAC (a)	RAFT AT MI RAFT AT 25
3		STATIC LOAD FWD CG	23 540 kg (51 900 lb)	23 450 kg (51 700 lb)	25 080 kg (55 300 lb)	25 790 kg (56 875 lb)	25 080 kg (55 275 lb)	25 840 kg (56 975 lb)	22 060 kg (48 625 lb)	22 460 kg (49 525 lb)	23 540 kg (51 900 lb)	26 050 kg (57 425 lb)	SING AIRCE SING AIRCE
2		MAXIMUM RAMP WEIGHT	235 900 kg (520 075 lb)	277 900 kg (612 675 lb)	277 900 kg (612 675 lb)	277 900 kg (612 675 lb)	278 900 kg (614 875 lb)	278 900 kg (614 875 lb)	210 900 kg (464 950 lb)	217 900 kg (480 375 lb)	235 900 kg (520 075 lb)	283 900 kg (625 900 lb)	CULATED U
1		WEIGHT VARIANT	A350-900 WV014	A350-900 WV015 (CG 31.15%)	A350-900 WV015 (CG 33.27%)	A350-900 WV015 (CG 35.57%)	A350-900 WV016 (CG 32.58%)	A350-900 WV016 (CG 34.83%)	A350-900 WV017	A350-900 WV018	A350-900 WV019	A350-900 WV020	NOTE: (a) LOADS CALCULATED USING AIRCRAFT AT MRW. (b) LOADS CALCULATED USING AIRCRAFT AT 250 20 (c) LOADS CALCULATED USING AIRCRAFT AT 250 20

P_AC_070300_1_0010001_04_04

Maximum Pavement Loads (Sheet 4 of 5) FIGURE-7-3-0-991-001-A01


**ON A/C A350-900

-	2	8		4 (5	5 V(MG) (PER STRUT)	R STRUT)	H (PER	6 H (PER STRUT)
WEIGHT	MAXIMUM RAMP WEIGHT	STATIC LOAD AT FWD CG		STATIC BRAKING AT 10 ft/s² DECELERATION	STATIC LOAD AT AFT CG	OAD AT CG	STEADY BRAKING AT 10 ft/s² DECELERATION	STEADY BRAKING AT INSTANTANEOUS AT 10 ft/s² BRAKING DECELERATION COEFFICIENT = 0.8
A350-900 WV021	277 900 kg (612 675 lb)	23 450 kg (51 700 lb)	23.4% MAC (b)	37 500 kg (82 675 lb)	129 360 kg (285 175 lb)	31.15% MAC (a)	43 190 kg (95 200 lb) (c)	103 480 kg (228 150 lb) (c)
A350-900 WV022 (CG 31.2%)	280 900 kg (619 275 lb)	25 080 kg (55 275 lb)	22.78% MAC (d)	39 800 kg (87 750 lb)	130 780 kg (288 300 lb)	31.2% MAC (a)	43 650 kg (96 250 lb) (c)	104 620 kg (230 650 lb) (c)
A350-900 WV022 (CG 33.36%)	280 900 kg (619 275 lb)	25 910 kg (57 125 lb)	23.84% MAC (a)	41 690 kg (91 925 lb)	131 740 kg (290 450 lb)	33.36% MAC (a)	43 650 kg (96 250 lb) (c)	105 390 kg (232 350 lb) (c)
A350-900 WV023 (CG 31.2%)	280 900 kg (619 275 lb)	25 080 kg (55 275 lb)	22.78% MAC (d)	39 800 kg (87 750 lb)	130 780 kg (288 300 lb)	31.2% MAC (a)	43 650 kg (96 250 lb) (c)	104 620 kg (230 650 lb) (c)
A350-900 WV023 (CG 33.36%)	280 900 kg (619 275 lb)	25 920 kg (57 150 lb)	23.84% MAC (a)	41 700 kg (91 925 lb)	131 740 kg (290 450 lb)	33.36% MAC (a)	43 650 kg (c) (96 250 lb)	105 390 kg (232 350 lb) (c)
A350-900 WV024	250 900 kg (553 150 lb)	24 440 kg (53 875 lb)	22.24% MAC (a)	38 530 kg (84 950 lb)	120 690 kg (266 075 lb)	40.86% MAC (a)	38 990 kg (85 950 lb)	96 550 kg (212 875 lb) (c)
A350-900 WV025	245 900 kg (542 125 lb)	24 140 kg (53 225 lb)	22% MAC (a)	37 950 kg (83 675 lb)	118 620 kg (261 525 lb)	41.7% MAC (a)	38 210 kg (84 250 lb) (c)	94 900 kg (209 225 lb) (c)

| A DADS CALCULATED USING AIRCRAFT AT MRW. | (c) BRAKED MAIN GEAR. | (d) LOADS CALCULATED USING AIRCRAFT AT 250 200 kg (551 600 lb). | (e) BRAKED MAIN GEAR. | (e) BRAKED MAIN GEAR. | (e) LOADS CALCULATED USING AIRCRAFT AT 262 140 kg (577 900 lb). |

Maximum Pavement Loads (Sheet 5 of 5) FIGURE-7-3-0-991-001-A01

**ON A/C A350-1000

_							
9	H (PER STRUT)	STEADY BRAKING AT INSTANTANEOUS AT 10 ft/s² BRAKING DECELERATION COEFFICIENT = 0.8	116 990 kg (257 925 lb) (c)	117 020 kg (258 000 lb) (c)	117 470 kg (258 975 lb) (c)	118 010 kg (260 175 lb) (c)	118 220 kg (260 625 lb) (c)
	H (PEF	STEADY BRAKING AT 10 ft/s² DECELERATION	TBD (c)	TBD (c)	TBD (c)	TBD (c)	TBD (c)
	R STRUT)	OAD AT	35.88% MAC (a)	35.96% MAC (a)	34% MAC (a)	35.53% MAC (a)	30.8% MAC (a)
5	V _(MG) (PER STRUT)	STATIC LOAD AT AFT CG	146 240 kg (322 400 lb)	146 280 kg (322 500 lb)	146 840 kg (323 725 lb)	147 510 kg (325 200 lb)	147 770 kg (325 775 lb)
4	(6	STATIC BRAKING AT 10 ft/s² DECELERATION	TBD	TBD	TBD	TBD	TBD
	(NG)	OAD AT CG	22.46% MAC (a)	24.16% MAC (a)	24.3% MAC (b)	22.63% MAC (a)	24.6% MAC (a)
3		STATIC LOAD AT FWD CG	28 030 kg (61 775 lb)	26 560 kg (58 550 lb)	26 570 kg (58 575 lb)	28 150 kg (62 050 lb)	26 850 kg (59 200 lb)
2		MAXIMUM RAMP WEIGHT	308 900 kg (681 000 lb)	308 900 kg (681 000 lb)	311 900 kg (687 625 lb)	311 900 kg (687 625 lb)	316 900 kg 26 850 kg (698 650 lb) (59 200 lb)
_		WEIGHT VARIANT	A350-1000 WV000 (CG 35.88%)	A350-1000 WV000 (CG 35.96%)	A350-1000 WV001 (CG 34%)	A350-1000 WV001 (CG 35.53%)	A350-1000 WV002 (CG 30.8%)

NOTE:
(a) LOADS CALCULATED USING AIRCRAFT AT MRW.
(b) LOADS CALCULATED USING AIRCRAFT AT 310 400 kg (684 325 lb).
(c) BRAKED MAIN GEAR. P_AC_070300_1_0020001_01_07

Maximum Pavement Loads (Sheet 1 of 3) FIGURE-7-3-0-991-002-A01

**ON A/C A350-1000

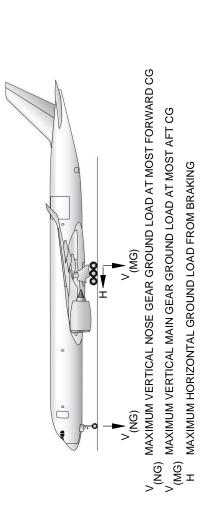
		EOUS = 0.8	(q)	(q)	(q)	(q)	(q)	(q)	(q)	(q)	(q)	(q)
9	H (PER STRUT)	AT INSTANTANEOUS BRAKING COEFFICIENT = 0.8	119 690 kg (263 875 lb)	116 990 kg (257 925 lb)	117 020 kg (258 000 lb)	104 200 kg (229 725 lb)	120 140 kg (264 875 lb)	100 360 kg (221 250 lb)	110 930 kg (244 550 lb)	110 940 kg (244 600 lb)	114 300 kg (251 975 lb)	114 320 kg (252 025 lb)
	H (PEF	STEADY BRAKING AT 10 ft/s² DECELERATION	(a) Q8T	(a) DBT	(a) TBD	(a) OBT	(d) TBD	(q) QBL	(a) DBT	(a)	(a) TBD	(a) TBD
	STRUT)	OAD AT CG	34.95% MAC (a)	35.88% MAC (a)	35.96% MAC (a)	41.07% MAC (a)	33.05% MAC (a)	41.1% MAC (a)	38.17% MAC (a)	38.21% MAC (a)	36.86% MAC (a)	36.93% MAC (a)
5	V(MG) (PER STRUT)	STATIC LOAD AT AFT CG	149 620 kg (329 850 lb)	146 240 kg (322 400 lb)	146 280 kg (322 500 lb)	130 250 kg (287 150 lb)	150 180 kg (331 100 lb)	125 450 kg (276 575 lb)	138 660 kg (305 700 lb)	138 680 kg (305 725 lb)	142 870 kg (314 975 lb)	142 900 kg (315 050 lb)
4	(5)	STATIC BRAKING AT 10 ft/s² DECELERATION	ТВD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD
	(NG)	OAD AT CG	22.89% MAC (a)	22.46 % MAC (a)	24.16% MAC (a)	21.5% MAC (a)	23.05% MAC (a)	21.5% MAC (a)	21.5% MAC (a)	23.06% MAC (a)	22.01% MAC (a)	23.69% MAC (a)
3		STATIC LOAD FWD CG	28 370 kg (62 550 lb)	28 030 kg (61 775 lb)	26 560 kg (58 550 lb)	25 320 kg (55 825 lb)	28 490 kg (62 825 lb)	24 380 kg (53 750 lb)	27 180 kg (59 925 lb)	25 910 kg (57 125 lb)	27 680 kg (61 025 lb)	26 270 kg (57 900 lb)
2		MAXIMUM RAMP WEIGHT	316 900 kg (698 650 lb)	308 900 kg (681 000 lb)	308 900 kg (681 000 lb)	270 900 kg (597 225 lb)	319 900 kg (705 250 lb)	260 900 kg (575 175 lb)	290 900 kg (641 325 lb)	290 900 kg (641 325 lb)	300 900 kg (663 375 lb)	300 900 kg (663 375 lb)
_		WEIGHT VARIANT	A350-1000 WV002 (CG 34.95%)	A350-1000 WV004 (CG 35.88%)	A350-1000 WV004 (CG 35.96%)	A350-1000 WV005	A350-1000 WV006	A350-1000 WV007	A350-1000 WV009 (CG 38.17%)	A350-1000 WV009 (CG 38.21%)	A350-1000 WV010 (CG 36.86%)	A350-1000 WV010 (CG 36.93%)

NOTE: (a) LOADS CALCULATED USING AIRCRAFT AT MRW. (b) BRAKED MAIN GEAR.

P_AC_070300_1_0020001_02_03

Maximum Pavement Loads (Sheet 2 of 3) FIGURE-7-3-0-991-002-A01

**ON A/C A350-1000


9	H (PER STRUT)	STEADY BRAKING AT INSTANTANEOUS AT 10 ft/s² BRAKING DECELERATION COEFFICIENT = 0.8	118 220 kg (b) (260 625 lb)	119 690 kg (b) (263 875 lb)	118 000 kg (b) (260 150 lb)	118 970 kg (b) (262 275 lb)
	H (PEF	STEADY BRAKING AT 10 ft/s² DECELERATION	(a)	(a) TBD	(a) TBD	(d) TBD
	STRUT)	OAD AT CG	30.8% MAC (a)	34.95% MAC (a)	32.47% MAC (a)	35.19% MAC (a)
5	V(MG) (PER STRUT)	STATIC LOAD AT AFT CG	147 770 kg (325 775 lb)	149 620 kg (329 850 lb)	147 500 kg (325 200 lb)	148 710 kg (327 850 lb)
4	(6)	STATIC BRAKING AT 10 ft/s² DECELERATION	TBD	TBD	TBD	TBD
	(NG)	STATIC LOAD AT FWD CG	24.6% MAC (a)	22.89% MAC (a)	24.48% MAC (a)	22.78% MAC (a)
3		STATIC I FWD	26 850 kg (59 200 lb)	28 370 kg (62 550 lb)	26 780 kg (59 025 lb)	28 270 kg (62 325 lb)
2		MAXIMUM RAMP WEIGHT	316 900 kg 26 850 kg (698 650 lb) (59 200 lb)	316 900 kg 28 370 kg (698 650 lb) (62 550 lb)	314 750 kg 26 780 kg (693 900 lb) (59 025 lb)	314 750 kg 28 270 kg (693 900 lb) (62 325 lb)
-		WEIGHT	A350-1000 WV011 (CG 30.8%)	A350-1000 WV011 (CG 34.95%)	A350-1000 WV014 (CG 32.47%)	A350-1000 WV014 (CG 35.19%)

NOTE:
(a) LOADS CALCULATED USING AIRCRAFT AT MRW.
(b) BRAKED MAIN GEAR.

P_AC_070300_1_0020001_03_00

Maximum Pavement Loads (Sheet 3 of 3) FIGURE-7-3-0-991-002-A01

**ON A/C A350-1000F

9	H (PER STRUT)	STEADY BRAKING AT INSTANTANEOUS AT 10 ft/s² BRAKING DECELERATION COEFFICIENT = 0.8	(b) 119 390 kg (b) (263 225 lb)	(b) 119 390 kg (b) (263 225 lb)
			TBD	TBD
	(MG) (PER STRUT)	STATIC LOAD AT AFT CG	33.05 % MAC (a)	33.05 % MAC (a)
2	V(MG) (PE		149 240 kg 33.05 % (329 025 lb)	149 240 kg 33.05 % (329 025 lb) MAC (a)
4	(5)	STATIC BRAKING AT 10 ft/s² DECELERATION	TBD	TBD
	(NG)	STATIC LOAD AT FWD CG	25 % MAC (a)	25 % MAC (a)
		STATIC I FWE	29 330 kg (64 650 lb)	29 330 kg (64 650 lb)
2		MAXIMUM RAMP WEIGHT	A350-1000F 319 900 kg 29 330 kg WV000 (705 250 lb) (64 650 lb)	A350-1000F 319 900 kg 29 330 kg WV002 (705 250 lb) (64 650 lb)
1		WEIGHT VARIANT	A350-1000F WV000	A350-1000F WV002

Maximum Pavement Loads FIGURE-7-3-0-991-033-A01

7-4-0 Landing Gear Loading on Pavement

**ON A/C A350-1000 A350-1000F A350-900

Landing Gear Loading on Pavement

aircraft.

The curves related to the landing gear loading on pavement are not given in section 7-4-0.
 Because the relationship between the aircraft weight, the center of gravity and the landing gear loading on the pavement is not strictly linear, it cannot be shown in chart format.
 But you can find in section 7-3-0 the maximum vertical and horizontal pavement loads for some critical conditions at the tire/ground interfaces for all the operational weight variants of the

For questions related to the landing gear loading on pavement, contact Airbus.

7-5-0 Flexible Pavement Requirements - US Army Corps of Engineers Design Method

**ON A/C A350-1000 A350-1000F A350-900

Flexible Pavement Requirements - US Army Corps of Engineers Design Method

 The flexible-pavement requirements curves by U.S. Army Corps of Engineers Design Method are not given in section 7-5-0 since the related data is available through free software.
 Sections 7-2-0 and 7-3-0 give all the inputs data required for the use of such software.

NOTE: The U.S. Army Corps of Engineers Design Method for flexible pavements is being gradually superseded by mechanistic-empirical design methods mostly relying on Linear Elastic Analysis (LEA). The number of parameters considered by such methods is not applicable for a chart format and the use of dedicated pavement-design software is necessary.

For questions related to the flexible pavement requirements, contact Airbus.

7-6-0 Flexible Pavement Requirements - LCN Conversion

**ON A/C A350-1000 A350-1000F A350-900

Flexible Pavement Requirements - LCN Conversion

- The Load Classification Number (LCN) curves are no longer provided in section 7-6-0 since the LCN system for reporting pavement strength is obsolete, having been replaced by the ICAO recommended ACN/PCN system in 1983 and ACR/PCR system in 2020.
 - For questions regarding the LCN system, contact Airbus.

7-7-0 Rigid Pavement Requirements - Portland Cement Association Design Method

**ON A/C A350-1000 A350-1000F A350-900

Rigid Pavement Requirements - Portland Cement Association Design Method

1. The rigid-pavement requirements curves by Portland Cement Association Design Method are not given in section 7-7-0 since the related data is available through free software.

Sections 7-2-0 and 7-3-0 give all the inputs data required for the use of such software.

NOTE: The Portland Cement Association Design Method for rigid pavements is being gradually superseded by mechanistic-empirical design methods mostly relying on Finite Element Analysis (FEM). The number of parameters considered by such methods is not applicable for a chart format and the use of dedicated pavement-design software is necessary.

For questions related to the rigid pavement requirements, contact Airbus.

7-8-0 Rigid Pavement Requirements - LCN Conversion

**ON A/C A350-1000 A350-1000F A350-900

Rigid Pavement Requirements - LCN Conversion

1. The Load Classification Number (LCN) curves are no longer provided in section 7-8-0 since the LCN system for reporting pavement strength is obsolete, having been replaced by the ICAO recommended ACN/PCN system in 1983 and ACR/PCR system in 2020.

For questions regarding the LCN system, contact Airbus.

7-9-0 ACN/PCN Reporting System - Flexible and Rigid Pavements

**ON A/C A350-1000 A350-1000F A350-900

ACN/PCN Reporting System - Flexible and Rigid Pavements

1. This section gives data about the Aircraft Classification Number (ACN) for an aircraft gross weight in relation with standard subgrade strength values for flexible and rigid pavement.

To find the ACN of an aircraft on flexible and rigid pavement, you must know the aircraft gross weight and the subgrade strength.

NOTE: An aircraft with an ACN equal to or less than the reported PCN can operate on that pavement, subject to any limitation on the tire pressure.

(Ref: ICAO Aerodrome Design Manual, Part 3, Chapter 1, Second Edition 1983).

Aircraft Classification Number - ACN table

The tables in figures (FIGURE 7-9-0-991-008-A, FIGURE 7-9-0-991-011-A and FIGURE 7-9-0-991-038-D) give ACN data in tabular format for all the operational weight variants of the aircraft. As an approximation, use a linear interpolation in order to get the ACN at the required operating weight using the following equation:

- ACN = ACN min + (ACN max ACN min) x (Operating weight 140 000 kg)/(MRW 140 000 kg) for the A350-900,
- ACN = ACN min + (ACN max ACN min) x (Operating Weight 160 000 kg)/(MRW 160 000 kg) for the A350-1000.

Please note that the interpolation error may reach 5% to 10%.

As an approximation, use a linear interpolation in order to get the aircraft weight at the pavement PCN using the following equation:

- Operating weight = 140 000 kg + (MRW 140 000 kg) x (PCN ACN min)/(ACN max ACN min) for the A350-900,
- Operating weight = 160 000 kg + (MRW 160 000 kg) x (PCN ACN min)/(ACN max ACN min) for the A350-1000.

With ACN max = ACN calculated at the MRW in the table and with ACN min = ACN calculated at 140 000 kg for the A350-900 and 160 000 kg for the A350-1000.

Please note that the interpolation error may reach up to 5%.

For questions or specific calculation regarding ACN/PCN Reporting System, contact Airbus.

**ON A/C A350-900

WEIGHT	ALL UP	LOAD ON ONE MAIN	TIRE PRESSURE		ACN F RIGID PAV IBGRADE	/EME			ACN F EXIBLE P UBGRADI	AVEN	
VARIANT	MASS (kg)	GEAR LEG (%)	(MPa)	HIGH 150	MEDIUM 80	LOW 40	ULTRA -LOW 20	HIGH 15	MEDIUM 10	LOW 6	ULTRA -LOW 3
A350-900	268 900	46.8	1.66	63	70	82	95	65	69	79	108
WV000 (CG 33%)	140 000	46.8	1.00	32	33	35	40	30	31	33	40
A350-900	268 900	47.7	1.66	64	72	83	97	67	71	81	111
WV000 (CG 38.09%)	140 000	47.7	1.00	32	33	36	41	31	32	34	41
A350-900	268 900	47.7	1.66	64	72	83	97	67	71	81	111
WV000 (CG 38.1%)	140 000	47.7	1.00	32	33	36	41	31	32	34	41
A350-900	275 900	46.9	1.68	65	73	85	98	68	72	82	113
WV001 (CG 33.2%)	140 000	46.9	1.00	32	33	36	40	30	31	33	40
A350-900	275 900	47.1	1.68	66	73	85	99	68	72	82	114
WV001 (CG 34.83%)	140 000	47.1	1.00	32	33	36	40	30	31	34	41
A350-900	275 900	47.5	1.68	66	74	86	100	69	73	83	115
WV001 (CG 37.07%)	140 000	47.5	1.00	32	33	36	41	31	32	34	41
A350-900	272 900	47.4	1.68	65	73	85	98	68	72	82	113
WV002 (CG 36.39%)	140 000	47.4	1.00	32	33	36	41	31	32	34	41
A350-900	272 900	47.5	1.60	65	73	85	99	68	72	82	113
WV002 (CG 36.83%)	140 000	47.5	1.68	32	33	36	41	31	32	34	41
A350-900	272 900	47.6	4.00	65	73	85	99	68	72	82	113
WV002 (CG 37.53%)	140 000	47.6	1.68	32	33	36	41	31	32	34	41
A350-900	268 900	47.7	4.00	64	72	83	97	67	71	81	111
WV003	140 000	47.7	1.66	32	33	36	41	31	32	34	41
A350-900	260 900	47.8	4.00	63	69	81	94	65	68	78	107
WV004	140 000	47.9	1.66	32	33	36	41	31	32	34	42
A350-900	250 900	48.1	1.66	60	66	77	89	62	66	74	102
WV005	140 000	48.1	1.00	33	34	37	41	31	32	35	42
A350-900	272 900	47.4	1.60	65	73	85	98	68	72	82	113
WV006 (CG 36.4%)	140 000	47.4	1.68	32	33	36	41	31	32	34	41
A350-900	272 900	47.5	4.00	65	73	85	99	68	72	82	113
WV006 (CG 36.83%)	140 000	47.5	1.68	32	33	36	41	31	32	34	41
A350-900	272 900	47.6	4.00	65	73	85	99	68	72	82	113
WV006 (CG 37.53%)	140 000	47.6	1.68	32	33	36	41	31	32	34	41
A350-900	268 900	46.8	4.00	63	70	82	95	65	69	79	108
WV007 (CG 33%)	140 000	46.8	1.66	32	33	35	40	30	31	33	40
A350-900	268 900	47.7	4.00	64	72	83	97	67	71	81	111
WV007 (CG 38.1%)	140 000	47.7	1.66	32	33	36	41	31	32	34	41
A350-900	240 900	48.4	1 50	56	62	72	84	59	62	71	96
WV008	140 000	48.4	1.52	32	33	36	41	31	32	35	42
A350-900	275 900	46.9	4.00	65	73	85	98	68	72	82	113
WV009	140 000	46.9	1.68	32	33	36	40	30	31	33	40
A350-900	280 900	46.6	4.74	66	74	87	100	69	73	83	115
WV010 (CG 31.2%)	140 000	46.5	1.71	32	33	35	40	30	31	33	40
A350-900	280 900	46.9	4.74	67	75	87	101	69	73	84	116
WV010 (CG 33.36%)	140 000	46.9	1.71	32	33	36	40	30	31	33	40
A350-900	255 900	48.0	1.00	61	68	79	91	63	67	76	104
WV011	140 000	48.0	1.66	33	33	36	41	31	32	34	42
A350-900	250 900	48.1	1.66	60	66	77	89	62	66	74	102
WV012	140 000	48.1	1.66	33	34	37	41	31	32	35	42

P_AC_070900_1_0080001_01_04

ACN Table (Sheet 1 of 2) FIGURE-7-9-0-991-008-A01

**ON A/C A350-900

WEIGHT	ALL UP	LOAD ON ONE MAIN	TIRE PRESSURE		ACN F RIGID PA\ IBGRADE	/EME			ACN F EXIBLE P UBGRAD	AVEN	
VARIANT	MASS (kg)	GEAR LEG (%)	(MPa)	HIGH 150	MEDIUM 80	LOW 40	ULTRA -LOW 20	HIGH 15	MEDIUM 10	LOW 6	ULTRA -LOW 3
A350-900	280 900	46.6	4 74	66	74	87	100	69	73	83	115
WV013 (CG 31.2%)	140 000	46.5	1.71	32	33	35	40	30	31	33	40
A350-900 WV013	280 900	46.9	1.71	67	75	87	101	69	73	84	116
(CG 33.36%)	140 000	46.9	1.71	32	33	36	40	30	31	33	40
A350-900	235 900	48.4	1.52	55	60	70	81	57	61	69	93
WV014	140 000	48.4	1.52	32	33	36	41	31	32	35	42
A350-900	277 900	46.5	4.00	65	73	85	98	68	72	82	113
WV015 (CG 31.15%)	140 000	46.5	1.68	32	32	35	40	30	31	33	40
A350-900 WV015	277 900	46.9	4.00	66	74	86	99	68	72	83	114
(CG 33.27%)	140 000	46.9	1.68	32	33	36	40	30	31	33	40
A350-900	277 900	47.3	4.00	66	74	87	100	69	73	83	115
WV015 (CG 35.57%)	140 000	47.2	1.68	32	33	36	40	31	32	34	41
A350-900 WV016	278 900	46.8	4 74	66	74	86	100	68	73	83	114
(CG 32.58)	140 000	46.8	1.71	32	33	36	40	30	31	33	40
A350-900 WV016	278 900	47.1	4 74	67	75	87	101	69	73	84	115
(CG 34.83%)	140 000	47.1	1.71	32	33	36	41	30	31	34	41
A350-900	210 900	47.3	4.00	45	49	56	66	48	51	57	76
WV017	140 000	47.3	1.36	30	31	34	38	30	31	34	41
A350-900	217 900	47.3	4.00	51	55	63	73	51	54	60	80
WV018	140 000	47.3	1.68	32	33	36	41	31	32	34	41
A350-900	235 900	48.4		55	60	70	81	57	61	69	93
WV019	140 000	48.4	1.52	32	33	36	41	31	32	35	42
A350-900	283 900	46.6		67	75	88	102	69	74	84	116
WV020	140 000	46.5	1.71	32	33	35	40	30	31	33	40
A350-900	277 900	46.5		65	73	85	98	68	72	82	113
WV021	140 000	46.5	1.68	32	32	35	40	30	31	33	40
A350-900	280 900	46.6		66	74	87	100	69	73	83	115
WV022 (CG 31.2%)	140 000	46.5	1.71	32	33	35	40	30	31	33	40
A350-900	280 900	46.9		67	75	87	101	69	73	84	116
WV022 (CG 33.36%)	140 000	46.9	1.71	32	33	36	40	30	31	33	40
A350-900	280 900	46.6		66	74	87	100	69	73	83	115
WV023 (CG 31.2%)	140 000	46.5	1.71	32	33	35	40	30	31	33	40
A350-900	280 900	46.9		67	75	87	101	69	73	84	116
WV023 (CG 33.36%)	140 000	46.9	1.71	32	33	36	40	30	31	33	40
A350-900	250 900	48.1		60	66	77	89	62	66	74	102
WV024	140 000	48.1	1.66	33	34	37	41	31	32	35	42
A350-900	245 900	48.2		57	63	73	86	60	64	72	99
WV025	140 000	48.3	1.52	32	33	36	41	31	32	35	42

P_AC_070900_1_0080001_02_03

ACN Table (Sheet 2 of 2) FIGURE-7-9-0-991-008-A01

**ON A/C A350-1000

WEIGHT	ALL UP	LOAD ON ONE MAIN	TIRE PRESSURE		ACN F RIGID PA\ IBGRADE	/EME			ACN F EXIBLE P UBGRAD	AVEN	
VARIANT	MASS (kg)	GEAR LEG (%)	(MPa)	HIGH 150	MEDIUM 80	LOW 40	ULTRA -LOW 20	HIGH 15	MEDIUM 10	LOW 6	ULTRA -LOW 3
A350-1000	308 900	47.3	1.52	57	72	93	112	55	61	76	105
WV000 (CG 35.88%)	160 000	47.3	1.52	27	28	34	42	23	25	28	38
A350-1000	308 900	47.4	1.52	57	72	93	112	55	61	76	105
WV000 (CG 35.96%)	160 000	47.4	1.52	27	28	34	42	23	25	28	38
A350-1000 WV001	311 900	47.1	4.50	57	73	93	113	55	62	76	105
(CG 34%)	160 000	47.1	1.52	27	27	33	42	23	25	28	38
A350-1000	311 900	47.3	4.50	58	73	94	114	56	62	77	106
WV001 (CG 35.53%)	160 000	47.3	1.52	27	28	34	42	23	25	28	38
A350-1000 WV002	316 900	46.6	1.50	58	74	94	114	56	62	77	106
(CG 30.8%)	160 000	46.6	1.52	27	27	33	41	23	24	28	38
A350-1000 WV002	316 900	47.2	1.52	59	75	96	116	57	63	79	108
(CG 34.95%)	160 000	47.2	1.32	27	27	34	42	23	25	28	38
A350-1000 WV004	308 900	47.3	1.50	57	72	93	112	55	61	76	105
(CG 35.88%)	160 000	47.3	1.52	27	28	34	42	23	25	28	38
A350-1000 WV004	308 900	47.4	4.50	57	72	93	112	55	61	76	105
(CG 35.96%)	160 000	47.4	1.52	27	28	34	42	23	25	28	38
A350-1000	270 900	48.1	4.50	48	60	77	95	47	52	63	89
WV005	160 000	48.1	1.52	28	28	34	43	24	25	29	39
A350-1000	319 900	46.9	4.50	60	76	97	117	57	64	79	109
WV006	160 000	46.9	1.56	27	27	33	42	23	25	28	38
A350-1000	260 900	48.1	4.04	43	54	70	87	44	49	59	84
WV007	160 000	48.1	1.31	26	27	33	42	23	25	29	39
A350-1000 WV009	290 900	47.7	4.50	53	66	85	104	51	57	70	97
(CG 38.17%)	160 000	47.7	1.52	28	28	34	42	23	25	29	39
A350-1000 WV009	290 900	47.7	4.50	53	66	85	104	51	57	70	97
(CG 38.21%)	160 000	47.7	1.52	28	28	34	42	23	25	29	39
A350-1000 WV010	300 900	47.5	4.50	55	70	89	109	53	59	73	101
(CG 36.86%)	160 000	47.5	1.52	27	28	34	42	23	25	29	39
A350-1000 WV010	300 900	47.5	4.50	55	70	89	109	53	59	73	101
(CG 36.93%)	160 000	47.5	1.52	27	28	34	42	23	25	29	39
A350-1000 WV011	316 900	46.6	4.50	58	74	94	114	56	62	77	106
(CG 30.8%)	160 000	46.6	1.52	27	27	33	41	23	24	28	38
A350-1000 WV011	316 900	47.2	4.50	59	75	96	116	57	63	79	108
(CG 34.95%)	160 000	47.2	1.52	27	27	34	42	23	25	28	38
A350-1000 WV014	314 750	46.9	4.50	58	73	94	114	56	62	77	106
(CG 32.47%)	160 000	46.9	1.52	27	27	33	41	23	24	28	38
A350-1000 WV014	314 750	47.2	4.50	58	74	95	115	56	63	78	107
(CG 35.19%)	160 000	47.2	1.52	27	27	34	42	23	25	28	38

P_AC_070900_1_0110001_01_03

ACN Table FIGURE-7-9-0-991-011-A01

**ON A/C A350-1000F

WEIGHT	ALL UP	LOAD ON ONE MAIN			ACN F RIGID PA\ IBGRADE	/EME			ACN F EXIBLE P UBGRAD	AVEN	
VARIANT	MASS (kg)	GEAR LEG (%)	(NAD-)	HIGH 150	MEDIUM 80	LOW 40	ULTRA -LOW 20	HIGH 15	MEDIUM 10	LOW 6	ULTRA -LOW 3
A350-1000F	319 900	46.7	1.62	60	76	97	117	57	63	78	108
WV000	160 000	46.7	1.62	28	28	34	41	23	24	28	38
A350-1000F	319 900	46.7	1.62	60	76	97	117	57	63	78	108
WV002	160 000	46.7	1.02	28	28	34	41	23	24	28	38

P_AC_070900_1_0380004_01_00

ACN Table FIGURE-7-9-0-991-038-D01

7-10-0 ACR/PCR Reporting System - Flexible and Rigid Pavements

**ON A/C A350-1000 A350-1000F A350-900

ACR/PCR Reporting System - Flexible and Rigid Pavements

 The ACR/PCR system has been developed by the ICAO to overcome the deficiencies of the ACN/PCN system. Significant advances in pavement design methods had occurred since its development in the late 1970s early 1980s, leading to inconsistencies with the pavementstrength-rating system.

The ACR/PCR system entails new procedures for the determination of both the ACR and the PCR that are consistent with the current pavement design procedures. This allows to capture the effects of the improved characteristics of new pavement materials as well as modern landing gear configurations, thus leading to an improved accuracy.

This section gives data about the Aircraft Classification Rating (ACR) for the maximum ramp weight in relation with standard subgrade strength values for flexible and rigid pavement. To determine the ACR at other aircraft gross weight, use the official ICAO-ACR software.

NOTE: An aircraft with an ACR equal to or less than the reported PCR can operate on that pavement, subject to any limitation on the tire pressure. (Ref: ICAO Aerodrome Design Manual, Part 3, Third Edition 2020).

2. Aircraft Classification Rating - ACR Table

The table (FIGURE 7-10-0-991-001-A, FIGURE 7-10-0-991-002-B and FIGURE 7-10-0-991-003-B) provide ACR data in tabular format for all the operational weight variants of the aircraft. For questions or specific calculation related to ACR/PCR reporting system, contact Airbus.

**ON A/C A350-900

WEIGHT	ALL UP	LOAD ON	TIRE		ACR RIGID PA SUBGRA			ı	ACF FLEXIBLE SUBGRA		
VARIANT	MASS (kg)	ONE MAIN GEAR LEG (%)	PRESSURE (MPa)	HIGH 200	MEDIUM 120	LOW 80	ULTRA -LOW 50	HIGH 200	MEDIUM 120	LOW 80	ULTRA -LOW 50
A350-900 WV000 (CG 33%)	268 900	46.8	1.66	700	790	880	990	660	670	720	850
A350-900 WV000 (CG 38.09%)	268 900	47.7	1.66	720	810	910	1 020	670	690	730	870
A350-900 WV000 (CG 38.1%)	268 900	47.7	1.66	720	810	910	1 020	670	690	730	870
A350-900 WV001 (CG 33.2%)	275 900	46.9	1.68	730	830	920	1 030	680	690	740	880
A350-900 WV001 (CG 34.83%)	275 900	47.1	1.68	740	830	930	1 040	690	700	750	890
A350-900 WV001 (CG 37.07%)	275 900	47.5	1.68	740	840	940	1 050	690	700	760	900
A350-900 WV002 (CG 36.39%)	272 900	47.4	1.68	730	830	920	1 030	680	690	740	880
A350-900 WV002 (CG 36.83%)	272 900	47.5	1.68	730	830	920	1 030	680	700	750	890
A350-900 WV002 (CG 37.53%)	272 900	47.6	1.68	730	830	920	1 040	690	700	750	890
A350-900 WV003	268 900	47.7	1.66	720	810	910	1 020	670	690	730	870
A350-900 WV004	260 900	47.8	1.66	700	790	870	980	660	670	710	840
A350-900 WV005	250 900	48.1	1.66	670	750	830	940	630	640	680	800
A350-900 WV006 (CG 36.4%)	272 900	47.4	1.68	730	830	920	1 030	680	690	740	880
A350-900 WV006 (CG 36.83%)	272 900	47.5	1.68	730	830	920	1 030	680	700	750	880
A350-900 WV006 (CG 37.53%)	272 900	47.6	1.68	730	830	920	1 040	690	700	750	890
A350-900 WV007 (CG 33%)	268 900	46.8	1.66	700	790	880	990	660	670	720	850

P_AC_071000_1_0010001_01_02

ACR Table (Sheet 1 of 3) FIGURE-7-10-0-991-001-A01

**ON A/C A350-900

WEIGHT	ALL UP	LOAD ON	TIRE		ACR RIGID PA SUBGRA			ı	ACF FLEXIBLE SUBGRA		
VARIANT	MASS (kg)	ONE MAIN GEAR LEG (%)	PRESSURE (MPa)	HIGH 200	MEDIUM 120	LOW 80	ULTRA -LOW 50	HIGH 200	MEDIUM 120	LOW 80	ULTRA -LOW 50
A350-900 WV007 (CG 38.1%)	268 900	47.7	1.66	720	810	910	1 020	670	690	730	870
A350-900 WV008	240 900	48.4	1.52	620	700	780	880	600	610	650	750
A350-900 WV009	275 900	46.9	1.68	730	830	920	1 030	680	690	740	880
A350-900 WV010 (CG 31.2%)	280 900	46.6	1.71	750	840	940	1 050	690	700	760	900
A350-900 WV010 (CG 33.36%)	280 900	46.9	1.71	750	850	950	1 060	700	710	760	910
A350-900 WV011	255 900	48.0	1.66	680	770	850	960	650	650	700	820
A350-900 WV012	250 900	48.1	1.66	670	750	830	940	630	640	680	800
A350-900 WV013 (CG 31.2%)	280 900	46.6	1.71	750	840	940	1 050	690	700	760	900
A350-900 WV013 (CG 33.36%)	280 900	46.9	1.71	750	850	950	1 060	700	710	760	910
A350-900 WV014	235 900	48.4	1.52	600	680	760	850	590	600	630	730
A350-900 WV015 (CG 31.15%)	277 900	46.5	1.68	730	830	920	1 030	680	690	740	880
A350-900 WV015 (CG 33.27%)	277 900	46.9	1.68	740	840	930	1 040	690	700	750	890
A350-900 WV015 (CG 35.57%)	277 900	47.3	1.68	750	840	940	1 050	690	710	760	900
A350-900 WV016 (CG 32.58%)	278 900	46.8	1.71	740	840	930	1 050	690	700	750	900
A350-900 WV016 (CG 34.83%)	278 900	47.1	1.71	750	850	940	1 060	700	710	760	910
A350-900 WV017	210 900	47.3	1.36	490	550	610	690	500	510	530	600
A350-900 WV018	217 900	47.3	1.68	550	610	670	750	540	540	570	640
A350-900 WV019	235 900	48.4	1.52	600	680	760	850	590	600	630	730

P_AC_071000_1_0010001_02_02

ACR Table (Sheet 2 of 3) FIGURE-7-10-0-991-001-A01

**ON A/C A350-900

WEIGHT	ALL UP	LOAD ON	TIRE		ACR RIGID PA SUBGRA	—		ı	ACF FLEXIBLE SUBGRA	—	
VARIANT	MASS (kg)	ONE MAIN GEAR LEG (%)	PRESSURE (MPa)	HIGH 200	MEDIUM 120	LOW 80	ULTRA -LOW 50	HIGH 200	MEDIUM 120	LOW 80	ULTRA -LOW 50
A350-900 WV020	283 900	46.6	1.71	760	860	950	1 070	700	710	770	910
A350-900 WV021	277 900	46.5	1.68	730	830	920	1 030	680	690	740	880
A350-900 WV022 (CG 31.2%)	280 900	46.6	1.71	750	840	940	1 050	690	700	760	900
A350-900 WV022 (CG 33.36%)	280 900	46.9	1.71	750	850	950	1 060	700	710	760	910
A350-900 WV023 (CG 31.2%)	280 900	46.6	1.71	750	840	940	1 050	690	700	760	900
A350-900 WV023 (CG 33.36%)	280 900	46.9	1.71	750	850	950	1 060	700	710	760	910
A350-900 WV024	250 900	48.1	1.66	670	750	830	940	630	640	680	800
A350-900 WV025	245 900	48.2	1.52	630	720	800	900	610	620	660	770

P_AC_071000_1_0010001_03_01

ACR Table (Sheet 3 of 3) FIGURE-7-10-0-991-001-A01

**ON A/C A350-1000

WEIGHT VARIANT	ALL UP MASS (kg)	LOAD ON ONE MAIN GEAR LEG (%)		ACR FOR ACR FOR RIGID PAVEMENT FLEXIBLE PAVEME SUBGRADES - MPa SUBGRADES - MF							
				HIGH 200	MEDIUM 120	LOW 80	ULTRA -LOW 50	HIGH 200	MEDIUM 120	LOW 80	ULTRA -LOW 50
A350-1000 WV000 (CG 35.88%)	308 900	47.3	1.52	660	840	990	1 150	510	550	660	1 010
A350-1000 WV000 (CG 35.96%)	308 900	47.4	1.52	660	840	990	1 150	510	550	660	1 010
A350-1000 WV001 (CG 34%)	311 900	47.1	1.52	660	850	1 000	1 160	510	550	670	1 020
A350-1000 WV001 (CG 35.53%)	311 900	47.3	1.52	670	850	1 010	1 170	520	550	670	1 030
A350-1000 WV002 (CG 30.8%)	316 900	46.6	1.52	670	850	1 010	1 170	520	560	680	1 030
A350-1000 WV002 (CG 34.95%)	316 900	47.2	1.52	690	870	1 030	1 190	530	560	690	1 060
A350-1000 WV004 (CG 35.88%)	308 900	47.3	1.52	660	840	990	1 150	510	550	660	1 010
A350-1000 WV004 (CG 35.96%)	308 900	47.4	1.52	660	840	990	1 150	510	550	660	1 010
A350-1000 WV005	270 900	48.1	1.52	550	690	820	970	450	480	550	810
A350-1000 WV006	319 900	46.9	1.56	700	880	1 040	1 200	530	570	700	1 070
A350-1000 WV007	260 900	48.1	1.31	490	620	750	900	420	450	510	740
A350-1000 WV009 (CG 38.17%)	290 900	47.7	1.52	600	770	910	1 060	480	510	610	910
A350-1000 WV009 (CG 38.21%)	290 900	47.7	1.52	600	770	910	1 060	480	510	610	910

P_AC_071000_1_0020002_01_02

ACR Table (Sheet 1 of 2) FIGURE-7-10-0-991-002-B01

> Page 5 Dec 01/24

**ON A/C A350-1000

WEIGHT VARIANT	ALL UP MASS (kg)	LOAD ON ONE MAIN GEAR LEG (%)	TIRE PRESSURE (MPa)	ACR FOR RIGID PAVEMENT SUBGRADES - MPa				ACR FOR FLEXIBLE PAVEMENT SUBGRADES - MPa			
				HIGH 200	MEDIUM 120	LOW 80	ULTRA -LOW 50	HIGH 200	MEDIUM 120	LOW 80	ULTRA -LOW 50
A350-1000 WV010 (CG 36.86%)	300 900	47.5	1.52	630	810	950	1 110	500	530	640	970
A350-1000 WV010 (CG 36.93%)	300 900	47.5	1.52	630	810	950	1 110	500	530	640	970
A350-1000 WV011 (CG 30.8%)	316 900	46.6	1.52	670	850	1 010	1 170	520	560	680	1 030
A350-1000 WV011 (CG 34.95%)	316 900	47.2	1.52	690	870	1 030	1 190	530	560	690	1 060
A350-1000 WV014 (CG 32.47%)	314 750	46.9	1.52	670	850	1 000	1 170	520	550	670	1 030
A350-1000 WV014 (CG 35.19%)	314 750	47.2	1.52	680	860	1 020	1 180	520	560	680	1 040

P_AC_071000_1_0020002_02_00

ACR Table (Sheet 2 of 2) FIGURE-7-10-0-991-002-B01

**ON A/C A350-1000F

WEIGHT VARIANT		LOAD ON ONE MAIN GEAR LEG (%)	TIRE PRESSURE (MPa)	ACR FOR RIGID PAVEMENT SUBGRADES - MPa				ACR FOR FLEXIBLE PAVEMENT SUBGRADES - MPa			
				HIGH 200	MEDIUM 120	LOW 80	ULTRA -LOW 50	HIGH 200	MEDIUM 120	LOW 80	ULTRA -LOW 50
A350-1000F WV000	319 900	46.7	1.62	700	880	1 030	1 200	530	570	690	1 050
A350-1000F WV002	319 900	46.7	1.62	700	880	1 030	1 200	530	570	690	1 050

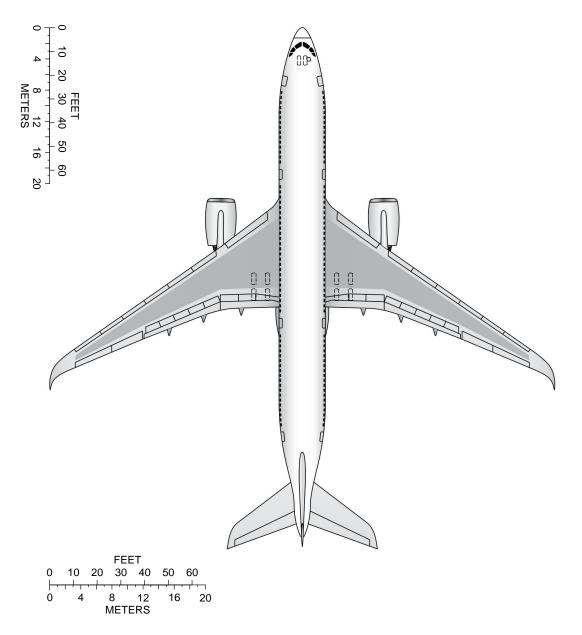
P_AC_071000_1_0030002_01_00

ACR TABLE FIGURE-7-10-0-991-003-B01

> Page 7 Dec 01/24

SCALED DRAWINGS

8-0-0 Scaled Drawings

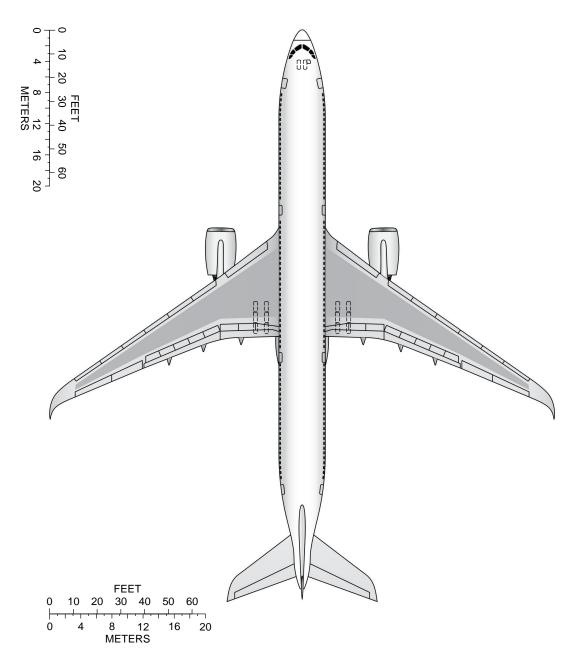

**ON A/C A350-1000 A350-1000F A350-900

Scaled Drawings

1. This section provides the scaled drawings.

NOTE: When printing this drawing, make sure to adjust for proper scaling.

**ON A/C A350-900

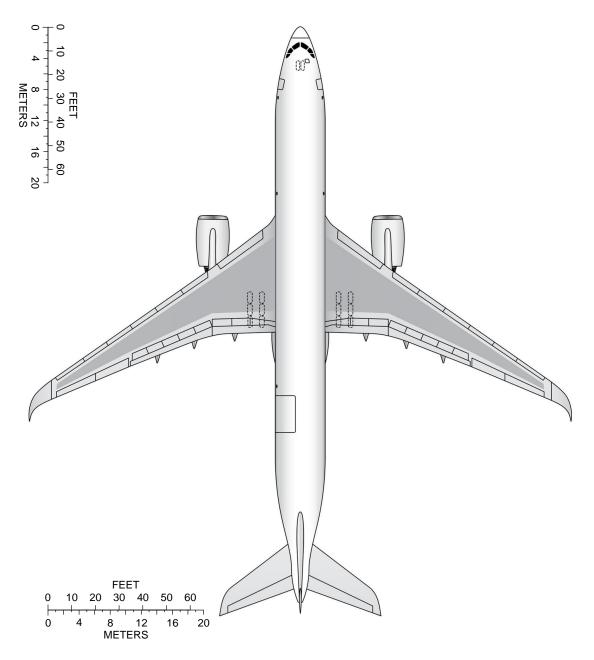

NOTE:

WHEN PRINTING THIS DRAWING, MAKE SURE TO ADJUST FOR PROPER SCALING.

P_AC_080000_1_0010001_01_01

Scaled Drawings FIGURE-8-0-0-991-001-A01

**ON A/C A350-1000


NOTE

WHEN PRINTING THIS DRAWING, MAKE SURE TO ADJUST FOR PROPER SCALING.

P_AC_080000_1_0020001_01_00

Scaled Drawings FIGURE-8-0-0-991-002-A01

**ON A/C A350-1000F

NOTE:

WHEN PRINTING THIS DRAWING, MAKE SURE TO ADJUST FOR PROPER SCALING.

P_AC_080000_1_0030001_01_00

Scaled Drawings FIGURE-8-0-0-991-003-A01

AIRCRAFT RESCUE AND FIRE FIGHTING

10-0-0 Aircraft Rescue and Fire Fighting

**ON A/C A350-1000 A350-1000F A350-900

Aircraft Rescue and Fire Fighting

1. Aircraft Rescue and Fire Fighting Charts

This sections provides data related to aircraft rescue and fire fighting.

The figures contained in this section are the figures that are in the Aircraft Rescue and Fire Fighting Charts poster available for download on AIRBUSWorld and the Airbus website.

**ON A/C A350-900

AIRBUS

Aircraft Rescue and Fire Fighting Chart

NOTE

THIS CHART GIVES THE GENERAL LAYOUT OF THE A350-900 STANDARD VERSION.
THE NUMBER AND ARRANGEMENT OF THE INDIVIDUAL ITEMS VARY WITH THE CUSTOMERS.
FIGURES CONTAINED IN THIS POSTER ARE AVAILABLE SEPARATELY IN THE CHAPTER 10 OF THE
"AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING" DOCUMENT.

ISSUED BY:

AIRBUS S.A.S CUSTOMER SERVICES TECHNICAL DATA SUPPORT AND SERVICES 31707 BLAGNAC CEDEX

MAY 2021 P_RF_000000_1_A350900

REVISION DATE: PREFERENCE : FSHEET 1/2

AIRBUS S.A.S. 2012 . All rights reserved.

P_AC_100000_1_0010001_01_06

Front Page FIGURE-10-0-0-991-001-A01

> Page 2 Dec 01/24

**ON A/C A350-1000

AIRBUS

Aircraft Rescue and Fire Fighting Chart

OTE

THIS CHART GIVES THE GENERAL LAYOUT OF THE A350-1000 STANDARD VERSION.
THE NUMBER AND ARRANGEMENT OF THE INDIVIDUAL ITEMS VARY WITH THE CUSTOMERS.
FIGURES CONTAINED IN THIS POSTER ARE AVAILABLE SEPARATELY IN THE CHAPTER 10 OF THE
"AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING" DOCUMENT.

ISSUED BY:

AIRBUS S.A.S CUSTOMER SERVICES TECHNICAL DATA SUPPORT AND SERVICES 31707 BLAGNAC CEDEX

MAY 2021 P_RF_000000_1_A3501000

REVISION DATE: PREFERENCE : FSHEET 1/2

AIRBUS S.A.S. 2012 . All rights reserved.

P_AC_100000_1_0010003_01_02

Front Page FIGURE-10-0-0-991-001-C01

**ON A/C A350-1000F

AIRBUS

Aircraft Rescue and Fire Fighting Charl

NOTE

THIS CHART GIVES THE GENERAL LAYOUT OF THE A350-1000F STANDARD VERSION.
THE NUMBER AND ARRANGEMENT OF THE INDIVIDUAL ITEMS VARY WITH THE CUSTOMERS.
FIGURES CONTAINED IN THIS POSTER ARE AVAILABLE SEPARATELY IN THE CHAPTER 10 OF THE
"AIRCRAFT CHARACTERISTICS - AIRPORT AND MAINTENANCE PLANNING" DOCUMENT.

ISSUED BY:

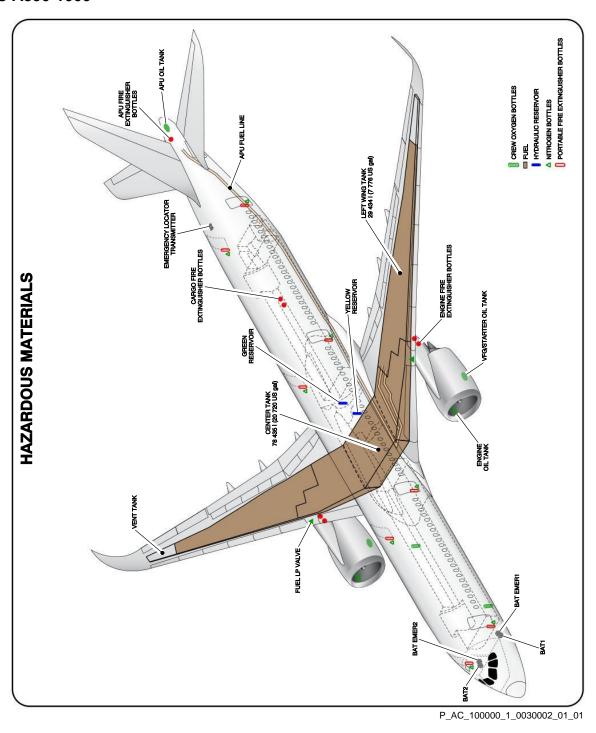
AIRBUS S.A.S CUSTOMER SERVICES TECHNICAL DATA SUPPORT AND SERVICES 31707 BLAGNAC CEDEX

: APRIL 2024 : P_RF_000000_1_A3501000F

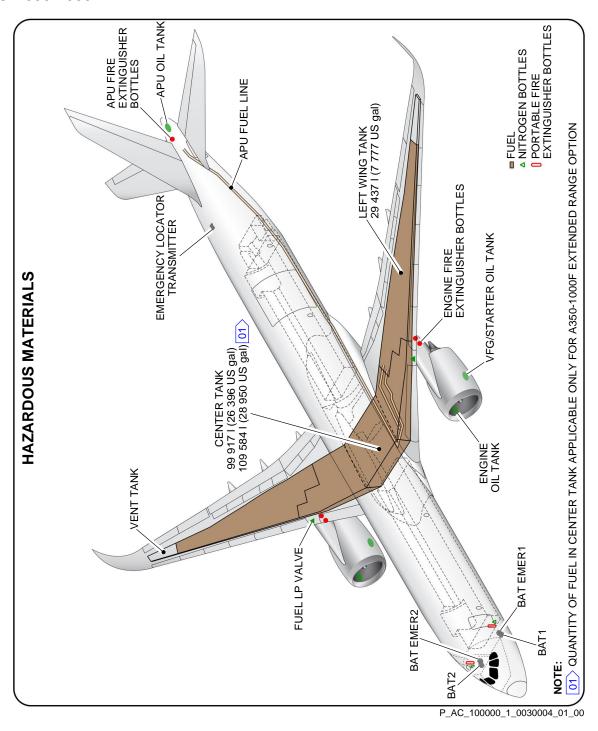

REVISION DATE: A REFERENCE : F SHEET 1/2

AIRBUS S.A.S. 2012. All rights reserved.

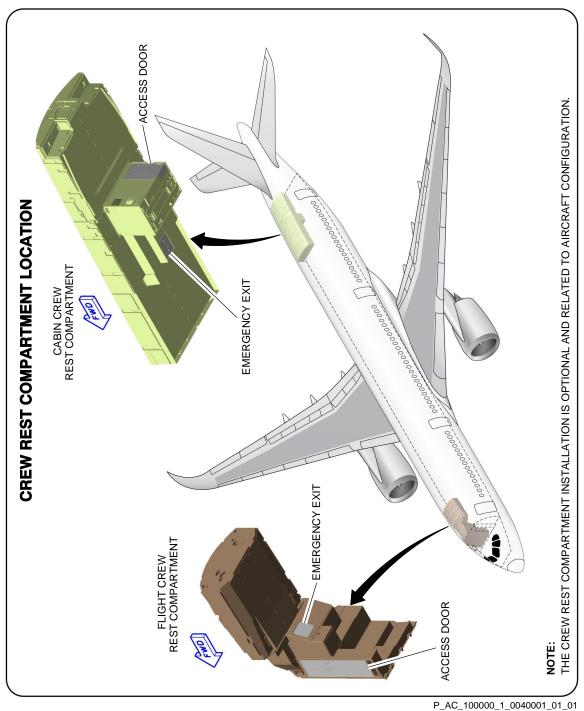
P_AC_100000_1_0010007_01_00


Front Page FIGURE-10-0-0-991-001-G01

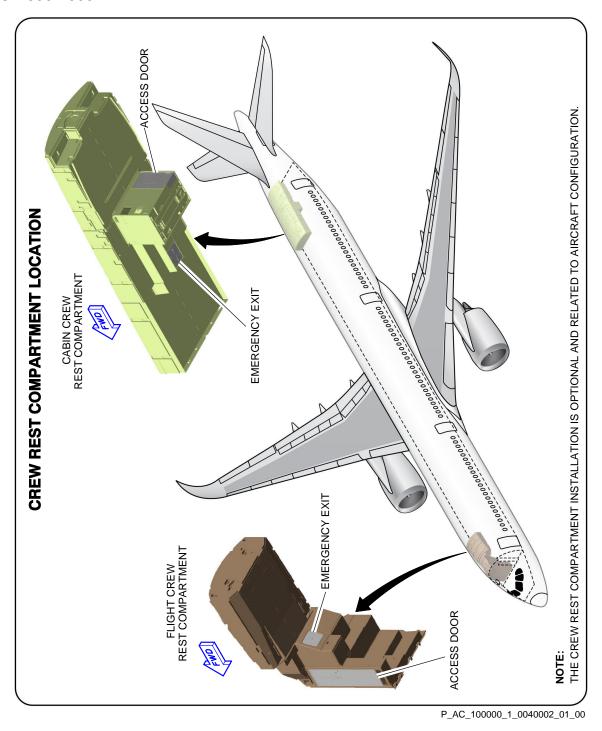
**ON A/C A350-900


Highly Flammable and Hazardous Materials and Components FIGURE-10-0-0-991-003-A01

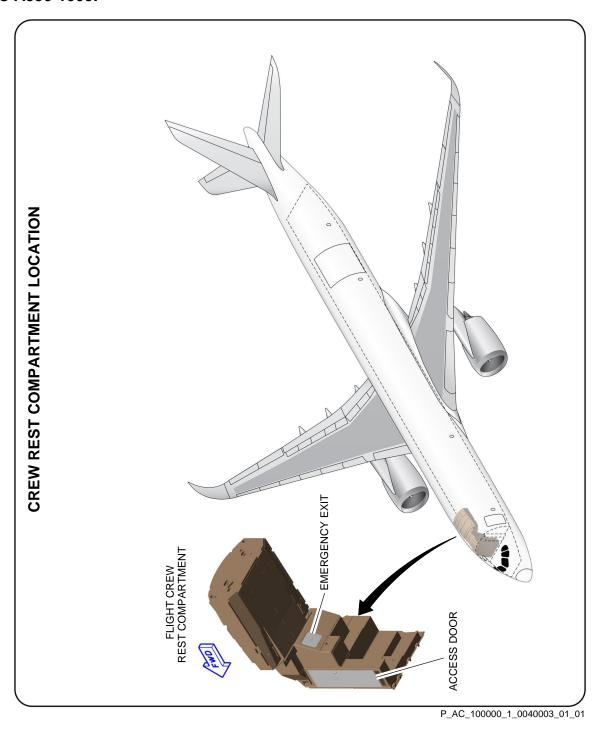
**ON A/C A350-1000


Highly Flammable and Hazardous Materials and Components FIGURE-10-0-0-991-003-B01

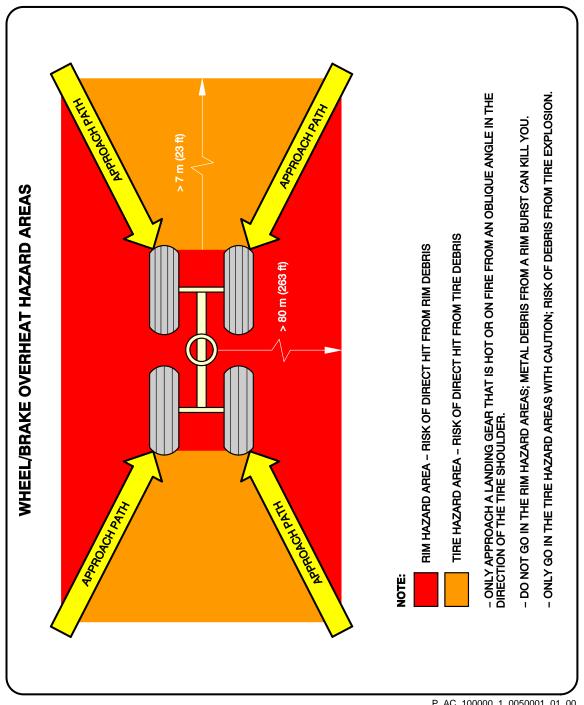
**ON A/C A350-1000F


Highly Flammable and Hazardous Materials and Components 10-0-0-991-003-D01

**ON A/C A350-900


Crew Rest Compartments Location FIGURE-10-0-0-991-004-A01

**ON A/C A350-1000



Crew Rest Compartments Location FIGURE-10-0-0-991-004-B01

**ON A/C A350-1000F

Crew Rest Compartment Location FIGURE-10-0-0-991-004-C01

P_AC_100000_1_0050001_01_00

Wheel/Brake Overheat Wheel Safety Area (Sheet 1 of 2) FIGURE-10-0-0-991-005-A01

3RAKE OVERHEAT AND LANDING GEAR FIR

BE VERY CAREFUL WHEN THERE IS A BRAKE OVERHEAT AND/OR LANDING GEAR FIRE. THERE IS A RISK OF TIRE EXPLOSION AND/OR WHEEL RIM BURST THAT CAN CAUSE DEATH OR INJURY. MAKE SURE THAT YOU OBEY THE SAFETY PRECAUTIONS THAT FOLLOW. WARNING:

THE PROCEDURES THAT FOLLOW GIVE RECOMMENDATIONS AND SAFETY PRECAUTIONS FOR THE COOLING OF VERY HOT BRAKES AFTER ABNORMAL OPERATIONS SUCH AS A REJECTED TAKE-OFF OR OVERWEIGHT LANDING. FOR THE COOLING OF BRAKES AFTER NORMAL TAXI-IN, REFER TO YOUR COMPANY PROCEDURES.

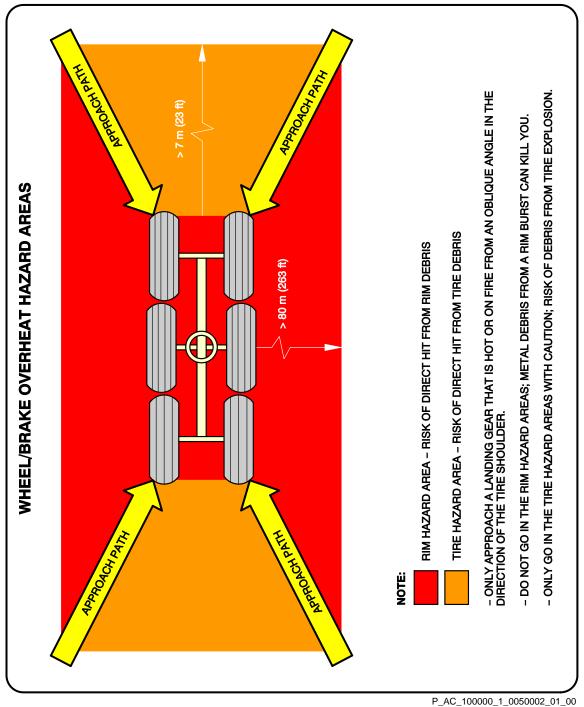
BRAKE OVERHEAT:

- GET THE BRAKE TEMPERATURE FROM THE COCKPIT OR USE A REMOTE MEASUREMENT TECHNIQUE. THE REAL TEMPERATURE OF THE BRAKES CAN BE MUCH HIGHER THAN THE TEMPERATURE SHOWN ON THE ECAM. **NOTE:** AT HIGH TEMPERATURES (>800°C), THERE IS A RISK OF WARPING OF THE LANDING GEAR STRUTS AND AXLES.
- APPROACH THE LANDING GEAR WITH EXTREME CAUTION AND FROM AN OBLIQUE ANGLE IN THE DIRECTION OF THE TIRE SHOULDER. DO NOT GO INTO THE RIM HAZARD AREA AND ONLY GO IN THE TIRE HAZARD AREA WITH CAUTION. (REF FIG. WHEEL/BRAKE OVERHEAT HAZARD AREAS). IF POSSIBLE, STAY IN A VEHICLE. ٦ ا
- LOOK AT THE CONDITION OF THE TIRES: IF THE TIRES ARE STILL INFLATED (FUSE PLUGS NOT MELTED), THERE IS A RISK OF TIRE EXPLOSION AND RIM BURST. DO NOT USE COOLING FANS BECAUSE THEY CAN PREVENT OPERATION OF THE FUSE PLUGS. ် က
- USE A TECHNIQUE THAT PREVENTS SUDDEN COOLING. SUDDEN COOLING CAN CAUSE WHEEL CRACKS OR RIM BURST DO NOT APPLY WATER, FOAM OR CO2. THESE COOLING AGENTS (AND ESPECIALLY CO2, WHICH HAS A VERY STRONG COOLING EFFECT) CAN CAUSE THERMAL SHOCKS AND BURST OF HOT PARTS. USE WATER MIST TO DECREASE THE TEMPERATURE OF THE COMPLETE WHEEL AND BRAKE ASSEMBLY 4

LANDING GEAR FIRE

CAUTION: AIRBUS RECOMMENDS THAT YOU DO NOT USE DRY POWDERS OR DRY CHEMICALS ON HOT BRAKES OR TO EXTINGUISH LANDING GEAR FIRES. THESE AGENTS CAN CHANGE INTO SOLID OR ENAMELED DEPOSITS. THEY CAN DECREASE THE SPEED OF HEAT DISSIPATION WITH A POSSIBLE RISK OF PERMANENT STRUCTURAL DAMAGE TO THE BRAKES, WHEELS OR WHEEL AXLES 1 – IMMEDIATELY STOP THE FIRE: APPROACH THE LANDING GEAR WITH EXTREME CAUTION FROM AN OBLIQUE ANGLE IN THE DIRECTION OF THE TIRE SHOULDER. DO NOT GO INTO THE RIM HAZARD AREA AND ONLY GO IN THE TIRE HAZARD AREA WITH CAUTION. IF POSSIBLE, STAY IN A VEHICLE ₹

USE LARGE AMOUNTS OF WATER, WATER MIST; IF THE FUEL TANKS ARE AT RISK, USE FOAM. USE A TECHNIQUE THAT PREVENTS SUDDEN COOLING. SUDDEN COOLING CAN CAUSE WHEEL CRACKS OR RIM BURST <u>a</u>


C) DO NOT USE FANS OR BLOWERS

P_AC_100000_1_0050001_02_00

Wheel/Brake Overheat Recommendations (Sheet 2 of 2) FIGURE-10-0-0-991-005-A01

**ON A/C A350-1000 A350-1000F

Wheel/Brake Overheat Wheel Safety Area (Sheet 1 of 2) FIGURE-10-0-0-991-005-B01

**ON A/C A350-1000 A350-1000F

GEAR FIRE SRAKE OVERHEAT AND LANDING

BE VERY CAREFUL WHEN THERE IS A BRAKE OVERHEAT AND/OR LANDING GEAR FIRE. THERE IS A RISK OF TIRE EXPLOSION AND/OR WHEEL RIM BURST THAT CAN CAUSE DEATH OR INJURY MAKE SURE THAT YOU OBEY THE SAFETY PRECAUTIONS THAT FOLLOW WARNING:

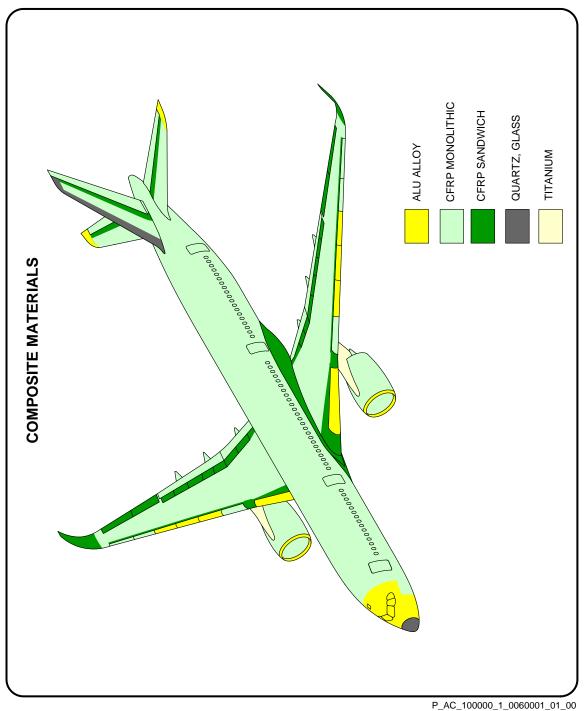
THE PROCEDURES THAT FOLLOW GIVE RECOMMENDATIONS AND SAFETY PRECAUTIONS FOR THE COOLING OF VERY HOT BRAKES AFTER ABNORMAL OPERATIONS SUCH AS A REJECTED TAKE-OFF OR OVERWEIGHT LANDING. FOR THE COOLING OF BRAKES AFTER NORMAL TAXI-IN, REFER TO YOUR COMPANY PROCEDURES.

BRAKE OVERHEAT:

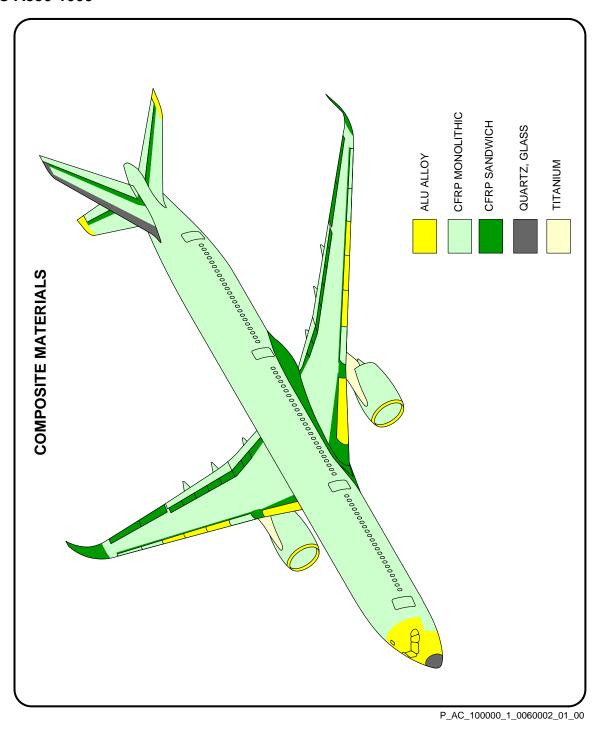
- NOTE: AT HIGH TEMPERATURES (>800°C), THERE IS A RISK OF WARPING OF THE LANDING GEAR STRUTS AND AXLES. THE REAL TEMPERATURE OF THE BRAKES CAN BE MUCH HIGHER THAN THE TEMPERATURE SHOWN ON THE GET THE BRAKE TEMPERATURE FROM THE COCKPIT OR USE A REMOTE MEASUREMENT TECHNIQUE.
- APPROACH THE LANDING GEAR WITH EXTREME CAUTION AND FROM AN OBLIQUE ANGLE IN THE DIRECTION OF THE TIRE SHOULDER. DO NOT GO INTO THE RIM HAZARD AREA AND ONLY GO IN THE TIRE HAZARD AREA WITH CAUTION. (REF FIG. WHEEL/BRAKE OVERHEAT HAZARD AREAS). IF POSSIBLE, STAY IN A VEHICLE. N
- LOOK AT THE CONDITION OF THE TIRES: IF THE TIRES ARE STILL INFLATED (FUSE PLUGS NOT MELTED), THERE IS A RISK OF TIRE EXPLOSION AND RIM BURST DO NOT USE COOLING FANS BECAUSE THEY CAN PREVENT OPERATION OF THE FUSE PLUGS. 'n
- USE A TECHNIQUE THAT PREVENTS SUDDEN COOLING. SUDDEN COOLING CAN CAUSE WHEEL CRACKS OR RIM BURST. DO NOT APPLY WATER, FOAM OR CO2. THESE COOLING AGENTS (AND ESPECIALLY CO2, WHICH HAS A VERY STRONG COOLING EFFECT) CAN CAUSE THERMAL SHOCKS AND BURST OF HOT PARTS. - USE WATER MIST TO DECREASE THE TEMPERATURE OF THE COMPLETE WHEEL AND BRAKE ASSEMBLY 4

LANDING GEAR FIRE:

CAUTION:

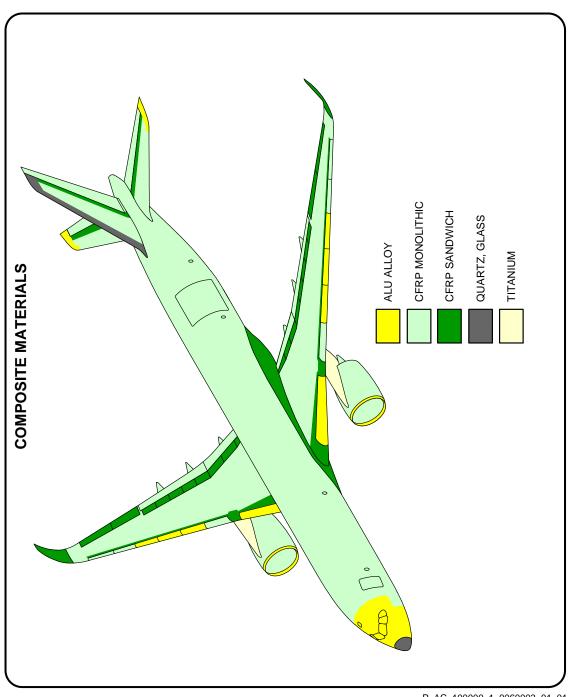

EXTINGUISH LANDING GEAR FIRES. THESE AGENTS CAN CHANGE INTO SOLID OR ENAMELED DEPOSITS. THEY CAN DECREASE THE SPEED OF HEAT DISSIPATION WITH A POSSIBLE RISK OF PERMANENT STRUCTURAL DAMAGE TO THE BRAKES, WHEELS OR WHEEL AXLES - IMMEDIATELY STOP THE FIRE:

AIRBUS RECOMMENDS THAT YOU DO NOT USE DRY POWDERS OR DRY CHEMICALS ON HOT BRAKES OR TO


- TIRE SHOULDER. DO NOT GO INTO THE RIM HAZARD AREA AND ONLY GO IN THE TIRE HAZARD AREA WITH CAUTION. IF POSSIBLE, STAY IN A VEHICLE. APPROACH THE LANDING GEAR WITH EXTREME CAUTION FROM AN OBLIQUE ANGLE IN THE DIRECTION OF THE
- B) USE LARGE AMOUNTS OF WATER, WATER MIST; IF THE FUEL TANKS ARE AT RISK, USE FOAM. USE A TECHNIQUE THAT PREVENTS SUDDEN COOLING. SUDDEN COOLING CAN CAUSE WHEEL CRACKS OR RIM BURST.
- DO NOT USE FANS OR BLOWERS. O

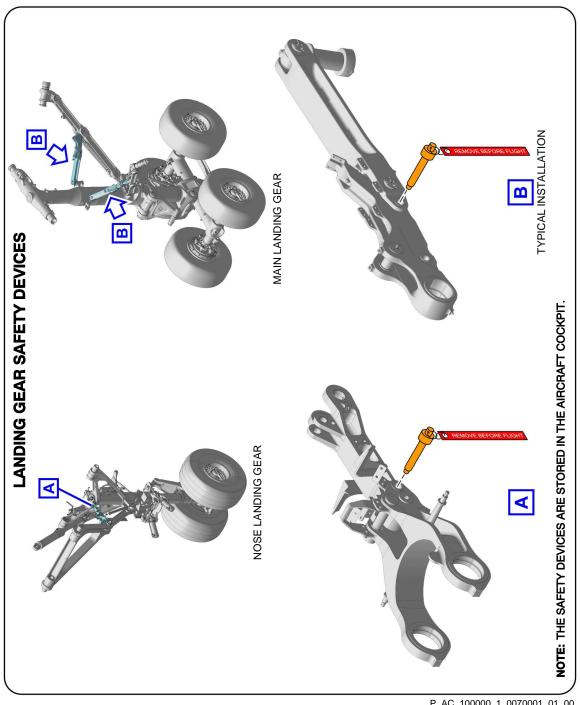
P_AC_100000_1_0050002_02_00

Wheel/Brake Overheat Recommendations (Sheet 2 of 2) FIGURE-10-0-0-991-005-B01



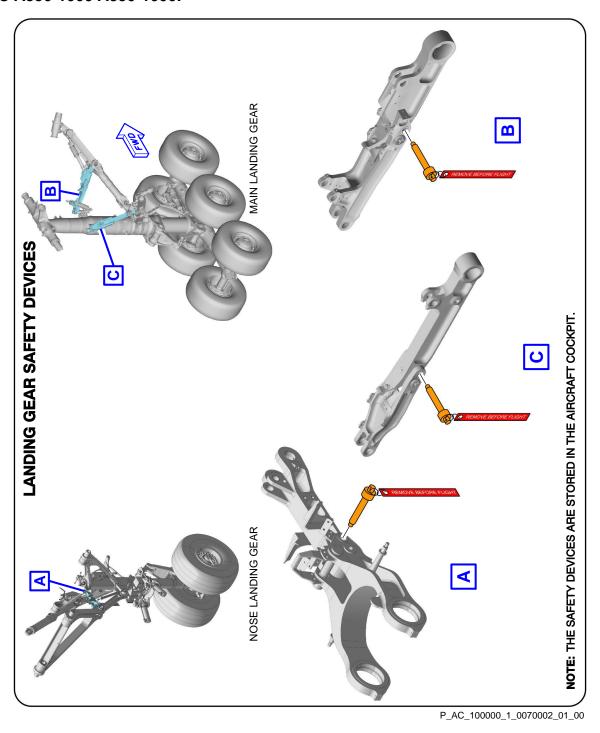
Composite Materials Location FIGURE-10-0-0-991-006-A01

Composite Materials Location FIGURE-10-0-0-991-006-B01

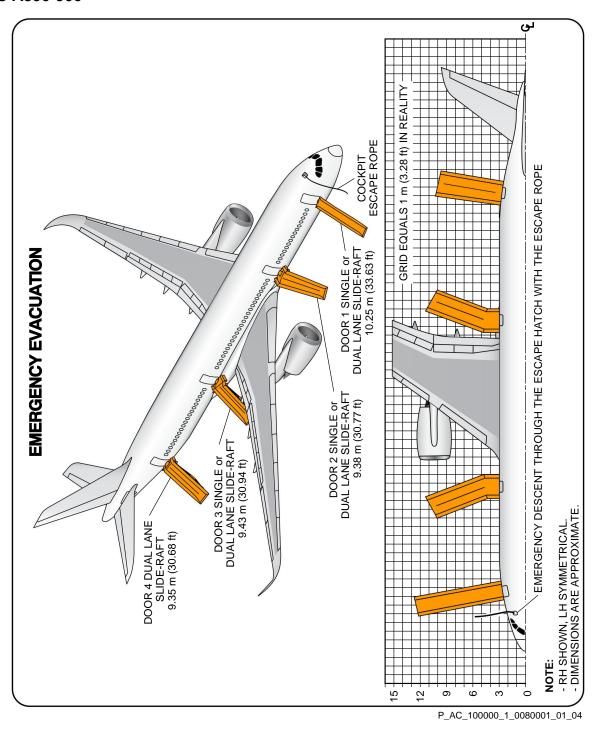

**ON A/C A350-1000F

P_AC_100000_1_0060003_01_01

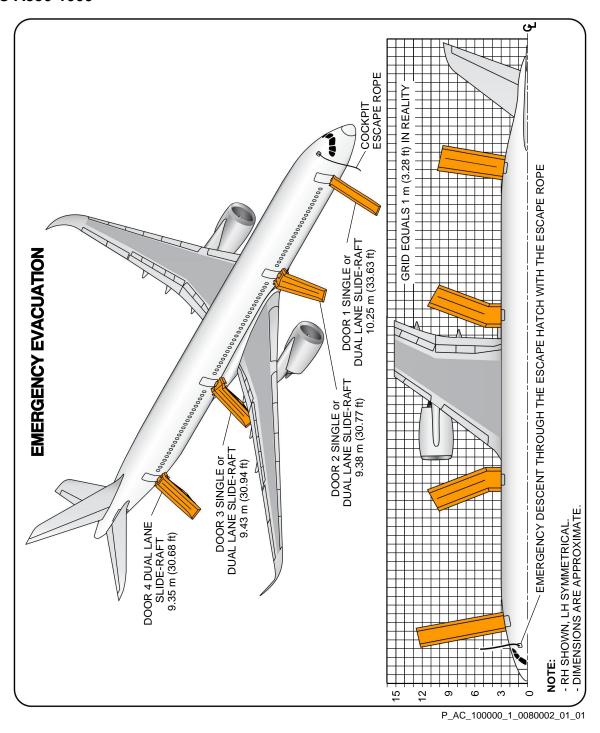
Composite Materials Location FIGURE-10-0-0-991-006-C01


**ON A/C A350-900

P_AC_100000_1_0070001_01_00

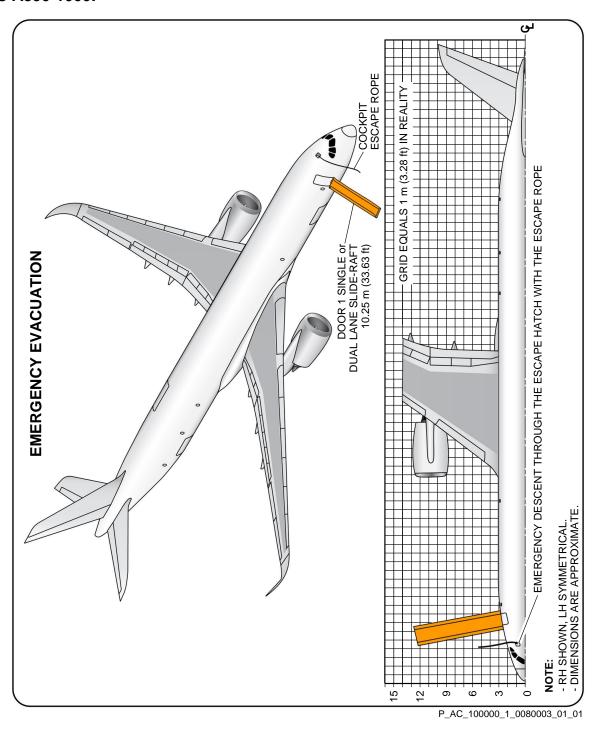

Ground Lock Safety Devices FIGURE-10-0-0-991-007-A01

**ON A/C A350-1000 A350-1000F

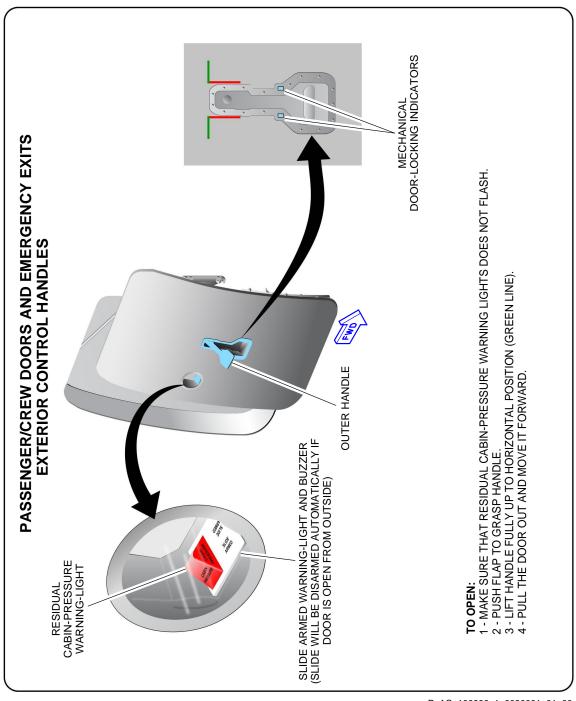


Ground Lock Safety Devices FIGURE-10-0-0-991-007-B01

**ON A/C A350-900

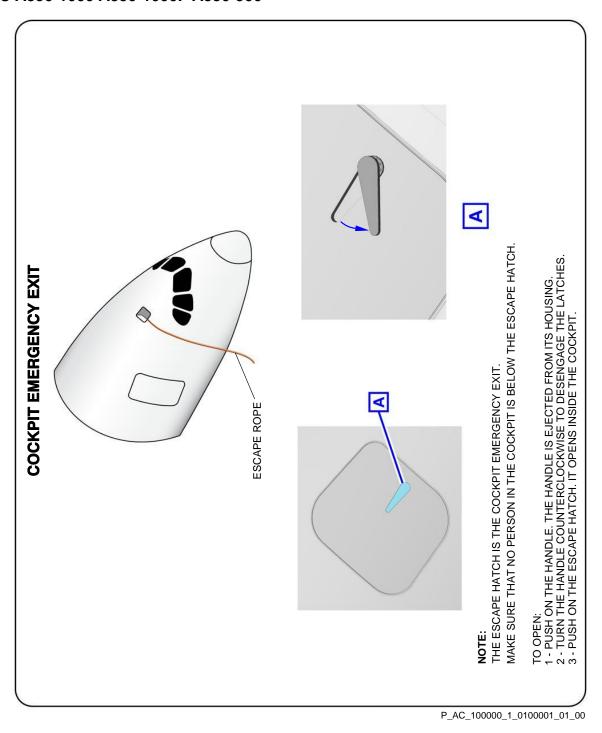


Emergency Evacuation Devices FIGURE-10-0-0-991-008-A01


Emergency Evacuation Devices FIGURE-10-0-0-991-008-B01

**ON A/C A350-1000F

Emergency Evacuation Devices FIGURE-10-0-0-991-008-C01

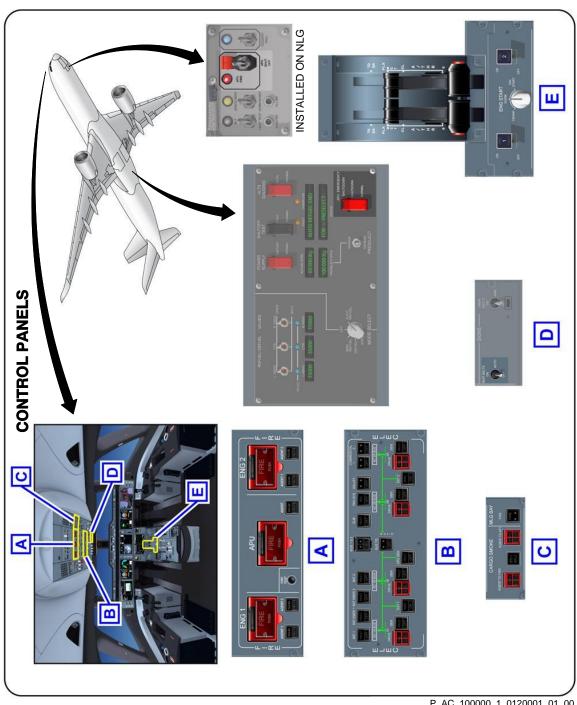

**ON A/C A350-1000 A350-1000F A350-900

P_AC_100000_1_0090001_01_00

Pax/Crew Doors and Emergency Exits FIGURE-10-0-0-991-009-A01

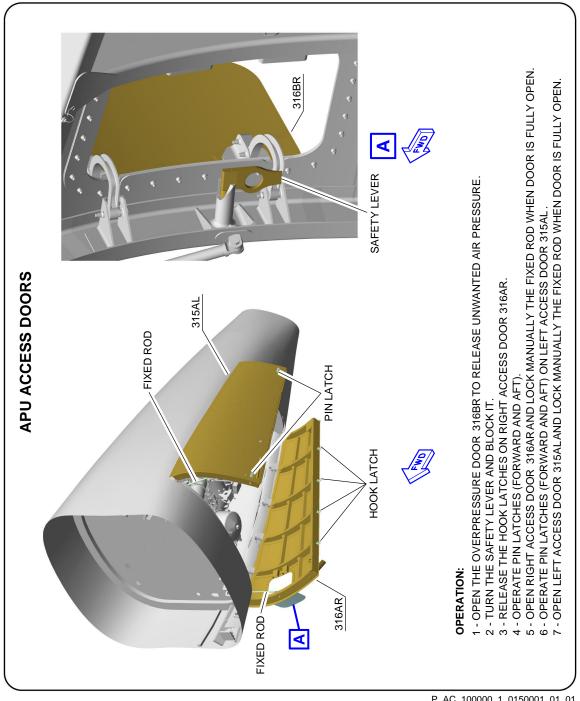
**ON A/C A350-1000 A350-1000F A350-900

Cockpit Emergency Exit FIGURE-10-0-0-991-010-A01


**ON A/C A350-1000 A350-1000F A350-900

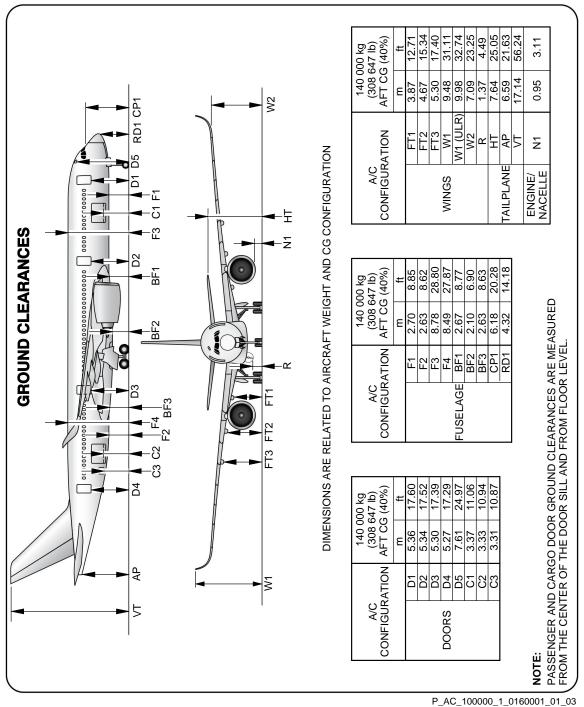
P_AC_100000_1_0110001_01_01

FWD and AFT Lower Deck Cargo Doors FIGURE-10-0-0-991-011-A01

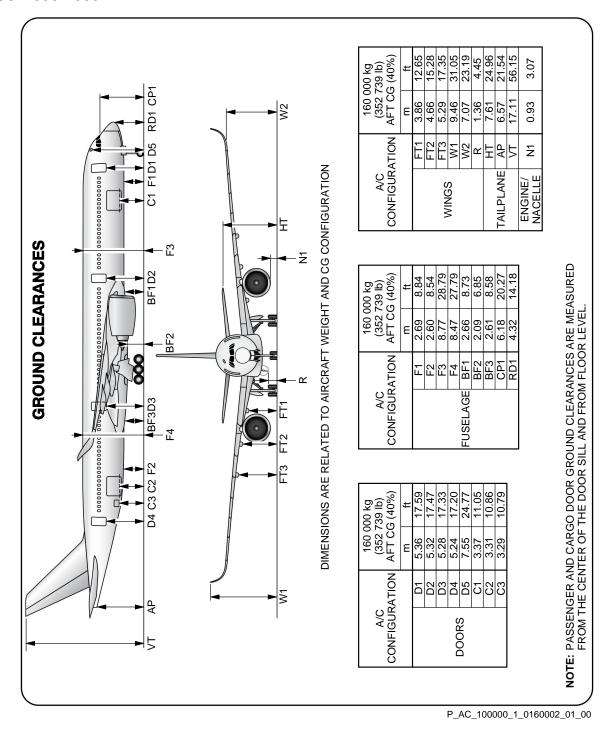

**ON A/C A350-1000 A350-1000F A350-900

P_AC_100000_1_0120001_01_00

Control Panels FIGURE-10-0-0-991-012-A01


**ON A/C A350-1000 A350-1000F A350-900

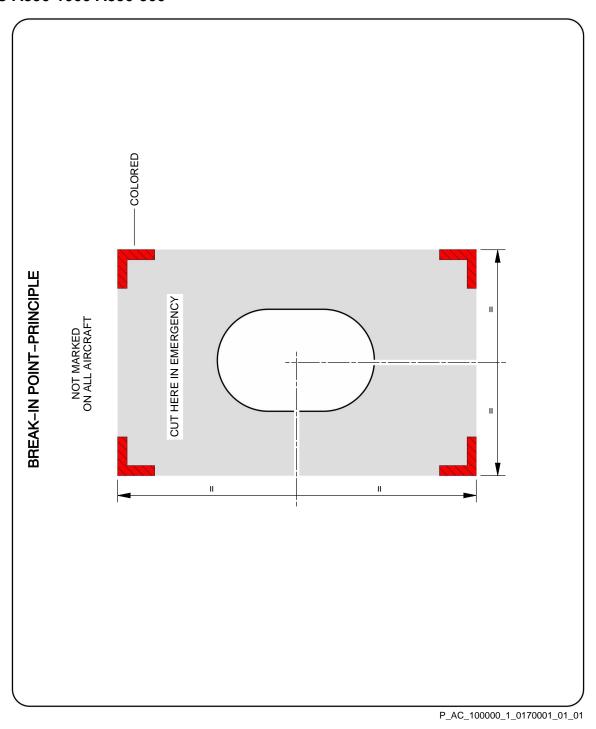
P_AC_100000_1_0150001_01_01


APU Compartment Access FIGURE-10-0-0-991-015-A01

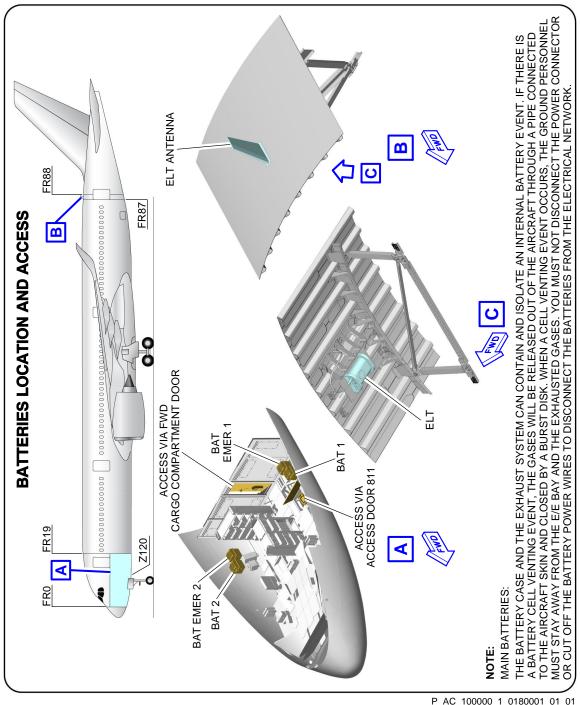
**ON A/C A350-900


Aircraft Ground Clearances FIGURE-10-0-0-991-016-A01

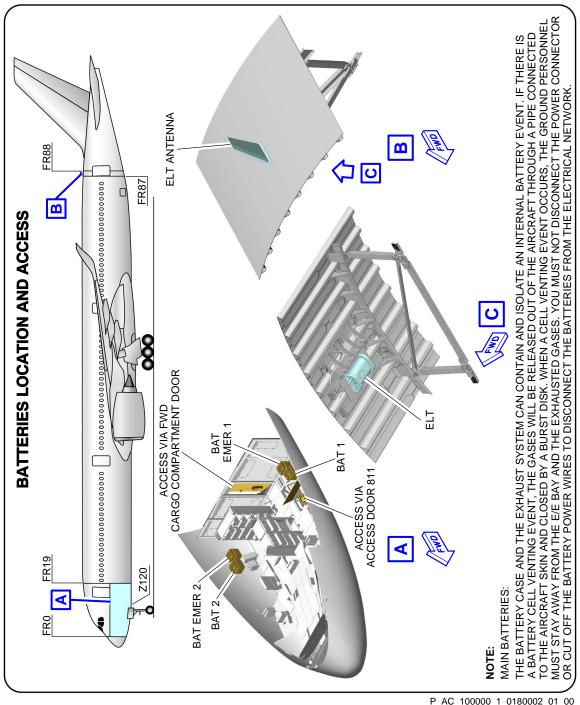
**ON A/C A350-1000


Aircraft Ground Clearances FIGURE-10-0-0-991-016-B01

**ON A/C A350-1000F

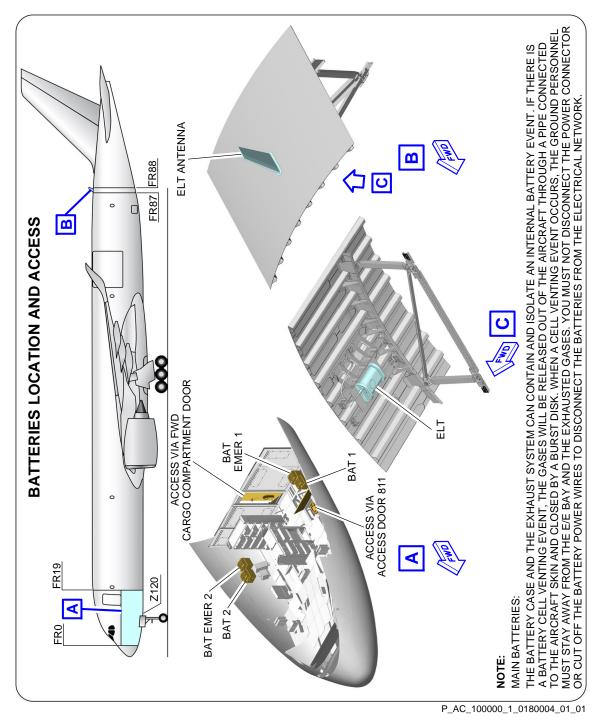

Aircraft Ground Clearances FIGURE-10-0-0-991-016-C01

**ON A/C A350-1000 A350-900


Structural Break-in Points FIGURE-10-0-0-991-017-A01

**ON A/C A350-900

P_AC_100000_1_0180001_01_01


Batteries Location and Access FIGURE-10-0-0-991-018-A01

P_AC_100000_1_0180002_01_00

Batteries Location and Access FIGURE-10-0-0-991-018-B01

**ON A/C A350-1000F

Batteries Location and Access FIGURE-10-0-0-991-018-D01